



## Jean Carneiro da Silva

## Influência da Vegetação no Desvanecimento e na Perda de Percurso de Enlaces de Radiocomunicação UHF na Faixa de 700 MHz

## Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica.

Orientador: Prof. Gláucio Lima Siqueira

Rio de Janeiro Agosto de 2014 Pontifícia Universidade Católica do Rio de Janeiro



## Jean Carneiro da Silva

## Influência da Vegetação no Desvanecimento e na Perda de Percurso de Enlaces de Radiocomunicação UHF na Faixa de 700 MHz

Dissertação de Mestrado apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Glaucio Lima Siqueira Orientador Centro de Estudos em Telecomunicações - PUC-Rio

**Prof. Luiz Alencar Reis da Silva Mello** Centro de Estudos em Telecomunicações - PUC-Rio

> Profa. Leni Joaquim de Matos UFF

Prof. Marco Antônio Grivet Mattoso Maia Centro de Estudos em Telecomunicações - PUC-Rio

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de agosto de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, do autor e do orientador.

### Jean Carneiro da Silva

Graduou-se em Engenharia Elétrica na UFPa (Universidade Federal do Pará) em 2005. Trabalhou em diversas empresas na área de tecnologia e atualmente cursa o doutorado em engenharia Elétrica no CETUC, Pontifícia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Silva, Jean Carneiro da

Influência da Vegetação no Desvanecimento e na Perda de Percurso de Enlaces de Radiocomunicação UHF na Faixa de 700 MHz / Jean Carneiro da Silva; orientador: Glauicio Lima Siqueira. -2014.

247 f.: il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2014.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Propagação em UHF. 3. Propagação sobre áreas vegetadas. 4. Modelo de previsão de perdas. 5. Rádio propagação. I. Siqueira, Gláucio Lima. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 1221978/CA

Para Deus e minha família.

## Agradecimentos

Ao meu orientador, professor Gláucio Siqueira, pelo estímulo, parceria e grande ajuda.

Ao CAPES e a PUC-Rio pelos auxílios concedidos, sem os quais esta trabalho não seria possível de ser realizado.

Ao corpo docente da PUC-Rio, pelos ensinamentos a ajuda prestada para a conclusão deste trabalho.

A UFPa nas pessoas do Professor Gervásio Cavalcante, Bruno Castro e Allan

Costa, Pelos equipamentos e ajuda pessoal à execução das medições.

Ao INMETRO e equipe técnica de medições, em especial ao Dr. Pedro Castellanos, pela ajuda pessoal e material.

A Universidade Estadual do Pará (UEPa) e a Secretaria Municipal de Meio Ambiente de Belém (SEMMA), pela autorização de uso de suas instalações, necessárias à campanha de medições.

A todos os amigos e colegas que contribuíram criando sinergias que resultaram na execução deste estudo.

## Resumo

Silva, Jean Carneiro; Siqueira, Gláucio Lima (Orientador). **Influência** da Vegetação no Desvanecimento e na Perda de Percurso de Enlaces de Radiocomunicação UHF na Faixa de 700 MHz. Rio de Janeiro, 2014, 247p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O esforço de caracterização da influência da vegetação sobre enlaces de radiocomunicação é de grande importância para o dimensionamento de modernos sistemas de comunicação. Baseado em uma extensa campanha de medições, este trabalho pretende caracterizar e propor um modelo de predição de perda de propagação sobre espaços vegetados em banda estreita na faixa de 700 MHz adequado às características morfológicas brasileiras.

# PUC-Rio - Certificação Digital Nº 1221978/CA

## Palavras-chave

Propagação em UHF; perdas em ambientes vegetados; rádio propagação; modelos e predição.

## Abstract

Silva, Jean Carneiro; Siqueira, Gláucio Lima (Advisor). Influence of Vegetation on Radio Communication Links Fading and Path Loss in UHF 700 MHz Range. Rio de Janeiro, 2014, 247p. MSc Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The characterization effort of vegetation influence on radiocommunication link fading has a great importance on the design of modern communication systems. Based on an intensive narrow band measurement campaign, this work intends to characterize and propose a model for predicting propagation loss over vegetated areas at the UHF range of 700 MHz.

## **Keywords**

Propagation in UHF; losses in vegetação environments; radio propagation; predictiomn.

