

Jorge Arturo Hinostroza Medina

Avaliação de Previsões de Fratura Elastoplástica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Jaime Tupiassú Pinho de Castro

Rio de Janeiro Outubro de 2014

Jorge Arturo Hinostroza Medina

Avaliação de Previsões de Fratura Elastoplástica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Jaime Tupiassú Pinho de Castro Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Marco Antonio Meggiolaro Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Luis Fernando Martha Departamento de Engenharia Civil – PUC-Rio

> > Prof. Gustavo H. Bolognesi Donato Centro Universitário da FEI

Prof. Guilherme Peixoto Donato CENPES/PETROBRAS

> Prof. José Alexander Araújo Universidade de Brasilia

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC - Rio

Rio de Janeiro,09 de Outubro de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jorge Arturo Hinostroza Medina

Engenheiro Mecânico egressado da Universidad Nacional de Ingenieria (Perú), possui mestrado em Engenharia Mecânica pela Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio) com ênfase em Integridade Estrutural.

Ficha Catalográfica

Medina, Jorge Arturo Hinostroza

Avaliação de previsões de fratura elastoplástica/ Jorge Arturo Hinostroza Medina; orientador: Jaime Tupiassú Pinho de Castro. – 2014.

203 f.: il. (color); 30 cm

Tese(doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2014.

Inclui bibliografia

1.Engenharia mecânica-Teses. 2. Previsões elastoplásticas. 3. Fratura de materiais. 4. Tenacidade. 5. Diagrama FAD. I. Castro, Jaime Tupiassú Pinho de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD:621

PUC-Rio - Certificação Digital Nº 0912555/CA

A Angel y Maria, por darme lo mejor.

Agradecimentos

A Maru, Angel, Paty, Jakcy, Sandra, Sebas, Mica, Maca, Martin, mi Giu e todos os membros da minha querida familia por estar sempre comigo.

Ao professor Jaime Tupiassú, pela orientação e amizade durante o desenvolvimento do Doutorado.

Ao CNPq, pelo suporte financeiro.

Aos professores da PUC-Rio pelo ensino e ajuda.

Aos meus amigos do INT, especialmente a Mourad, Rodrigo, Marcelo, Juliana e Hugo.

A todos os amigos da PUC e da vida, especialmente a Gerardo, Antonio, Cristian, Marco, Rafael Goes, Jesus, Leonardo, Jaiminho, Silvia, Marco Guaman, Patty, Allan, Niurka, Edwin, Paul, Marlene, Lucia, Marko, Marco Cachito, Ronald, Juan, Maria, Lydice, Cesar, Jerson, etc, etc, etc.

A todos os funcionários do departamento de Engenharia Mecânica, pela ajuda brindada durante este tempo.

À Pontifícia Universidade Católica do Rio de Janeiro, e seus funcionários em geral.

Resumo

Hinostroza Medina, Jorge Arturo; Pinho de Castro, Jaime Tupiassú. Avaliação de Previsões de Fratura Elastoplástica. Rio de Janeiro, 2014. 203p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho apresenta-se uma análise dos principais procedimentos desenvolvidos para calcular a tenacidade à fratura sob condições elastoplásticas. São avaliadas as principais medidas de tenacidade, bem como as diferenças, características, fontes de conservadorismo e as principais referências bibliográficas que relatam diferenças nas metodologias de cálculo para prever as cargas de falha em estruturas com defeito. Também são analisados os principais procedimentos de avaliação da Integridade Estrutural de estruturas com defeito (Fitness For Service, FFS). Testes de tenacidade são feitos variando as condições de restrição em torno da trinca (geometria do CP, tamanho inicial de trinca, entalhe lateral). Foram levantadas as curvas J_R para todos os CPs testados, e previsões de carga de fratura são feitas segundo os principais procedimentos FFS, e testes são realizados em placas trincadas centralmente com o objetivo de registrar as cargas de falha do defeito, para compará-las com as previsões dos procedimentos FFS e avaliar o conservadorismo de cada um deles. Como outra contribuição ao trabalho, simulações numéricas dos ensaios de tenacidade são desenvolvidas com o objetivos de reproduzir os testes feitos e calibrar os parâmetros de simulação de rasgamento dúctil em estruturas com defeito.

Palavras-chave

Previsões Elastoplásticas; Fratura de Materiais; Tenacidade; Diagrama FAD.

