8 Referências Bibliográficas

[1] Kundur P., et.al. "Definition and Classification of Power System Stability,"**IEEE Transactions on Power Systems**, vol.19, pp.1387-1401, May 2004.

[2] Prada, R.B.; Palomino, E.C.; Dos Santos, J. O R; Bianco, A.; Pilotto, L.A S, "Voltage stability assessment for real-time operation," IEE Proceedings-Generation, Transmission and Distribution, vol.149, no.2, pp.175,181, Mar 2002.

[3] França, R.F., dos Santos, J.O.R., Prada, R.B., Ferreira, L.C.A., Bianco, A., 2003, "Índices e Margens para Avaliação da Segurança de Tensão na Operação em Tempo Real", 5th Latin-American Congress: Electricity Generation and Transmission, São Pedro, São Paulo, Brasil.

[4] Brown, Homer E. **"Solution of large networks by matrix methods"**, John Wiley & Sons, Inc, 1975, cap 3.

[5] Rao, G.G.; Murthy, K.V.S.R., "Model Validation Studies in Obtaining Q-V Characteristics of P-Q Loads in Respect of Reactive Power Management and Voltage Stability," **Power Electronics, Drives and Energy Systems**, 2006. PEDES '06. International Conference on , vol., no., pp.1,5, 12-15 Dec. 2006.

[6] Chebbo, A.M.; Irving, M.R.; Sterling, M. J H, "Voltage collapse proximity indicator: behaviour and implications," IEE Proceedings-Generation, Transmission and Distribution, vol.139, no.3, pp.241,252, May 1992.

[7] Vu, K.; Begovic, M.M.; Novosel, D.; Saha, M.M., "Use of local measurements to estimate voltage-stability margin," **IEEE Transactions on Power Systems,**, vol.14, no.3, pp.1029,1035, Aug 1999.

[8] K. Vu, D. Julian, J. O. Gjerde, R.P. Schultz, N. Bhatt, ; B. Laios, , "Voltage Instability Predictor (VIP) and Its Applications", **Power Systems Computation Conference**, 13th, pp. 308-316, June 1999.

[9] Corsi, S.; Taranto, G.N., "Voltage instability alarm by real-time predictive indicators," **2012 IEEE Power and Energy Society General Meeting,** vol., no., pp.1,10, 22-26 July 2012.

[10] Corsi, S.; Taranto, G.N, "A Real-Time Voltage Instability Identification Algorithm Based on Local Phasor Measurements," **IEEE Transactions on Power Systems**, Vol. 23, No. 3, pp. 1271-1278, 2008.

[11] S. Corsi, G.N.Taranto, L.N.A.Guerra "New Real Time Voltage Stability Indicators Based on Phasor Measurement Unit Data", C4-109, CIGRE Conference, 2008.

[12] Van Cutsem, T., Glavic, M.; "A short survey of methods for voltage instability detection"; Page: 1 – 8, Power and Energy Society General Meeting, 24-29 July 2011.

[13] I. Smon, G. Verbic, and F. Gubina, "Local voltage-stability index using Tellegen's theorem," **IEEE Transactions on Power Systems**, vol. 21, no. 3, pp.1267–1275, Aug. 2006.

A Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema–Teste de 3 Barras

Neste apêndice são apresentados os procedimentos realizados para obtenção dos parâmetros do circuito equivalente de Thévenin visto desde a barra de carga 3, usando os métodos apresentados na Seção 6.1. São considerados os cenários de carga leve e pesada e usados os dados de barra, linha e o resultado do fluxo de potência apresentados na Seção 5.3.1.

A.1 Método 1

Baseado no Método 1 descrito na Seção 6.1.1, para encontrar a tensão de Thévenin foi executado um fluxo de potência considerando as potências ativa e reativa da barra 3 iguais a zero (P₃=Q₃=0) obtendo-se $V_{Thev} = V_3$ e a impedância do equivalente de Thévenin, o elemento $Z_{33} \angle \beta_3$ da matriz de impedância de barra Z_{BUS} . Isto foi realizado para os dois cenários: carga leve e pesada obtendo-se os resultados mostrados na Tabela A.1.

