

5
The LDC Mediator

This chapter presents the architecture of the LDC Mediator. Section 5.1

argues for the advantages of using the REST Principles for consuming linked data

cubes. Section 5.2 presents the components of the LDC Mediator. Section 5.3

describes the implementation of the mediator, including the platform, language,

and tools used to build the mediator. This section also presents each package and

its main java classes. Finally, Section 5.4 illustrates, through one of these

Brazilian datasets collected, the process of consuming data cube metadata, as well

as the process of consuming data cube observations.

5.1
Combining REST and Linked Data

The REST Principles are in a sense related to the Linked Data Principles in

terms of the concept of resource:

· Resources have a unique identifier (URI) that must be

dereferenceable through HTTP;

· Resources are interlinked, and, by following those links, new

resources can be discovered.

However, the Linked Data Principles are only concerned with the

publication and retrieval of data. The access to large collections of RDF data is

usually done through a SPARQL endpoint. RESTful Web services in turn have no

endpoints. They only provide a collection of resource URIs and operations to

access and change the state of the resources. REST requires a uniform interface, a

set of methods with known semantics that access and change the state of the

resources. These methods are external to the resources, which can have multiple

representations, and are invoked by HTTL messages sent to the server.

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

49

Therefore, in this context it is intuitive to combine Linked Data with REST

Principles to allow data cube access and manipulation (Stadtmüller and Harth

2012). The RDF model is also flexible enough to support multiple representations,

which capture the resource’s current state (for instance XML or JSON).

5.2
The LDC Mediator components

Figure 21 shows the architecture of the mediator, which mediates access to

the underlying statistical relational databases and exposes data cubes to the

applications through a RESTful API.

Figure 21: LDC Mediator components

The LDC Mediator has the following components: a LDC RESTful API, a

Mediation Engine, a Metadata service and a RDB-to-RDF Converter. The LDC

RESTful API is the component of the mediator that exposes the data cubes through

a Web service implemented using the REST Principles (Fielding and Taylor

2002). The Mediator Engine is the component that receives a request from a

Client Application and chooses how to process the request, depending on its type.

The Metadata Service is the module responsible for retrieving data cube metadata

requested by the Mediator Engine. These metadata include the cube dimensions,

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

50

the measure and also the connection information used to access the underlying

relational database. The RDB-to-RDF Converter is the component used to

generate the RDF triples that represent the data cube observations from the

relational databases.

5.3 Implementation of the LDC Mediator

The LDC Mediator was developed using the following platforms, languages

and tools:

· Windows 7 Starter SP1 32 bits

· Java Plataform, Enterprise Edition 7 SDK
27

 (version 1.7.0_25)

· NetBeans IDE 7.2.1
28

· My Sql Server 5.5
29

· Toad for MySql 6.3 Freeware
30

· Virtuoso open source edition
31

· DB2Triples – RDB2RDF Antidot implementation
32

· Jersey RESTful Web Services in Java
33

· Astah Professional 6.6.4/41775
34

In addition to the documentation of each of these frameworks, some

documents were essential in the implementation of the LDC Mediator:

· Stack Overflow, a question and answer Web site for programmers
35

· GUJ forum for Java programmers
36

· The guide to install and configure Virtuoso on Windows
37

· Examples of using Jena to manipulate RDF graphs
38

· “My first mapping from RDB to RDF with R2RML”, Ivan Herman
39

27

http://www.oracle.com/technetwork/java/javaee/javaee7sdk-install-1957708.html
28

 https://netbeans.org/
29

 http://dev.mysql.com/downloads/mysql/
30

 http://www.quest.com/toad-for-mysql/
31

 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload
32

 https://github.com/antidot/db2triples
33

 https://jersey.java.net/
34

 http://astah.net/editions/community
35

 http://stackoverflow.com/
36

 http://www.guj.com.br/forums/list.java
37

 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSUsageWindows
38

 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtJenaProvider

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

51

The LDC Mediator architecture is divided into three packages, according to

its components (see Figure 21): the Mediator Engine package, the Metadata

Service package and the RDB-to-RDF package. These packages are detailed in

the following sections (the test package, the exception handling, and other

auxiliary classes were omitted).