# Sumário

| Introdução                                     | 24 |
|------------------------------------------------|----|
| Breve Histórico das Comunicações Sem Fio       | 28 |
| Objetivos                                      | 29 |
| Estrutura do trabalho                          | 31 |
|                                                |    |
| 1. Propagação, ambientes e vegetação           | 33 |
| 1.1. Considerações                             | 33 |
| 1.2. Tipificação                               | 34 |
|                                                |    |
| 2. Propagação                                  | 38 |
| 2.1. Introdução                                | 38 |
| 2.2. Polarização e diagrama de irradiação      | 42 |
| 2.3. Propagação em espaço livre                | 44 |
| 2.4. Propagação em terra plana e esférica lisa | 48 |
| 2.5. Propagação em terra rugosa                | 53 |
| 2.6. Efeitos atmosféricos                      | 55 |
| 2.7. Propagação com obstáculos                 | 56 |
| 2.8. Desvanecimento e multipercurso            | 65 |
| 2.9. Dispersão do sinal                        | 72 |
| 2.10. Variabilidade Temporal do Canal          | 74 |
|                                                |    |
| 3. Modelos de predição de cobertura            | 76 |
| 3.1. Modelo de Egli                            | 76 |
| 3.2. Modelo de Okumura <i>et al.</i>           | 77 |
| 3.3. Modelo de Okumura-Hata                    | 80 |
| 3.4. Modelo de Walfish-Ikegami                 | 81 |
|                                                |    |
| 4. Propagação sobre espaços vegetados          | 85 |
| 4.1. Modelo de Tamir                           | 85 |
| 4.2. Modelo de Weissberger e desenvolvimentos  | 90 |

| 4.3. Modelo de Chen e Kuo                                | 92  |
|----------------------------------------------------------|-----|
| 5. Sistema de medição                                    | 93  |
| 5.1. <i>Setup</i> utilizado em Belém-PA                  | 93  |
| 5.2. <i>Setup</i> utilizado em Rio de Janeiro-RJ         | 100 |
| 5.3. Equipamentos de apoio                               | 101 |
| 5.4. Balanço de potência dos enlaces                     | 103 |
| 6. Componho do modiçãos                                  | 106 |
| 6.1. Sítios on Polón DA                                  | 100 |
| 6.2. Sítio om Pio do Janoiro- P.I                        | 116 |
|                                                          | 110 |
| 7. Metodologia                                           | 120 |
| 7.1. Curva de ajuste                                     | 122 |
| 7.2. Posicionamento das antenas                          | 123 |
| 7.3. Interpolação                                        | 125 |
| 7.4. Considerações                                       | 132 |
|                                                          |     |
| 8. Resultados                                            | 135 |
| 8.1. Dependência da perda com a distância                | 135 |
| 8.1.1. Morfologia vegetal floresta                       | 136 |
| 8.1.2. Morfologia vegetal bosque urbano                  | 142 |
| 8.1.3. Morfologia vegetal linha de árvores               | 148 |
| 8.1.3.1. Análise geral para linha de árvores             | 160 |
| 8.1.4. Considerações gerais da perda com a distância nas |     |
| morfologias                                              | 166 |
| 8.2. Dependência da perda com a frequência               | 169 |
| 8.2.1. Ambiente floresta                                 | 169 |
| 8.2.2. Ambiente bosque urbano                            | 172 |
| 8.2.3. Ambiente linha de árvores                         | 175 |
| 8.2.4. Análise individual dos parâmetros da reta         | 179 |
| 8.2.4.1. Floresta                                        | 179 |
| 8.2.4.1.1. Análise geral da perda inicial para floresta  | 181 |
| 8.2.4.1.2. Análise geral do <i>slope</i> para floresta   | 182 |

| 8.2.4.2. Bosque                                                  | 183 |
|------------------------------------------------------------------|-----|
| 8.2.4.2.1. Análise geral da perda inicial para bosque            | 185 |
| 8.2.4.2.2. Análise geral do <i>slope</i> para bosque             | 186 |
| 8.2.4.3. Linha de árvores                                        | 186 |
| 8.2.4.3.1. Análise geral da perda inicial para linha de árvores  | 189 |
| 8.2.4.3.2. Análise geral do <i>slope</i> para linha de árvores   | 189 |
| 8.3. Dependência da perda com a altura de transmissão            | 190 |
| 8.3.1. Ambiente floresta                                         | 191 |
| 8.3.1.1. Análise geral da perda com a altura de transmissão para |     |
| floresta                                                         | 194 |
| 8.3.2. Ambiente bosque                                           | 196 |
| 8.3.2.1. Análise geral da perda com a altura de transmissão para |     |
| bosque                                                           | 199 |
| 8.3.3. Ambiente linha de árvores                                 | 200 |
| 8.3.3.1. Análise geral da perda com a altura de transmissão para |     |
| linha de árvores                                                 | 204 |
| 8.4. Considerações sobre as estatísticas do sinal nos ambientes  | 205 |
| 8.4.1. Morfologia floresta                                       | 206 |
| 8.4.2. Morfologia bosque                                         | 207 |
| 8.4.3. Morfologia linha de árvores                               | 208 |
| 8.5. Espécimes isolados                                          | 208 |
| 8.5.1. Jambeiro                                                  | 210 |
| 8.5.2. Cajazeiro                                                 | 215 |
| 8.5.3. Considerações sobre a perda devido à proximidade com      |     |
| uma árvore                                                       | 219 |
|                                                                  |     |
| 9. Modelo geral de perda em propagação                           | 221 |
| 9.1. Modelo geral para floresta                                  | 221 |
| 9.2. Modelo geral para bosque                                    | 223 |
| 9.3. Modelo geral para linha de árvores                          | 225 |
| 9.4. Comparativo entre modelos                                   | 226 |
| 9.4.1. Floresta                                                  | 227 |
| 9.4.2. Bosque                                                    | 229 |
| 9.4.3. Linha de árvores                                          | 230 |
|                                                                  |     |