	Vth (pu)	angVth (°)	Zth (pu)	angZth (°)
Carga Leve	0.986	-1.359	0.371	87.138
Carga Pesada	0.936	-6.599	0.371	87.138

Tabela A.1 – Dados do Circuito Equivalente de Thévenin Usando o Método 1 Sistema–Teste de 3 Barras

A.2 Método 2

Da mesma maneira ao que é feito no Método 1, para encontrar a V_{Thev} é executado um fluxo de potência, considerando as potências ativa e reativa da barra 3 iguais a zero (P₃=Q₃=0), obtendo-se $V_{Thev} = V_3$.

Apêndice A: Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema–Teste de 3 Barras 119

A impedância Z_{Thev} é igual ao elemento $Z_{33} \angle \beta_3$ obtido da matriz Z_{BUS} , a qual é formada considerando que todas as barras são fontes de tensão constantes. Isto foi realizado para os dois cenários: carga leve e pesada obtendo-se os resultados mostrados na Tabela A.2.

Tabela A.2 – Dados do Circuito Equivalente de Thévenin usando o Método 2 Sistema–Teste de 3 Barras

	Vth (pu)	angVth (°)	Zth (pu)	angZth (°)
Carga Leve	0.986	-1.359	0.250	87.138
Carga Pesada	0.936	-6.599	0.250	87.138

A.3 Método 3

Conhecendo-se o resultado do fluxo de potência é linearizado o ponto de operação transformando-se as injeções e extrações de potência em elementos shunts com exceção das injeções da barra *slack*, como é mostrado na Figura A.1.

Figura A.1 Sistema-Teste de 3 Barras Ponto de Operação Linearizado

Para obter a tensão de Thévenin é executado um fluxo de potência sem considerar o elemento shunt da barra 3 e tomando a barra 2 do tipo PQ (com P=0 e Q=0). A impedância Z_{Thev} é obtida como o elemento $Z_{33} \angle \beta_3$ da matriz Z_{BUS} do sistema linearizado. Isto foi realizado para os dois cenários: carga leve e pesada obtendo-se os resultados mostrados na Tabela A.3.

	Vth (pu)	angVth (°)	Zth (pu)	angZth (°)
Carga Leve	0.986	-1.378	0.369	86.695
Carga Pesada	0.915	-9.438	0.359	84.262

Tabela A.3 – Dados do Circuito Equivalente de Thévenin usando o Método 3 Sistema–Teste de 3 Barras

A.4 Método 4

Tomando-se o ponto de operação a ser avaliado, para simular 10 s de medições das PMU o qual equivale a tomar aproximadamente 100 fasores de tensão e corrente por segundo, foram realizadas pequenas variações sucessivas na potência da barra de 0.001% e com cada variação executado um novo fluxo de potência obtendo 1000 fasores de tensão e corrente.

Carga Leve

Considerando-se (6.6) e tomando uma janela de 1000 medições de fasores de tensão e corrente, obtém-se o seguinte sistema matricial:

$$\begin{bmatrix} 1 & 0 & -I_{k1,r} & I_{k1,i} \\ 0 & 1 & -I_{k1,i} & -I_{k1,r} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & -I_{k1000,r} & I_{k1000,i} \\ 0 & 1 & -I_{k1000,i} & -I_{k1000,r} \end{bmatrix} \begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} V_{k1,r} \\ V_{k1,i} \\ \vdots \\ V_{k1000,r} \\ V_{k1000,i} \end{bmatrix}$$
(A.1)

Substituindo-se valores em (A.1):

$$\begin{bmatrix} 1 & 0 & -0.100 & -0.058 \\ 0 & 1 & 0.058 & -0.100 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & -0.099 & -0.059 \\ 0 & 1 & 0.058 & -0.099 \end{bmatrix} \begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ R_{Thev} \\ R_{Thev} \end{bmatrix} = \begin{bmatrix} 0.962 \\ -0.059 \\ \vdots \\ 0.962 \\ -0.059 \end{bmatrix}$$
(A.2)

A solução ao sistema matricial (A.2), da forma Ax = B onde A usualmente não é quadrada, usando-se mínimos quadrados é dada por: Apêndice A: Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema–Teste de 3 Barras 121

$$x = (A^T A)^{-1} A^T B \tag{A.3}$$

Considerando-se (A.2) e (A.3), obtém-se:

$$\begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 0.986 \\ -0.023 \\ 0.021 \\ 0.372 \end{bmatrix}$$
(A.4)

Substituindo-se a potência e a tensão (da Tabela 5.10) em (A.5) é encontrada a impedância da barra monitorada.

$$Z_3 = -\frac{|V_3|^2}{S_3^*} \tag{A.5}$$

$$Z_3 = -\frac{0.964^2}{0.112\angle -26.565^\circ} = 8.314\angle 26.565^\circ \tag{A.6}$$

Finalmente, os resultados consolidados são mostrados na Tabela A.4.