Abstract

Hinostroza Medina, Jorge Arturo; Pinho de Castro, Jaime Tupiassú (Advisor). **Evaluation of elastoplastic fracture predictions**. Rio de Janeiro, 2014. 203p. Doctoral Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents an analysis of the main procedures developed to calculate fracture toughness under elastoplastic conditions. The main measures of toughness, differences, characteristics, and sources of conservatism are evaluated. Also, the main bibliographies reporting differences in calculation methods to predict failure loads in flawed structures are examined. Lastly, the main assessment procedures of Structural Integrity of structures with flaws (*fitness for service*, FFS) are also analyzed. Toughness tests are performed varying the constraint conditions near the crack tip (geometry, initial crack size, side grooves). J_R curves and fracture load predictions were made according to the principal FFS procedures. Also, experimental tests are performed on centrally cracked plates in order to record the failure loads of the structure, to compare them with the predictions of FFS procedures and to evaluate their conservatism. Other contributions of this work are numerical simulations of toughness tests, developed in order to reproduce the tests and calibrate the simulation parameters of ductile tearing in structures with flaws.

Keywords

Elastoplastic prediction; Fracture; Toughness; FAD diagram.

Sumário

1 . Introdução	19
1.1. Objetivos	20
1.2. Revisão bibliográfica	21
1.3. Conteúdo da tese	24
2 . Conceitos básicos da Mecânica da Fratura	26
2.1. Mecânica da Fratura	26
2.1.1. Ductilidade	28
2.1.2. Tenacidade à Fratura	29
2.2. Mecânica da Linear Elástica (MFLE)	30
2.2.1. Fator de concentração de tensões (Kt)	32
2.2.2. Balanço de energia de Griffith	33
2.2.3. Taxa de liberação de Energia G	34
2.2.4. Fator de intensidade de tensões (K)	35
2.2.5. Zona Plástica na ponta da trinca	37
2.2.6. Restrição à deformação plástica	41
2.2.7. O Parâmetro K _{lc}	44
2.3. Mecânica da Fratura Elasto-Plástica (MFEP)	45
2.3.1. Deslocamento da abertura da ponta da trinca (CTOD)	46
2.3.2. O Modelo de Wells	47
2.3.3. O Modelo de Dugdale, Burdekin e Stone	48
2.3.4. O Modelo de Dawes	49
2.3.5. A Integral J	50
2.3.6. A Curva J _R	51
2.4. Mecânica da Fratura Bi-Paramétrica	52
2.4.1. Tensão T	54
2.4.2. O Parâmetro Q	56
2.5. Modelo de Gurson	57

3. Estudo dos principais procedimentos para cálculo da Tenacidade 61

3.1. Corpos de Prova (CP)	61
3.2. Pré-trinca de fadiga	63
3.3. Side Grooves (Entalhes Laterais)	65
3.4. Procedimento de ensaio K _{Ic}	67
3.5. Procedimento de ensaio CTOD	71
3.5.1. Comentários a respeito do cálculo de CTOD	72
3.6. Procedimento de ensaio J	74
3.7. Procedimento para obtenção da curva J_R	76
3.7.1. Comentários a respeito do cálculo da curva J_R	81
3.8. Procedimento para obtenção da curva J_R em CPs SE(T)	82
4 . Integridade Estrutural e Metodologias Fitness for Service	85
4.1. Integridade Estrutural	85
4.2. Avaliação da Integridade Estrutural (AIE)	85
4.3. Falha	85
4.4. A metodologia Fitness for Service (FFS)	85
4.4.1. Procedimentos Simplificados	87
4.4.2. Procedimentos Detalhados	88
4.4.3. Procedimentos baseados no FAD	88
4.4.4. Procedimentos baseados no CDFD	93
4.4.5. Procedimentos baseados em ambas as metodologias	96
4.4.6. Procedimento BS 7910:2005 [10]	99
5 . Testes de caracterização do material	119
5.1. Metalografia	119
5.2. Teste de tração	120
5.3. Testes de tenacidade à fratura	122
5.3.1. Corpos de Prova (CPs)	122
5.3.2. Pré-trinca de fadiga	124
5.3.3. Entalhes Laterais (Side Grooves)	125
5.3.4. Testes CPs SE(B)	126
5.3.5. Testes CPs SE(T)	131
5.3.6. Fratura dos CPs	135
5.3.7. Curvas J _R	137