5.3.1. The Mediator Engine package

The Mediator Engine package contains classes that directly deal with client

requests, as well as classes that represent the REST resources. The main class of

this package is the MediatorService.java class which has attributes and

methods used to interact with the other packages. It also has two classes that

represent a data cube resource (DataCubeResource.java) and a list of data cubes

resources (DataCubesListResource.java), as indicated in Figure 22.

Figure 22: Mediator Engine package

As previously mentioned in Section 2.6.2, data cube metadata is divided

into three parts: the dataset definition, the structure definition and the measure(s)

definition. In order to simplify cube metadata consumption, the

MediatorService.java class has three independent methods: the first method

(findDataSetMetadata) gets the dataset definition part of the cube definition; the

second method (findDSDMetadata) gets the data structure definition (DSD) and

the third method (findMeasureMetadata) gets the metadata of the measure(s).

In order to represent the REST resources, this package uses the Java API for

RESTful Services, called JAX-RS
40

. The reference implementation for this

39

 http://ivan-herman.name/2010/11/02/my-first-mapping-from-rdb-to-rdf-using-r2rml/

40

 http://jax-rs-spec.java.net

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

52

specification is an open source framework known as Jersey
41

, which basically

contains a REST server and a REST client. On the server side, Jersey uses a

servlet which scans predefined classes to identify RESTful resources. Table 4

presents the most important JAX-RS annotations and their descriptions.

Table 4: The JAX-RS most important annotations

JAX-RS annotation Description

@PATH(path) Sets the path to base URL + /path.

@POST Indicates that the following method will answer to a HTTP POST request

@GET Indicates that the following method will answer to a HTTP GET request

@Produces(MediaType.TEXT_PLAIN
[, more-types])

Defines which MIME type is delivered by a method annotated with

@GET. In the example text ("text/plain") is produced. Other examples
would be "application/xml" or "application/json".

@Consumes(type [, more-types]) Defines which MIME type is consumed by this method.

@PathParam
Used to inject values from the URL into a method parameter. This way

you inject for example the ID of a resource into the method to get the

correct object.

The DataCubeResource.java and the DataCubeListResource.java

classes represent the predefined data classes (resources) that the Jersey scans

automatically. Figure 23 shows the annotations used to implement the first

resource when a client application requests a data cube metadata, for instance

HTTP GET http://host:port/LDC_Mediator/dataCube/dataset-residents.

The MediaType.APPLICATION_OCTET_STREAM type (line 39) is a generic mime

type for non-text data and is part of the HTTP content negotiation (see Section

2.2) from the server to the clients.

Figure 23: The Jersey implementation of the Data Cube resource

41

 http://jersey.java.net/

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

53

5.3.2. The Metadata Service package

The Metadata Service package, shown in Figure 24, includes the class that

connects directly to the Catalogue stored in the Virtuoso server

(CatalogueConnection.java). This package also contains the auxiliary class

(SparqlQueries.java) that builds the SPARQL queries needed to access the

data cube metadata stored in the Catalogue. This class is also composed of some

static attributes (omitted from the figure), which represent all vocabulary

namespaces used to build the queries.

Figure 24: Metadata Service package

The main method of CatalogueConnection.java is

executeSparqlQuery(String sparqlQuery, VirtGraph set), presented in

Figure 25. It uses classes from the Jena framework (Query.java,

QueryFactory.java and ResultSet.java) and from the Virtuoso Jena Provider

framework (VirtGraph.java, VirtuosoQueryExecution.java,

VirtuosoQueryExecutionFactory.java). It receives a generic SPARQL query

as parameter and a graph of triples, it returns a list of results and it is always used

when a SPARQL query is executed against the Catalogue.

Figure 25: The generic method to execute a SPARQL

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

54

5.3.3. The RDB-to-RDF package

The RDB-to-RDF package includes the classes used to convert the data

cubes stored in the relational databases to RDF triples using R2RML mapping

files. The two main classes of the package are: the

DataCubeTriplification.java and the DB2TriplesParameters.java, shown

in Figure 26.

Figure 26: RDB-to-RDF Converter package

In order to read and interpret R2RML mapping files, the

DataCubeTriplification.java employs the db2triples library
42

, a software tool

for extracting data from relational databases and loading data into RDF. It

implements R2RML and Direct Mapping standards defined by the RDB2RDF

working group
43

. This library accepts some parameters to configure the type of

RDB-to-RDF conversion, listed in Table 5.