Carga Pesada

Considerando-se (A.1) e substituindo valores:

$$\begin{bmatrix} 1 & 0 & -0.603 & -1.221 \\ 0 & 1 & 1.221 & -0.603 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & -0.606 & -1.106 \\ 0 & 1 & 1.106 & -0.606 \end{bmatrix} \begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 0.445 \\ -0.321 \\ \vdots \\ 0.489 \\ -0.322 \end{bmatrix}$$
(A.7)

Considerando-se (A.7) e (A.3), obtém-se:

$$\begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 0.922 \\ -0.086 \\ 0.001 \\ 0.391 \end{bmatrix}$$
(A.8)

Apêndice A: Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema–Teste de 3 Barras 122

Substituindo-se a potência e a tensão (da Tabela 5.15) em (A.5) é encontrada a impedância da barra monitorada.

$$Z_3 = -\frac{0.542^2}{0.747\angle -27.937^\circ} = 0.393\angle 27.937^\circ \tag{A.9}$$

Finalmente, os resultados consolidados são mostrados na Tabela A.4.

Tabela A.4 – Dados do Circuito Equivalente de Thévenin usando o Método 4 Sistema–Teste de 3 Barras

	Vth (pu)	angVth (°)	Zth (pu)	angZth (°)
Carga Leve	0.986	-1.358	0.373	86.722
Carga Pesada	0.926	-5.334	0.390	89.930

A.5 Método 5

O algoritmo de identificação recursiva para estimação dos parâmetros do circuito equivalente de Thévenin apresentado na Seção 6.1.2 foi implementado na ferramenta computacional Matlab.

O valor do parâmetro k, usado pelo algoritmo, foi ajustado para 0.001.

Na Tabela A.5 são apresentados os resultados da primeira iteração e a final.

Tabela A.5 – Dados do Circuito Equivalente de Thévenin usando o Método 5 Sistema–Teste de 3 Barras

	Método 5					
	Iteração Inicial Iteração Final					
	Vth (pu)	angVth (°)	Zth (pu)	Vth (pu)	angVth (°)	Zth (pu)
Carga Leve	1.289	17.916	4.568	0.987	-1.331	0.367
Carga Pesada	0.736	-14.746	0.221	0.927	-5.267	0.392

Para uma melhor ilustração do procedimento usado no método, a seguir são mostradas a iteração 0 e 1 em carga pesada.

Tabela A.6 - Dados dos Fasores 0 e 1 - Sistema-Teste de 3 Barras - Carga Pesada

Fasor N°	Vk (pu)	$\Theta_{\rm Ek}(^{\circ})$	Ik (pu)	angIk (°)	Zk (pu)	angZk (°)
0	0.5424	27.9374	1.3772	0.0000	0.3939	27.9374
1	0.5428	27.9374	1.3762	0.0000	0.3945	27.9374

Usando-se os valores da Tabela A.6, (6.15) e (6.16) são encontrados os valores para E_{Thev}^{min} e E_{Thev}^{max} .

$$E_{Thev}^{min} = V_k^0 = 0.5424 \tag{A.10}$$

$$E_{Thev}^{max} = V_k^0 \sqrt{2(1 + \sin\theta_{Ek}^0)} = 0.9295$$
(A.11)

Substituindo-se (A.10) e (A.11) em (6.17):

$$E_{Thev}^{0} = \frac{0.5424 + 0.9295}{2} = 0.7360 \tag{A.12}$$

Com (A.12) e (6.13), obtém-se:

$$\theta_{Thev}^{0} = \cos^{-1} \left(\frac{V_k^0 \cos \theta_{Ek}^0}{E_{Thev}^0} \right) = 49.3660^{\circ}$$
(A.13)

Com (A.12), (A.13), (6.18) e os valores da Tabela A.6, calcula-se o valor de X_{Thev}^{0} .

$$X_{Thev}^{0} = \frac{E_{Thev}^{0} \sin \theta_{Thev}^{0} - V_{k}^{0} \sin \theta_{Ek}^{0}}{I_{k}^{0}} = 0.2211$$
(A.14)

Uma vez obtidos os valores iniciais dos parâmetros do circuito equivalente de Thévenin começa o processo iterativo.