5.3.8. Análise Fratográfica	142
5.4. Simulações dos testes de Tenacidade	144
6 . Cálculo e Validação de Previsões de Integridade Estrutural de	
Placas Trincadas por Vários Métodos de FFS	150
6.1. Previsões das Normas FFS	150
6.1.1. Estrutura analisada	150
6.1.2. Avaliação Nível 1	151
6.1.3. Avaliação Nível 2	155
6.1.4. Avaliação Nível 3	158
6.1.5. Resultados e Comparações	159
6.1.6. Comentários ao respeito das comparações	162
6.2. Testes Estruturais de Validação	163
6.2.1. Placa A12-01	167
6.2.2. Placa A08-01	168
6.2.3. Placa A08-02	169
6.2.4. Placa A10-01	169
6.2.5. Placa A12-02	170
6.2.6. Comentários a respeito dos Testes Estruturais de Validação	171
7 . Considerações Finais	172
7.1. Conclusões	172
8. Referencias Bibliograficas	1/4
Apêndice A	183
A.1. Superfícies de fratura dos CPs testados	183
A.2. Fratografias dos CPs testados	188
Apêndice B - Medição de deslocamento em teste de Tenacidade	
usando a Metodologia DIC	196

Lista de Figuras

Figura 2.1 – Triangulo da Mecânica da Fratura.	27
Figura 2.2 – Limite de aplicação da MFLE[22].	27
Figura 2.3 – Fratura Dúctil[23].	28
Figura 2.4 – Fratura Frágil[23].	29
Figura 2.5 – Diferentes estados de tensão[24].	31
Figura 2.6 – Fragilização por estado triaxial de tensões[24].	32
Figura 2.7 – A placa de Inglis[28].	32
Figura 2.8 – Campo de tensões em torno da ponta da trinca.	35
Figura 2.9 – Tensões normais ao plano da trinca[28].	37
Figura 2.10 – Tamanho da zona plástica de Irwin[28].	38
Figura 2.11 – Segunda estimativa da zona plástica de Irwin[28].	39
Figura 2.12 – Zona plástica segundo Dugdale[28].	40
Figura 2.13 – Modelos de correção da zona plástica[28].	40
Figura 2.14 – Origem do efeito da restrição plástica[30].	41
Figura 2.15 – Condições de restrição em trincas[30].	42
Figura 2.16 – Capacidade máxima de restrição para uma trinca[30].	42
Figura 2.17 – Relaxação da restrição da ponta da trinca[30].	43
Figura 2.18 – Relação Kı vs. espessura – Adaptado de [31].	44
Figura 2.19 – Esquema aplicação Mecânica da Fratura[24].	46
Figura 2.20 – Abertura da ponta da trinca (CTOD).	47
Figura 2.21 – Estimativa CTOD considerando o modelo de Irwin[28].	48
Figura 2.22 – Estimativa CTOD-Modelo de Dugdale[33].	48
Figura 2.23 - Comportamento do CP no teste CTOD, adaptado de [28].49
Figura 2.24 – Curvas EP,NLE e caminho s englobando a área S [22].	51
Figura 2.25 – Curva J _R , adaptada de[28].	52
Figura 2.26 – Curva J_R vs. tamanho de trinca[34].	53
Figura 2.27 – a/W vs. β[28].	55
Figura 2.28 – Influência Geométrica vs. Tenacidade[36].	56
Figura 2.29 – Zona de fratura dúctil [38].	57
Figura 2.30 – Células computacionais (Material : Gurson-Tvergaard).	60
Figura 3.1 – CP de Flexão em três pontos – SE(B).	61