| 10. Conclusão                        | 232 |
|--------------------------------------|-----|
| 11. Contribuições                    | 233 |
| 12. Sugestões para trabalhos futuros | 233 |
| 13. Referências Bibliográficas       | 234 |
| 14. Apêndice I                       | 238 |
| 15. Apêndice II                      | 243 |
| 16. Apêndice III                     | 244 |

# Lista de figuras

| Figura A: Vegetação com morfologia tipo A                           |    |
|---------------------------------------------------------------------|----|
| (Vila de Americano, Belém - PA)                                     | 26 |
| Figura B: Vegetação com morfologia tipo B                           |    |
| (Jardim Botânico, Belém - PA)                                       | 26 |
| Figura C: Vegetação com morfologia tipo C                           |    |
| (Vila de Americano, Belém - PA)                                     | 27 |
| Figura D: Vegetação com morfologia tipo D                           |    |
| (Vila de Americano, Belém - PA)                                     | 27 |
| Figura 1.1: Transmissor e receptor a 1,5 metro do solo              | 36 |
| Figura 1.2: Transmissor a 6 metros e receptor a 1,5 metro do solo   | 36 |
| Figura 1.3: Transmissor e receptor acima da linha média das copas   | 36 |
| Figura 2.1: Propagação dos campos elétrico e magnético na           |    |
| direção Z                                                           | 38 |
| Figura 2.2: Espectro Eletromagnético                                | 39 |
| Figura 2.3: Reflexão                                                | 40 |
| Figura 2.4: Difração                                                | 41 |
| Figura 2.5: Espalhamento na atmosfera                               | 41 |
| Figura 2.6: Polarização: (a) vertical, (b) horizontal, (c) elíptica | 43 |
| Figura 2.7: Diagrama de irradiação de um dipolo de meia onda        | 44 |
| Figura 2.8: Irradiação isotrópica                                   | 45 |
| Figura 2.9: Modelo de terra plana                                   | 49 |
| Figura 2.10: Reflexão especular                                     | 49 |
| Figura 2.11: Reflexão difusa                                        | 49 |
| Figura 2.12: Representação da divergência dos raios em terra        |    |
| esférica                                                            | 52 |
| Figura 2.13: Modelo de superfície rugosa                            | 53 |
| Figura 2.14: Princípio de Huygens                                   | 56 |
| Figura 2.15: Plano com orifício                                     | 57 |
| Figura 2.16: Elipsóides e zonas de Fresnel                          | 58 |