Apêndice A: Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema-Teste de 3 Barras 124

Tomando-se i=1 e seguindo o procedimento descrito na Seção 6.1.2, para calcular E_{Thev}^1 , inicialmente calcula-se:

$$(Z_k^1 - Z_k^0) = 5.9043e^{-4} \tag{A.15}$$

Sabendo que (A.15) é maior do que zero, procede-se a calcular a diferença entre $X_{Thev}^{1^*}$ e X_{Thev}^{0} , para o qual inicialmente são calculados os valores de $\theta_{Thev}^{1^*}$ e $X_{Thev}^{1^*}$ respetivamente.

$$\theta_{Thev}^{1^*} = \cos^{-1}\left(\frac{V_k^1 \cos \theta_{Ek}^1}{E_{Thev}^0}\right) = 49.3431^\circ$$
(A.16)

$$X_{Thev}^{1^*} = \frac{E_{Thev}^0 \sin \theta_{Thev}^{1^*} - V_k^1 \sin \theta_{Ek}^1}{I_k^1} = 0.2209$$
(A.17)

$$(X_{Thev}^{1^*} - X_{Thev}^{0}) = -0.0002 \tag{A.18}$$

Baseado no procedimento da Seção 6.1.2 com (A.18) menor do que zero, tem-se:

$$E_{Thev}^{1} = E_{Thev}^{0} + \varepsilon_{E}^{-1} = 0.7367$$
 (A.19)

Onde, $\varepsilon_E^{1} = min(\varepsilon_{inf}^{1}, \varepsilon_{sup}^{1}, \varepsilon_{lim}^{1})$

$$\varepsilon_{inf}{}^{1} = \left| E^{0}_{Thev} - V^{1}_{k} \right| = 0.1932 \tag{A.20}$$

$$\varepsilon_{sup}^{1} = \left| E_{Thev}^{0} - E_{Thev}^{max} \right| = 0.1935$$
 (A.21)

$$\varepsilon_{lim}^{1} = \left| E_{Thev}^{0} \times k \right| = 0.0007 \tag{A.22}$$

Com E_{Thev}^1 é calculado θ_{Thev}^1 com (6.13) e posteriormente, X_{Thev}^1 com (6.18).

$$\theta_{Thev}^{1} = \cos^{-1} \left(\frac{V_{k}^{1} \cos \theta_{Ek}^{0}}{E_{Thev}^{1}} \right) = 49.3947^{\circ}$$
(A.23)

$$X_{Thev}^{1} = \frac{E_{Thev}^{1} \sin \theta_{Thev}^{1} - V_{k}^{1} \sin \theta_{Ek}^{1}}{I_{k}^{1}} = 0.2216$$
(A.24)

*os valores apresentados anteriormente que não tem unidade, correspondem a valores em pu.

Com a finalidade de ilustrar melhor o comportamento do método na estimação dos parâmetros do equivalente de Thévenin em cada iteração, nas Figuras A.2, A.3 e A.4 são apresentados os resultados obtidos para carga pesada.

Figura A.2 Impedância de Thévenin Estimada Carga Pesada – Barra de Carga 3

Figura A.3 Tensão de Thévenin Estimada Carga Pesada – Barra de Carga 3

Figura A.4 Ângulo da Tensão Thévenin Estimado Carga Pesada – Barra de Carga

B Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema – Barra de Geração

A seguir é mostrado o procedimento de cálculo dos parâmetros dos equivalentes de Thévenin obtidos com os Métodos 4 e 5 para a barra de geração em um ponto de operação dado. Os dados de barra, dados de linha e resultado do fluxo de potência são mostrados nas Tabelas B.1, 6.8 e B.2.