Figura 3.2 – CP Compacto de tração – C(T).	61
Figura 3.3 - CP Compacto de tração em forma de disco DC(T)	62
Figura 3.4 - CP de tração em forma de arco – A(T)	62
Figura 3.5 - CP Compacto de tração com entalhe escalonado C(T)-EE	62
Figura 3.6 – CPs não convencionais.	64
Figura 3.7 – Pré-trinca e carregamento variável.	64
Figura 3.8 – <i>Side Groove</i> .	66
Figura 3.9 – Tipos de <i>Side Groove</i> .	66
Figura 3.10 – Frentes de trinca em CP SE(B), (A) sem <i>side groove</i> ,	
(B) tipo U, (C) tipo V V, (D) fenda de 0,2 mm [44].	67
Figura 3.11 – Diferentes tipos de registro do teste	68
Figura 3.12 – Esquema para medição de a ₀ .	69
Figura 3.13 – Esquema para cálculo de Po	70
Figura 3.14 – Esquema para cálculo da tenacidade.	71
Figura 3.15 – Cálculo de Vp.	72
Figura 3.16 – Cálculo do CTOD nas diferentes normas.	73
Figura 3.17 – Área Força(P) vs deslocamento do clip gage(V).	74
Figura 3.18 – Cálculo do J nas diferentes normas.	75
Figura 3.19 – Método " <i>unloading compliance</i> "	76
Figura 3.20 – Curva J _R [3].	77
Figura 3.21 – Curva J _R segundo a norma ASTM E-1820[3]	78
Figura 3.22 – Região de dados qualificados da Curva J _R [3].	79
Figura 4.1 – Procedimento J-T.	87
Figura 4.2 – FAD R6.	90
Figura 4.3– Crack driving force diagram[52].	95
Figura 4.4 – Stability assessment diagram[52].	95
Figura 4.5 – FAD Nível 1.	104
Figura 4.6 – Tipos de defeito.	105
Figura 4.7 – Diagrama de fluxo Nível 1 [10].	106
Figura 4.8 – Formulas para σ _{ref} [10].	109
Figura 4.9 – FAD Nível 2A.	110
Figura 4.10 – Diagrama de fluxo Nível 2[10].	112
Figura 4.11 – Diagrama de fluxo Nível 3 [10] .	116
Figura 4.12 –Lugar geomêtrico no Nível 3.	118

Figura 5.1 – Amostras embutidas em baquelite.	119
Figura 5.2 – Metalografía (A) aumento de 100x (B) aumento de 200x.	120
Figura 5.3 – C.P. tração segundo a norma ASTM E 8M[56].	120
Figura 5.4 – Máquina de tração INSTRON 8872.	121
Figura 5.5 – Sequência do teste.	121
Figura 5.6 – Curvas tensão vs. deformação.	121
Figura 5.7 – Dimensões do CP tipo SE(B) – dimensões em mm.	122
Figura 5.8 – Dimensões do CP tipo SE(T) – dimensões em mm.	123
Figura 5.9 – CPs usinados.	123
Figura 5.10 – Montagem do CP para pré-trincamento	124
Figura 5.11 – Detalhe da pré-trinca.	125
Figura 5.12 – Tela de acomanhamento do pré-trincado.	125
Figura 5.13 – CP com entalhe lateral.	126
Figura 5.14 – Conjunto de CPs entalhados lateralmente.	126
Figura 5.15 – Posicionamento do clip gage no CP.	127
Figura 5.16 – Curva P vs. COD (a/W=0,5).	128
Figura 5.17 – Zona plástica CPs A) SEB 05-02 e B) SEB 05-03.	128
Figura 5.18 – Curva P vs. COD (a/W=0,4).	129
Figura 5.19 – Curva P vs. COD (a/W=0,3).	130
Figura 5.20 – Curva P vs. COD totais.	130
Figura 5.21 – Curvas P vs. COD para CPs mais representativos.	131
Figura 5.22 – Propagação estável da trinca.	131
Figura 5.23 – Montagem do teste SE(T).	132
Figura 5.24– Curva P vs. COD (a/W=0,5).	132
Figura 5.25– Zona plástica CPs A) SET 05-02 e B) SET 05-03.	133
Figura 5.26– Curva P vs. COD (a/W=0,4).	134
Figura 5.27– Curva P vs. COD totais.	134
Figura 5.28– Curvas P vs. COD para CPs mais representativos.	135
Figura 5.29 – Propagação estável da trinca.	135
Figura 5.30 – Curvas P vs. COD totais.	136
Figura 5.31 – CPs submersos em nitrogênio líquido para fratura.	136
Figura 5.32 – Fratura dos CPs após resfriamento.	136
Figura 5.33 – Esquema da medição dos comprimentos das trincas.	137
Figura 5.34 – Curva J _R dos CPs SE(B) a/W=0,3.	138