| Figura 2.17: Semi-plano opaco                                             | 59 |
|---------------------------------------------------------------------------|----|
| Figura 2.18: Curva do campo recebido                                      | 60 |
| Figura 2.19: Diagrama de Bullington                                       | 60 |
| Figura 2.20: Obstáculo de cume arredondado                                | 61 |
| Figura 2.21: Exemplo do método Deygout-Assis, para múltiplos              |    |
| obstáculos                                                                | 64 |
| Figura 2.22: Multipercurso                                                | 66 |
| Figura 2.23: Sinal captado com a distância entre as antenas               | 67 |
| Figura 2.24: Distribuições de Rice, normal e Rayleigh                     | 69 |
| Figura 2.25: Efeito Doppler: (a) parado, (b) em movimento                 | 70 |
| Figura 2.26: Modelo para o efeito Doppler                                 | 70 |
| Figura 2.27: Perfil de retardos                                           | 73 |
| Figura 3.1: Parâmetro A(f,d)                                              | 78 |
| Figura 3.2: Fator de correção G <sub>área</sub>                           | 79 |
| Figura 3.3: Fatores $G(h_t) \in G(h_r)$ e modelo intuitivo para o cálculo |    |
| das alturas efetivas das antenas                                          | 79 |
| Figura 3.4: Ângulo entre a onda incidente e a direção da rua              | 81 |
| Figura 3.5: Diversos parâmetros do modelo                                 | 82 |
| Figura 4.1: Modelo de três camadas                                        | 86 |
| Figura 4.2: Onda lateral de Tamir, percurso Tx-A-B-Rx                     |    |
| (primeira ordem) e percursos Tx-c-d-v-w-Rx e Tx-c-d-                      |    |
| -B-Rx (segunda ordem)                                                     | 87 |
| Figura 4.3: Distância de propagação em árvores                            | 90 |
| Figura 5.1: Esquema do bloco de transmissão                               | 93 |
| Figura 5.2: Gerador de sinais                                             | 94 |
| Figura 5.3: Transmissor                                                   | 94 |
| Figura 5.4: Antenas de transmissão e recepção idênticas                   | 95 |
| Figura 5.5: Diagrama de irradiação horizontal da antena de                |    |
| transmissão                                                               | 96 |
| Figura 5.6: Diagrama de irradiação vertical da antena de                  |    |
| transmissão                                                               | 97 |
| Figura 5.7: Teste de bancada, com a perda de retorno                      |    |
| (potência máxima - 400 W)                                                 | 97 |
| Figura 5.8: Bloco de recepção                                             | 98 |

| Figura 5.9: ANRITSU MS2692A, utilizado nas medições em            |     |
|-------------------------------------------------------------------|-----|
| Belém-PA                                                          | 99  |
| Figura 5.10: Rohde-Schwarz FSH-18, utilizado nas medições no      |     |
| Inmetro - Rio                                                     | 101 |
| Figura 5.11: Tripés e torre de antena desmontável armadas         | 102 |
| Figura 5.12: Van de medições do Inmetro                           | 102 |
| Figura 6.1: Propriedade rural, na vila de Americano-PA            | 107 |
| Figura 6.2: Pontos de coleta de dados e orientação de irradiação, |     |
| em floresta                                                       | 107 |
| Figura 6.3: Bosque em primeiro plano e açaizeiros ao fundo        | 109 |
| Figura 6.4: Floresta amazônica preservada                         | 110 |
| Figura 6.5: Linhas de árvores                                     | 111 |
| Figura 6.6: Pontos medição dados e orientação de irradiação na    |     |
| linha de árvores                                                  | 112 |
| Figura 6.7: Jambeiro                                              | 112 |
| Figura 6.8: Perfil do terreno na medição da mata                  | 113 |
| Figura 6.9: Perfil do terreno na medição da linha                 | 113 |
| Figura 6.10: Jardim botânico de Belém                             | 114 |
| Figura 6.11: Jardim botânico de Belém, vista do solo              | 114 |
| Figura 6.12: Pontos de coleta e direção de irradiação             | 115 |
| Figura 6.13: Perfil do terreno na medição do jardim botânico em   |     |
| Belém                                                             | 116 |
| Figura 6.14: Sede do Inmetro- Rio em Xerém                        | 117 |
| Figura 6.15: Vista da linha de árvores a partir do solo           | 117 |
| Figura 6.16: Pontos de coleta e direção de irradiação             | 118 |
| Figura 6.17: Perfil do terreno na medição no Inmetro              | 119 |
| Figura 7.1: Ângulo de meia potência                               | 124 |
| Figura 7.2: Distância mínima entre transmissor e receptor         | 124 |
| Figura 7.3: Retas de ajuste tomadas em diferentes frequências,    |     |
| d em escala log.                                                  | 126 |
| Figura 7.4: Projeção das retas no plano L x d, d em escala        |     |
| logarítmica                                                       | 127 |
| Figura 7.5: Ponderador em função da frequência                    | 128 |
| Figura 7.6: Projeção (L x d) da reta interpolada de acordo com o  |     |