Table 5: DB2Triples parameters

Parameter Description

-b Database name

-d Driver to use (default:com.mysql.jdbc.Driver)

-f
Force loading of existing repository
(without remove data)

-i Base URI (default:http://foo.example/DB/)

-l Database URL (default :jdbc:mysql://localhost/)

-m
Mandatory conversion mode, 'r2rml' for R2RML and
'dm' for Direct Mapping

42

 http://www.w3.org/2001/sw/wiki/Db2triples
43

 http://www.w3.org/2001/sw/rdb2rdf/

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

55

-n Native store output directory

-o Output RDF filename (default : output)

-p Database password

-q
Transformed graph output file (optional if sparql option
is not specified, default : sparql_output otherwise)

-r
R2RML config file used to convert relational database
into RDF terms.

-s Sparql transform request file (optional)

-t
RDF syntax output format ('RDFXML', 'N3',

'NTRIPLES' or 'TURTLE')

-u Database user name

-v
Version of norm to use (1 = Working Draft 20 September

2011 (default), 2 = Working Draft 23 March 2011)

These DB2Triples parameters are represented in the

DB2TriplesParameters.java class by the static attributes that are in fact used to

triplify the data cubes: -m (conversion mode, “r2rml”), -u (user), -p (password), -

b (database name), -t (RDF syntax output format) and –r (the path of the R2RML

mapping file). The conversion mode parameter is used to inform the RDB-to-RDF

conversion approach: the Direct Mapping (see section 2.7.1) or the R2RML

Mapping (see section 2.7.2).

5.4 Consuming data cubes with the LDC Mediator

This section provides an example that illustrates how the LDC Mediator

works.

5.4.1. Datasets collected

A small data set from SIDRA (Sistema IBGE de Recuperação automática)
44

was collected to test the LDC Mediator. SIDRA is a Brazilian Government

Repository which stores demographic census data. Initially, three datasets were

extracted:

44

 http://www.sidra.ibge.gov.br/

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

56

· [1] Foreigners living in Brasil
45

, which is broken down by condition

(naturalized or not), gender, living situation (urbana or rural) and

country of birth - containing 828 observations;

· [2] Residents of Brazil
46

, which is broken down by race, sex, living

situation, age group and age(year) - containing 872 observations;

· [3] Residents of Brazil by Religion
47

, broken down by religion, year

and region of Brazil - encompassing 864 observations.

These three datasets were extracted in CSV format and transformed into

three different relational star schemas, each one containing one fact table related

to their dimensions respectively. Figure 27 shows the star schema related to

second dataset: residents of Brazil. Section 5.4.3 presents the data cube

description related to this star schema.

Figure 27: A residents star schema

45

 http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?z=cd&o=2&i=P&c=2093
46

 http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?z=cd&o=2&i=P&c=2093
47

 http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?z=cd&o=2&i=P&c=137

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

57

5.4.2. The RESTful Web service definition

The LDC Mediator provides access to the data cubes through a RESTful

Web service, following the REST Principles. The RESTful HTTP methods

implemented by the component are shown in Table 6. The first HTTP method

offers a list of all cubes stored in the Catalogue. The second HTTP method

provides the data cube metadata. Finally, the third HTTP method retrieves all the

individual observations related to the cube.

Table 6: LDC RESTful API methods

Concept
HTTP

Method

URI Template

Data Cubes

List
GET http://host:port/LDC_Mediator/dataCubes

Data Cube
Metadata By

Id

GET http://host:port/LDC_Mediator/dataCube/{uriDataCube}

Observations

by cube
GET http://host:port/LDC_Mediator/observations/{uriDataCube}

By requesting the first HTTP method

(GET http://host:port/LDC_Mediator/dataCubes) the client receives a list

containing all cubes available and their descriptions, depicted in Figure 28. The

list also contains links to the other HTTP methods in order to request cube

metadata and cube observations. The second and the third methods will be

exemplified in sections 5.4.3 and 5.4.4 respectively.

Figure 28: List of cubes

5.4.3. Requesting a cube metadata

The second HTTP method requests the cube metadata and is shown in Flow

1 of Figure 21 through the interaction between the components Mediator Engine

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

58

and Metadata Service. Following the REST Principles, the HTTP request

GET http://host:port/LDC_Mediator/dataCube/dataset-residents

returns the state of the resource “data cube residents”, which in this case is the

metadata of the cube, presented in Figure 29.