Figura 5.35 – Curva J _R dos CPs SE(B) a/W=0,4.	138
Figura 5.36 – Curva J _R dos CPs SE(B) a/W=0,5.	139
Figura 5.37 – Curvas J _R SE(B) totais.	139
Figura 5.38 – Curva J _R dos CPs SE(T) a/W=0,4.	140
Figura 5.39 – Curva J _R dos CPs SE(T) a/W=0,5.	140
Figura 5.40 – Curvas J _R SE(T) totais.	141
Figura 5.41 – Curvas J _R totais.	141
Figura 5.42 – Fratografia # 1 da superficie CP SEB 05-02.	142
Figura 5.43 – Fratografia # 2 da Superfície CP SEB 05-02.	142
Figura 5.44 – Fratografia #3 da superfície do CP SEB 05-02.	143
Figura 5.45 – Fratografia #1 da superfície do CP SET 04-03.	143
Figura 5.46 – Fratografia #2 da superfície do CP SET 04-03.	143
Figura 5.47 – Fratografia #3 da superfície do CP SET 04-03.	144
Figura 5.48 – Geometria do CP usado no modelo.	144
Figura 5.49 – Malha de E.F. e células computacionais no CP.	145
Figura 5.50 – Condições de contorno do modelo.	146
Figura 5.51 – Tensão de von Mises (frame 200 e 4800) - a/W=0,3.	147
Figura 5.52 – Curvas P vs COD a/W=0,5 experimental e numérico.	148
Figura 5.53 – Curvas P vs COD a/W=0,4 experimental e numérico.	148
Figura 5.54 – Curvas P vs COD a/W=0,3 experimental e numérico.	149
Figura 5.55 – Curvas P vs COD ajustadas.	149
Figura 6.1 – Defeito considerado na placa.	150
Figura 6.2 – Diagrama Nível 1 (200MPa).	154
Figura 6.3 – Diagrama Nível 1.	154
Figura 6.4 – Diagrama Nível 1.	155
Figura 6.5 – Diagrama FAD Nível 2A e B.	156
Figura 6.6 – Diagrama Nível 2 (200MPa).	157
Figura 6.7 – Diagrama Nível 2A.	158
Figura 6.8 – Diagrama Nível 2B.	158
Figura 6.9 – Diagrama Nível 3.	159
Figura 6.10 – Diagrama Nível 3B.	159
Figura 6.11 – Usinagem das placas, dimensões em mm.	163
Figura 6.12 – Placas com entalhe central .	164
Figura 6.13 – Máquina e equipamentos usados no pré-trincado.	164

Figura 6.14– Detalhe da placa entalhada.	165
Figura 6.15 – Pré-trinca aproximadamente semieliptica placa A12-01.	165
Figura 6.16 – Montagem do ensaio nas duas máquinas.	166
Figura 6.17 – Inicio e fim do teste – Placa A12-01.	166
Figura 6.18– Tensão vs. deformação – Placa A12-01.	167
Figura 6.19 – F.S. da Placa A12-01.	168
Figura 6.20 – F.S. da Placa A08-01.	168
Figura 6.21 – F.S. da Placa A08-02.	169
Figura 6.22 – F.S. da Placa A10-01.	170
Figura 6.23 – F.S. da Placa A12-02.	170
Figura A.1 – Superfície de fratura CP SEB-03-01.	183
Figura A.2 – Superfície de fratura CP SEB-03-02.	183
Figura A.3 – Superfície de fratura CP SEB-03-03.	183
Figura A.4 – Superfície de fratura CP SEB-04-01.	184
Figura A.5 – Superfície de fratura CP SEB-04-02.	184
Figura A.6 – Superfície de fratura CP SEB-04-03.	184
Figura A.7 – Superfície de fratura CP SEB-05-01.	185
Figura A.8 – Superfície de fratura CP SEB-05-02.	185
Figura A.9 – Superfície de fratura CP SEB-05-03.	185
Figura A.10 – Superfície de fratura CP SET-04-01.	186
Figura A.11 – Superfície de fratura CP SET-04-02.	186
Figura A.12 – Superfície de fratura CP SET-04-03.	186
Figura A.13 – Superfície de fratura CP SET-05-01.	187
Figura A.14 – Superfície de fratura CP SET-05-02.	187
Figura A.15 – Superfície de fratura CP SET-05-03.	187
Figura A.16 – Fratografias # 1 e # 2 da superfície CP SEB 03-01.	188
Figura A.17 – Fratografia # 3 da superfície CP SEB 03-01.	188
Figura A.18 – Fratografias # 1 e # 2 da superfície CP SEB 03-02.	188
Figura A.19 – Fratografia # 3 da superfície CP SEB 03-02.	189
Figura A.20 – Fratografias # 1 e # 2 da superfície CP SEB 03-03.	189
Figura A.21 – Fratografia # 3 da superfície CP SEB 03-03.	189
Figura A.22 – Fratografias # 1 e # 2 da superfície CP SEB 04-01.	190
Figura A.23 – Fratografia # 3 da superfície CP SEB 04-01.	190
Figura A.24 – Fratografias # 1 e # 2 da superfície CP SEB 04-02.	190