| ponderador                                                        | 129 |
|-------------------------------------------------------------------|-----|
| Figura 7.7: Superfície interpolada, d em escala logarítmica       | 129 |
| Figura 7.8: Elipsóide de revolução                                | 133 |
| Figura 7.9: Filtro representativo                                 | 133 |
| Figura 8.1: Reta de ajuste para 700 MHz a 1,5 metro de altura de  |     |
| transmissão                                                       | 137 |
| Figura 8.2: Reta de ajuste para 750 MHz a 1,5 metro de altura de  |     |
| transmissão                                                       | 137 |
| Figura 8.3: Reta de ajuste para 800 MHz a 1,5 metro de altura de  |     |
| transmissão                                                       | 138 |
| Figura 8.4: Reta de ajuste para 700 MHz a 6 metros de altura de   |     |
| transmissão                                                       | 138 |
| Figura 8.5: Reta de ajuste para 750 MHz a 6 metros de altura de   |     |
| transmissão                                                       | 139 |
| Figura 8.6: Reta de ajuste para 800 MHz a 6 metros de altura de   |     |
| transmissão                                                       | 139 |
| Figura 8.7: Reta de ajuste para 700 MHz a 12 metros de altura de  |     |
| transmissão                                                       | 140 |
| Figura 8.8: Reta de ajuste para 750 MHz a 12 metros de altura de  |     |
| transmissão                                                       | 140 |
| Figura 8.9: Reta de ajuste para 800 MHz a 12 metros de altura de  |     |
| transmissão                                                       | 141 |
| Figura 8.10: Localização da antena de transmissão                 | 141 |
| Figura 8.11: Reta de ajuste para 700 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 143 |
| Figura 8.12: Reta de ajuste para 750 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 143 |
| Figura 8.13: Reta de ajuste para 800 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 144 |
| Figura 8.14: Reta de ajuste para 700 MHz a 6 metros de altura de  |     |
| transmissão                                                       | 144 |
| Figura 8.15: Reta de ajuste para 750 MHz a 6 metros de altura de  |     |
| transmissão                                                       | 145 |
| Figura 8.16: Reta de ajuste para 800 MHz a 6 metros de altura de  |     |

| transmissão                                                       | 145 |
|-------------------------------------------------------------------|-----|
| Figura 8.17: Reta de ajuste para 700 MHz a 12 metros de altura de |     |
| transmissão                                                       | 146 |
| Figura 8.18: Reta de ajuste para 750 MHz a 12 metros de altura de |     |
| transmissão                                                       | 146 |
| Figura 8.19: Reta de ajuste para 800 MHz a 12 metros de altura de |     |
| transmissão                                                       | 147 |
| Figura 8.20: Interior do jardim botânico em Belém-PA              | 148 |
| Figura 8.21: Reta de ajuste para 700 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 149 |
| Figura 8.22: Reta de ajuste para 750 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 150 |
| Figura 8.23: Reta de ajuste para 800 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 150 |
| Figura 8.24: Reta de ajuste para 700 MHz a 6 metros de altura de  |     |
| transmissão                                                       | 151 |
| Figura 8.25: Reta de ajuste para 750 MHz a 6 metros de altura de  |     |
| transmissão                                                       | 151 |
| Figura 8.26: Reta de ajuste para 800 MHz a 6 metros de altura de  |     |
| transmissão                                                       | 152 |
| Figura 8.27: Reta de ajuste para 700 MHz a 12 metros de altura de |     |
| transmissão                                                       | 152 |
| Figura 8.28: Reta de ajuste para 750 MHz a 12 metros de altura de |     |
| transmissão                                                       | 153 |
| Figura 8.29: Reta de ajuste para 800 MHz a 12 metros de altura de |     |
| transmissão                                                       | 153 |
| Figura 8.30: Linha de pinheiros em Americano-PA                   | 154 |
| Figura 8.31: Reta de ajuste para 700 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 155 |
| Figura 8.32: Reta de ajuste para 750 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 155 |
| Figura 8.33: Reta de ajuste para 800 MHz a 1,5 metro de altura de |     |
| transmissão                                                       | 156 |
| Figura 8.34: Reta de ajuste para 700 MHz a 6 metros de altura de  |     |

| transmissão                                                         | 156 |
|---------------------------------------------------------------------|-----|
| Figura 8.35: Reta de ajuste para 750 MHz a 6 metros de altura de    |     |
| transmissão                                                         | 157 |
| Figura 8.36: Reta de ajuste para 800 MHz a 6 metros de altura de    |     |
| transmissão                                                         | 157 |
| Figura 8.37: Reta de ajuste para 700 MHz a 12 metros de altura de   |     |
| transmissão                                                         | 158 |
| Figura 8.38: Reta de ajuste para 750 MHz a 12 metros de altura de   |     |
| transmissão                                                         | 158 |
| Figura 8.39: Reta de ajuste para 800 MHz a 12 metros de altura de   |     |
| transmissão                                                         | 159 |
| Figura 8.40: Linha de árvores no Inmetro - Rio                      | 159 |
| Figura 8.41: Reta de ajuste geral, 700 MHz a 1,5 metro de altura de |     |
| transmissão                                                         | 161 |
| Figura 8.42: Reta de ajuste geral, 750 MHz a 1,5 metro de altura de |     |
| transmissão                                                         | 161 |
| Figura 8.43: Reta de ajuste geral, 800 MHz a 1,5 metro de altura de |     |
| transmissão                                                         | 162 |
| Figura 8.44: Reta de ajuste geral, 700 MHz a 6 metros de altura de  |     |
| transmissão                                                         | 162 |
| Figura 8.45: Reta de ajuste geral, 750 MHz a 6 metros de altura de  |     |
| transmissão                                                         | 163 |
| Figura 8.46: Reta de ajuste geral, 800 MHz a 6 metros de altura de  |     |
| transmissão                                                         | 163 |
| Figura 8.47: Reta de ajuste geral, 700 MHz a 12 metros de altura de |     |
| transmissão                                                         | 164 |
| Figura 8.48: Reta de ajuste geral, 750 MHz a 12 metros de altura de |     |
| transmissão                                                         | 164 |
| Figura 8.49: Reta de ajuste geral, 800 MHz a 12 metros de altura de |     |
| transmissão                                                         | 165 |
| Figura 8.50: Análise da perda inicial para o ambiente floresta      | 166 |
| Figura 8.51: Análise da perda inicial para o ambiente Bosque        | 166 |
| Figura 8.52: Análise da perda inicial para a linha de árvores       | 167 |
| Figura 8.53: Análise do fator de atenuação com a distância para     |     |