Tabela B.1 - Dados de Barra do Sistema-Teste de 4 Barras

Ba	arra	Ten	são	Ge	eração	C	larga
No.	Tipo	V (pu)	θ (°)	P (MW)	Q (MVAR)	P (MW)	Q (MVAR)
1	VΘ	1.000	0.000	0.000	0.000	0.000	0.000
2	PV	1.000	0.000	141.000	0.000	0.000	0.000
3	PQ	1.000	0.000	0.000	0.000	82.250	11.750
4	PQ	1.000	0.000	0.000	0.000	82.250	11.750

Tabela B.2 - Resultado do Fluxo de Potência - Sistema-Teste de 4 Barras

Barra	Tensão		Ge	eração	Carga	
	V (pu)	θ (°)	P(MW)	Q(MVAR)	P(MW)	Q(MVAR)
1	1.000	0.000	23.500	19.620	0.000	0.000
2	1.000	14.335	141.000	72.500	0.000	0.000
3	0.910	-7.426	0.000	0.000	82.250	11.750
4	0.874	-10.554	0.000	0.000	82.250	11.750

B.1 Modelagem Considerando a Barra de Geração como Barra PQ

No problema de fluxo de carga, a barra de geração sempre mantém a tensão constante. No entanto, no problema de estabilidade de tensão a tensão controlada não é considerada constante, mas variável.

Apêndice B: Procedimento de Obtenção dos Circuitos Equivalentes de Thévenin Sistema - Barra de Geração 127

Para simular estas variações de tensão, são tomados os resultados do fluxo de potência obtidos considerando-se a barra como do tipo PV, posteriormente, como este dados a barra é mudada do tipo PV para PQ e realizadas pequenas perturbações na potência de todas as barras e com cada perturbação executado um fluxo de potência para obter os fasores de tensão e corrente.

Método 4

Considerando-se (A.1) e substituindo os fasores:

$$\begin{bmatrix} 1 & 0 & 1.517 & 0.364 \\ 0 & 1 & -0.364 & 1.517 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1.503 & 0.369 \\ 0 & 1 & -0.369 & 1.503 \end{bmatrix} \begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 0.987 \\ 0.241 \\ \vdots \\ 0.996 \\ 0.238 \end{bmatrix}$$
(B.1)

Considerando-se (B.1) e (A.3), obtém-se:

$$\begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 1.655 \\ -0.337 \\ 0.625 \\ -0.705 \end{bmatrix}$$
(B.2)

• Método 5

Aplicando o procedimento do algoritmo de identificação recursiva, são estimados os parâmetros do circuito equivalente de Thévenin, os quais são apresentados na Tabela B.3 onde, são mostrados os resultados da primeira iteração e a final.

Tabela B.3 – Dados do Circuito Equivalente de Thévenin usando o Método 5 –

Barra de Geração como PQ -Sistema-Teste de 4 Barras

Método 5						
I	teração Inicia	1]	lteração Final		
Vth (pu)	angVth (°)	Zth (pu)	Vth (pu)	angVth (°)	Zth (pu)	
1.038	42.919	0.625	1.049	43.544	0.639	

B.2 Modelagem Considerando a Barra de Geração como Barra PV

São feitas variações na potência das barras e, para cada variação, executado um fluxo de potência. Os fasores de tensão e corrente são obtidos do resultado de cada fluxo de potência tomando a barra de geração como PV, isto é, não há mudanças na tensão.

• Método 4

Considerando-se (A.1) e substituindo os fasores:

$$\begin{bmatrix} 1 & 0 & 1.546 & 0.353 \\ 0 & 1 & -0.353 & 1.546 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1.545 & 0.353 \\ 0 & 1 & -0.353 & 1.545 \end{bmatrix} \begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ R_{Thev} \end{bmatrix} = \begin{bmatrix} 0.969 \\ 0.248 \\ \vdots \\ 0.969 \\ 0.247 \end{bmatrix}$$
(B.3)

Considerando-se (B.3) e (A.3), obtém-se:

$$\begin{bmatrix} E_{Thev,r} \\ E_{Thev,i} \\ R_{Thev} \\ X_{Thev} \end{bmatrix} = \begin{bmatrix} 1.064 \\ -0.003 \\ 0.169 \\ -0.985 \end{bmatrix}$$
(B.4)

• Método 5

Usando o algoritmo de identificação recursiva são obtidos os parâmetros do circuito equivalente de Thévenin os quais são apresentados na Tabela B.4, onde são mostrados os dados da primeira e última iteração.

Método 5					
I	teração Inicia	1	Iteração Final		
Vth (pu)	angVth (°)	Zth (pu)	Vth (pu)	angVth (°)	Zth (pu)
1.020	-42.398	0.605	0.952	-33.815	0.503

Tabela B.4 – Dados do Circuito Equivalente de Thévenin usando o Método 5 – Barra de Geração PV - Sistema-Teste de 4 Barras