Figura A.25 – Fratografia # 3 da superfície CP SEB 04-02.	191
Figura A.26 – Fratografias # 1 e # 2 da superfície CP SEB 04-03.	191
Figura A.27 – Fratografia # 3 da superfície CP SEB 04-03.	191
Figura A.28 – Fratografias # 1 e # 2 da superfície CP SEB 05-01.	192
Figura A.29 – Fratografia # 3 da superfície CP SEB 05-01.	192
Figura A.30 – Fratografias # 1 e # 2 da superfície CP SEB 05-03.	192
Figura A.31 – Fratografia # 3 da superfície CP SEB 05-03.	193
Figura A.32 – Fratografias # 1 e # 2 da superfície CP SET 04-01.	193
Figura A.33 – Fratografias # 1 e # 2 da superfície CP SET 04-02.	193
Figura A.34 – Fratografias # 1 e # 2 da superfície CP SET 04-03.	194
Figura A.35 – Fratografias # 1 e # 2 da superfície CP SET 05-01.	194
Figura A.36 – Fratografias # 1 e # 2 da superfície CP SET 05-02.	194
Figura A.37 – Fratografias # 1 e # 2 da superfície CP SET 05-03.	195
Figura B.1– Clip gage montado no CP.	197
Figura B.2– Geometria e dimensões do CP.	198
Figura B.3– Sistema de monitoramento da pré-trinca.	198
Figura B.4– Aplicação da tinta (a)CP;(b) clip gage;(c) conjunto ;	
(d) padrão de pontos	199
Figura B.5– Sistema de monitoramento : (a) câmera CCD e lente;	
(b) CP e clip gage a fotografar; (c) tela de alta resolução;	
(d) processamento das imagens DIC.	200
Figura B.6– Imagens tiradas pelo software DIC para o CP3.	201
Figura B.7– Processamento de imagem CP3.	201
Figura B.8– Curva força vs.LLD – CP1.	202
Figura B.9– Curva força vs.LLD – CP2.	202
Figura B.10– Curva força vs.LLD – CP3.	203
Figura B.11– Curva força vs.LLD – CP4.	203

Lista de tabelas

Tabela 3.1 – Tipos de CPs para cálculo de K _{IC} .	63
Tabela 3.2 – Tipos de CPs para cálculo de CTOD.	63
Tabela 3.3 – Tipos de CPs para cálculo de J.	63
Tabela 3.4 – Valores de a $_0$ segundo cada procedimento.	65
Tabela 4.1 – Tarefas e subtarefas do projeto[53].	97
Tabela 4.2 – Estrutura matricial do projeto FITNET[54].	98
Tabela 4.3 – Estrutura da BS 7910 [10].	102
Tabela 5.1 – Propriedades mecânicas.	122
Tabela 5.1 – Nomenclatura dos CPs.	123
Tabela 5.2 – Parâmetros de teste.	127
Tabela 5.3 – Propriedades mecânicas CPs SEB.	140
Tabela 5.4 – Propriedades mecânicas CPs SET.	141
Tabela 5.5 – Número de elementos e nós nos modelos.	145
Tabela 6.1 – Dimensões dos defeitos nas placas avaliadas.	151
Tabela 6.2 – Tensões críticas no nível 1 – Placa A12-01.	160
Tabela 6.3 – Tensões críticas no nível 1.	160
Tabela 6.4 – Tensões críticas no nível 2A – Placa A12-01.	160
Tabela 6.5 – Tensões críticas no nível 2A.	161
Tabela 6.6 – Tensões críticas no nível 2B-Placa A12-01.	161
Tabela 6.7 – Tensões críticas no nível 2B.	161
Tabela 6.8 – Tensões críticas no nível 3A-Placa A12-01.	161
Tabela 6.9 – Tensões críticas no nível 3A.	162
Tabela 6.10 – Tensões críticas no nível 3B-Placa A12-01.	162
Tabela 6.11 – Tensões críticas no nível 3B.	162
Tabela 6.12 – Nomenclatura das placas.	163
Tabela 6.13 – Tensões de falha e F.S. previstos para a placa A12-01.	167
Tabela 6.14 – Tensões de falha e F.S. previstos para a placa A08-01.	168
Tabela 6.15 – Tensões de falha e F.S. previstos para a placa A08-02.	169
Tabela 6.16 – Tensões de falha e F.S. previstos para a placa A10-01.	169
Tabela 6.17 – Tensões de falha e F.S. previstos para a placa A12-02.	. 170
Tabela 6.18 – Maiores e menores previsões nas placas.	171

Tabela B.1 – Taxa de carregamento e tempo dos testes.200