| floresta                                                             | 167 |
|----------------------------------------------------------------------|-----|
| Figura 8.54: Análise do fator de atenuação com a distância para      |     |
| bosque                                                               | 168 |
| Figura 8.55: Análise do <i>slope</i> para a linha de árvores         | 168 |
| Figura 8.56: Curvas de ajuste na altura de 1,5 metro, distância em   |     |
| escala log.                                                          | 169 |
| Figura 8.56b: Perda interpolada em função da distância e frequência, |     |
| 1,5 metro                                                            | 170 |
| Figura 8.57: Curvas de ajuste na altura de 6 metros, distância em    |     |
| escala log.                                                          | 170 |
| Figura 8.58: Perda interpolada em função da distância e frequência,  |     |
| 6 metros                                                             | 171 |
| Figura 8.59: Curvas de ajuste na altura de 12 metros, distância em   |     |
| escala log.                                                          | 171 |
| Figura 8.60: Perda interpolada em função da distância e frequência,  |     |
| 12 metros                                                            | 172 |
| Figura 8.61: Curvas de ajuste na altura de 1,5 metro                 | 172 |
| Figura 8.62: Perda interpolada em função da distância e frequência,  |     |
| 1,5 metro                                                            | 173 |
| Figura 8.63: Curvas de ajuste na altura de 6 metros                  | 173 |
| Figura 8.64: Perda interpolada em função da distância e frequência,  |     |
| 6 metros                                                             | 174 |
| Figura 8.65: Curvas de ajuste na altura de 12 metros                 | 174 |
| Figura 8.66: Perda interpolada em função da distância e frequência,  |     |
| 12 metros                                                            | 175 |
| Figura 8.67: Curvas de ajuste na altura de 1,5 metro, distância em   |     |
| escala log.                                                          | 175 |
| Figura 8.68: Perda interpolada em função da distância e frequência,  |     |
| 1,5 metro                                                            | 176 |
| Figura 8.69: Curvas de ajuste na altura de 6 metros, distância em    |     |
| escala log.                                                          | 176 |
| Figura 8.70: Perda interpolada em função da distância e frequência,  |     |
| 6 metros                                                             | 177 |
| Figura 8.71: Curvas de ajuste na altura de 12 metros, distância em   |     |

| escala log.                                                         | 177 |
|---------------------------------------------------------------------|-----|
| Figura 8.72: Perda interpolada em função da distância e frequência, |     |
| 12 metros                                                           | 178 |
| Figura 8.73: Perda inicial com a frequência de transmissão,         |     |
| 1,5 metro                                                           | 179 |
| Figura 8.74: Slope com a frequência de transmissão, 1,5 metro       | 179 |
| Figura 8.75: Perda inicial com a frequência de transmissão,         |     |
| 6 metros                                                            | 180 |
| Figura 8.76: Slope com a frequência de transmissão, 6 metros        | 180 |
| Figura 8.77: Perda inicial com a frequência de transmissão,         |     |
| 12 metros                                                           | 180 |
| Figura 8.78: Slope com a frequência de transmissão, 12 metros       | 181 |
| Figura 8.79: Perda inicial com a frequência em todas as alturas de  |     |
| transmissão                                                         | 181 |
| Figura 8.80: <i>Slope</i> com a frequência em todas alturas         |     |
| de transmissão                                                      | 182 |
| Figura 8.81: Perda inicial com a frequência de transmissão,         |     |
| 1,5 metro                                                           | 183 |
| Figura 8.82: Slope com a frequência de transmissão, 1,5 metro       | 183 |
| Figura 8.83: Perda inicial com a frequência de transmissão,         |     |
| 6 metros                                                            | 184 |
| Figura 8.84: Slope com a frequência de transmissão, 6 metros        | 184 |
| Figura 8.85: Perda inicial com a frequência de transmissão,         |     |
| 12 metros                                                           | 184 |
| Figura 8.86: Slope com a frequência de transmissão, 12 metros       | 185 |
| Figura 8.87: Perda inicial com a frequência em todas as alturas de  |     |
| transmissão                                                         | 185 |
| Figura 8.88: Slope com a frequência em todas as alturas de          |     |
| transmissão                                                         | 186 |
| Figura 8.89: Perda inicial com a frequência de transmissão,         |     |
| 1,5 metro                                                           | 187 |
| Figura 8.90: Slope com a frequência de transmissão,                 |     |
| 1,5 metro                                                           | 187 |
| Figura 8.91: Perda inicial com a frequência de transmissão,         |     |