Figure 29: Return of the cube metadata request

In order to simplify metadata consumption, the Metadata Service divides the

metadata into three parts (the three figure frames) and groups the results to return

the complete cube metadata (see Section 2.6.2). The first part (lines 15-18) creates

a resource of type qb:DataSet (line 15) and represents the entire data set. The

second part (lines 20-31) defines the structure of one or more datasets (a

qb:DataStructureDefinition resource type). It also defines the dimensions,

attributes, and measures of the structure. Figure 6 reveals that the components of a

data structure definition can be of the following types: qb:DimensionProperty,

qb:AttributeProperty or qb:MeasureProperty. The third part (lines 33-36)

defines the measure corresponding to the phenomenon being observed that will

give the value of each observation.

There are two approaches to finding the predicates and objects related to a

specific resource. To exemplify each approach, the first part of the cube metadata

presented in Figure 29 is considered. The first approach is a SPARQL query,

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

59

which explicitly informs a group pattern that must match the graph stored in

Virtuoso triplestore
48

, shown in Figure 30.

Figure 30: SPARQL Query to return a metadata cube subset

 Alternatively, instead of a static SPARQL query, one can dynamically

search starting from a certain resource (identified by its URI), as presented in

Figure 31. The piece of code shown in Figure 31 uses the Jena Framework
49

, an

API for reading, processing and writing RDF data, among other purposes.

Figure 31: Searching dynamically triples related to a resource

In Jena
50

, the class used to represent a single triple is Statement. The

methods for extracting the other components of a statement starting from the

subject (represented by a Resource class element) are: getPredicate() that

returns a Property and getObject() that returns a RDFNode.

48

 http://virtuoso.openlinksw.com/
49

 http://jena.apache.org/
50

 http://jena.apache.org/documentation/rdf/

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

60

In most cases, the Metadata Service implements the dynamic approach to

find other resources related to a resource to take advantage of the flexibility of the

RDF model.

5.4.4. Requesting cube observations

The third HTTP method

GET http://host:port/LDC_Mediator/observations/{idCube}

retrieves all the individual observations related to the cube. It has the unique

identifier {idCube} and is shown in Flow 2 of Figure 24 through the interaction

between the Mediator Engine and RDB-to-RDF Converter components.

Using the same residents cube example, the Mediator Engine receives the

GET http://host:port/LDC_Mediator/observations/dataset-residents

request and finds the R2RML mapping matching with this cube, which is depicted

in Figure 32.

The URI of the triple map is

ex-resource:TriplesMapFactResidents (line 12). Lines 14 to 24 create a view

that maps each result row to a number of RDF triples, which are defined by

predicate object maps. These, in turn, consist of predicate maps and object

maps (or referencing object maps). Figure 32 presents only two dimensions (the

others were omitted).

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

61

Figure 32: R2RML mapping file to the residents cube

Figure 33 shows an observation (1 out of 6480 observations) generated from

the R2RML file described in Figure 32. Nine triples were generated for each

observation. The first triple indicates that the resource is of the qb:Observation

type (line 11). The second triple links the observation with its corresponding

dataset (line 12). The third triple informs the class that qualifies the interpretation

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

62

of the observed value, http://dbpedia.org/ontology/Person (line 13). This

class belongs to an external dataset (DBpedia) and enriches the data cube

representation. The fourth triple presents the measure of the observation, ex-

property:numberResidents (see the measure definition in Figure 29) and its

value (line 14). Finally, the other triples link this observation to the dimension

values (lines 21 to 34).

Figure 33: Example of an observation

5.5
Summary

This chapter presented the architecture of the LDC Mediator. The

components of the mediator were presented: the Mediator Engine, which provides

a RESTful interface to access the data cubes; the Metadata Service, which

connects with the Catalogue and manages the building and execution of the

SPARQL queries; and the RDB-to-RDF Converter, which converts the star

schemas stored in relational databases into RDF triples using R2RML mapping

files. This chapter also discussed the implementation aspects, including the

technologies, IDE’s and frameworks used to build the LDC Mediator; as well as

the packages created for each of these three components and their main classes.

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

63

Finally, an example was presented to illustrate data cube consumption, including

cube metadata request and a cube observations request.

DBD
PUC-Rio - Certificação Digital Nº 1121836/CA