| 6 metros                                                           | 187 |
|--------------------------------------------------------------------|-----|
| Figura 8.92: Slope com a frequência de transmissão, 6 metros       | 188 |
| Figura 8.93: Perda inicial com a frequência de transmissão,        |     |
| 12 metros                                                          | 188 |
| Figura 8.94: Slope com a frequência de transmissão, 12 metros      | 188 |
| Figura 8.95: Perda inicial com a frequência em todas as alturas de |     |
| transmissão                                                        | 189 |
| Figura 8.96: Slope com a frequência em todas as alturas            |     |
| de transmissão                                                     | 190 |
| Figura 8.97: Curvas de ajuste na frequência de 700 MHz             | 191 |
| Figura 8.98: Perda inicial com a altura de transmissão, 700 MHz    | 191 |
| Figura 8.99: <i>Slope</i> com a altura de transmissão, 700 MHz     | 192 |
| Figura 8.100: Curvas de ajuste na frequência de 750 MHz            | 192 |
| Figura 8.101: Perda inicial com a altura de transmissão, 750 MHz   | 192 |
| Figura 8.102: Slope com a altura de transmissão, 750 MHz           | 193 |
| Figura 8.103: Curvas de ajuste na frequência de 800 MHz            | 193 |
| Figura 8.104: Perda inicial com a altura de transmissão, 800 MHz   | 193 |
| Figura 8.105: Slope com a altura de transmissão, 800 MHz           | 194 |
| Figura 8.106: Perda inicial com a altura de transmissão e reta     |     |
| de ajuste                                                          | 195 |
| Figura 8.107: Slope com a altura de transmissão e reta de ajuste   | 195 |
| Figura 8.108: Curvas de ajuste na frequência de 700 MHz            | 196 |
| Figura 8.109: Perda inicial com a altura de transmissão, 700 MHz   | 196 |
| Figura 8.110: Slope com a altura de transmissão, 700 MHz           | 197 |
| Figura 8.111: Curvas de ajuste na frequência de 750 MHz            | 197 |
| Figura 8.112: Perda inicial com a altura de transmissão, 750 MHz   | 197 |
| Figura 8.113: Slope com a altura de transmissão, 750 MHz           | 198 |
| Figura 8.114: Curvas de ajuste na frequência de 800 MHz            | 198 |
| Figura 8.115: Perda inicial com a altura de transmissão, 800 MHz   | 198 |
| Figura 8.116: Slope com a altura de transmissão, 800 MHz           | 199 |
| Figura 8.117: Perda inicial com a altura de transmissão e reta     |     |
| de ajuste                                                          | 199 |
| Figura 8.118: Slope com a altura de transmissão e reta de ajuste   | 200 |
| Figura 8.119: Curvas de ajuste na frequência de 700 MHz            | 201 |

| Figura 8.120: Perda inicial com a altura de transmissão, 700 MHz | 201 |
|------------------------------------------------------------------|-----|
| Figura 8.121: <i>Slope</i> com a altura de transmissão, 700 MHz  | 201 |
| Figura 8.122: Curvas de ajuste na frequência de 750 MHz          | 202 |
| Figura 8.123: Perda inicial com a altura de transmissão, 750 MHz | 202 |
| Figura 8.124: Slope com a altura de transmissão, 750 MHz         | 202 |
| Figura 8.125: Curvas de ajuste na frequência de 800 MHz          | 203 |
| Figura 8.126: Perda inicial com a altura de transmissão, 800 MHz | 203 |
| Figura 8.127: Slope com a altura de transmissão, 800 MHz         | 203 |
| Figura 8.128: Perda inicial com a altura de transmissão e reta   |     |
| de ajuste                                                        | 204 |
| Figura 8.129: Slope com a altura de transmissão e reta de ajuste | 205 |
| Figura 8.130: Dispersão do erro com a frequência, para todas as  |     |
| alturas                                                          | 206 |
| Figura 8.131: Dispersão do desvio padrão com a frequência, para  |     |
| todas as alturas                                                 | 206 |
| Figura 8.132: Dispersão do erro com a frequência, para todas as  |     |
| alturas                                                          | 207 |
| Figura 8.133: Dispersão do desvio padrão com a frequência, para  |     |
| todas as alturas                                                 | 207 |
| Figura 8.134: Dispersão do erro com a frequência, para todas as  |     |
| alturas                                                          | 208 |
| Figura 8.135: Dispersão do desvio padrão com a frequência, para  |     |
| todas as alturas                                                 | 208 |
| Figura 8.136: Medição na espécie isolada                         | 209 |
| Figura 8.137: Atenuador de potência                              | 210 |
| Figura 8.138: Geometria simplificada                             | 211 |
| Figura 8.139: Perda com a distância para todas as frequências    | 211 |
| Figura 8.140: Perda média com a distância para todas as          |     |
| frequências                                                      | 212 |
| Figura 8.141: Modelo geométrico simplificado                     | 212 |
| Figura 8.142: Perda com a distância para todas as frequências    | 213 |
| Figura 8.143: Perda média com a distância para todas as          |     |
| frequências                                                      | 213 |
| Figura 8.144: Modelo geométrico simplificado                     | 214 |

| Figura 8.145: Perda com a distância para todas as frequências  | 214 |
|----------------------------------------------------------------|-----|
| Figura 8.146: Perda média com a distância para todas as        |     |
| frequências                                                    | 215 |
| Figura 8.147: Modelo geométrico simplificado                   | 216 |
| Figura 8.148: Perda com a distância para todas as frequências  | 216 |
| Figura 8.149: Perda média com a distância para todas as        |     |
| frequências                                                    | 217 |
| Figura 8.150: Perda com a distância para todas as frequências  | 217 |
| Figura 8.151: Perda média com a distância para todas as        |     |
| frequências                                                    | 218 |
| Figura 8.152: Perda com a distância para todas as frequências  | 218 |
| Figura 8.153: Perda média com a distância para todas as        |     |
| frequências                                                    | 219 |
| Figura 9.1: Comparativo entre modelos na frequência de 700 MHz | 227 |
| Figura 9.2: Comparativo entre modelos na frequência de 750 MHz | 228 |
| Figura 9.3: Comparativo entre modelos na frequência de 800 MHz | 228 |
| Figura 9.4: Comparativo entre modelos na frequência de 700 MHz | 229 |
| Figura 9.5: Comparativo entre modelos na frequência de 750 MHz | 229 |
| Figura 9.6: Comparativo entre modelos na frequência de 800 MHz | 230 |
| Figura 9.7: Comparativo entre modelos na frequência de 700 MHz | 230 |
| Figura 9.8: Comparativo entre modelos na frequência de 750 MHz | 231 |
| Figura 9.9: Comparativo entre modelos na frequência de 800 MHz | 231 |

## Lista de tabelas

| Tabela 2.1: Espectro na faixa de rádio                                | 40  |
|-----------------------------------------------------------------------|-----|
| Tabela 4.1: Características elétricas e tipos de florestas            | 86  |
| Tabela 5.1: Atenuação medida no cabo de transmissão                   | 94  |
| Tabela 5.2: Especificações das antenas                                | 96  |
| Tabela 5.3: Perdas no cabo de recepção                                | 100 |
| Tabela 5.4: Perdas no cabo de transmissão da van                      | 100 |
| Tabela 5.5: Perdas no cabo de transmissão para a altura de            |     |
| 1,5 metro                                                             | 100 |
| Tabela 5.6: Parâmetros do Balanço de potência calculados para         |     |
| Belém- PA                                                             | 105 |
| Tabela 5.7: Parâmetros do Balanço de potência calculados para         |     |
| Rio de Janeiro- RJ                                                    | 105 |
| Tabela 6.1: Localização dos pontos de medição, altitude e distância   |     |
| ao transmissor                                                        | 108 |
| Tabela 6.2: Pontos de medição, altitude e distância ao transmissor,   |     |
| na linha                                                              | 111 |
| Tabela 6.3: Pontos de medição, altitude e dist ao transmissor, jardim |     |
| botânico                                                              | 116 |
| Tabela 6.4: Pontos de medição, altitude e dist. ao transmissor,       |     |
| Inmetro                                                               | 119 |
| Tabela 7.1: Distância mínima em função das alturas de transmissão     | 125 |