Referências Bibliográficas

Autodesk Robot Structural Analysis Professional Training Manual 2014.

Amabili, M. (2008). *Nonlinear vibrations and stability of shells and plates* (Vol. 257). Cambridge: Cambridge University Press.

Balkshi, K. e Chakravorty, D. (2014) First ply failure study of thin composite conoidal shells subjected to uniformly distributed load. *Thin-Walled Structures* **76**, 1-7.

Bažant, Z. P. e Cedolin, L. (2010). Stability of structures: elastic, inelastic, fracture and damage theories. World Scientific.

Bleich, F. (1952) "Buckling Strength of Metal Structures", Garden City Books.

Bradshaw, R.; Campbell, D.; Gargari, M.; Mirmiran, A. e Tripeny, P. (2002) Special Structures: Past, Present and Future. Journal of Structural Engineering 128: 6, 691-709.

Brush, D. O. e Almroth, B. O. (1975) Buckling of bars, plates and shells. McGraw-Hill.

Bulson, P. S. (1969) "The Stability of Flat Plates", McGraw-Hill.

Burger, N. e Billington, D. P. (2006). Felix Candela, Elegance and Endurance: an examination of the Xochimilco shell. **47**: 3, 152.

Ciarlet, P.G. e Paumier, J. C. (1986). A justification of the Marguerre-von Karman equations, Computational Mechanics **1**, 177-202.

Croll, J. G. A., e Walker, A. C. (1972). *Elements of structural stability* (pp. 65-90). London: Macmillan.

Das, A.K. e Bandyopadhyay, J.N. (1993) Theoretical and experimental studies on conoidal shells. *Comput. Struct.* **49**, 531-536.

Donnell, L. H. (1976). Beams, plates and shells (Vol. 8). New York: McGraw-Hill

Flügge, S. (1973). Stresses in shells. Berlin: Springer, 1973.

Ghosh, B. e Bandyopadhyay, J.N. (1990) Approximate bending analysis of conoidal shells using the Galerkin method. *Comput. Struct.* **36**, 801-805.

Gould, P.L. (1977) Static analysis of shells, Lexington Books, Toronto, Canada.

Gu, W. (2002) HyperbolicParaboloid. Harvey MuddCollege. 29 March, 2005.

http://www.math.hmc.edu/faculty/gu/curves_and_surfaces/hyp-par.html

http://www.professores.uff.br/kowada/ga/ead/ga2V1aula13.pdf

Kraus, H. (1967). Thin Elastic Shells. John Wiley, New York.

Kelkar, V. S. e Sewell, R. T. (1987). *Fundamentals of the analysis and design of shell structures* (pp. 3-4). Englewood Cliffs, NJ: Prentice-Hall.

Leissa, A. W. (1973). Vibration of shells (Vol. 288). Washington, DC, USA: Scientific and Technical Information Office, National Aeronautics and Space Administration.

MacDonnell, J. (1998) Six Types of Ruled Surfaces. Fairfield University. 30 March, 2005.

http://www.faculty.fairfield.edu/jmac/rs/sixmodels.htm

Marguerre, K. (1938) Zur Theorie der gekrummten Platte grosser Formanderung, in Proceedings, Fifth International Congress for Applied Mechanics, 93-101.

Meyer, C. e Sheer, M. H. (2005). Do Concrete Shells Deserve Another Look? *Concrete International.* 43-50.

Nayak, A. N. e Bandyopadhyay, J. N. (2002) Free vibration analysis and design aids of stiffened conoidal shells. *Journal of Engineering Mechanics/DOI: 10.1061/(ASCE)0733-9399(2002)128:4(419).*419-427.

Novozhilov, V.V. (1964). Thin Shell Theory, 2nd edn, Noordhoff, Groningen.

Ramm, E. e Wall, W.A. (2004) Shell structures – a sensitive interrelation between physics and numerics. *International Journal for Numerical Methods in Engineering*. **60**, 381-427. (DOI: 10.1002/nme.967).

Ribeiro, P. e Petyt, M. (1999) Nonlinear vibration of plates by the hierarchical finite element and continuation methods. *International Journal of Mechanical Sciences* **41**, 437-459.

Ribeiro, P. (2005) Nonlinear vibrations of simply-supported plates by the *p*-version finite element method. *Finite Elements in Analysis and Design* **41**, 911-924. *Appendix* 1 – *Hierarchical shape functions* 157-161.

Sahoo, S. (2013) Dynamic characters of stiffened composite conoidal shell roofs with cutouts: design aids and selection guidelines. *Hindawi Publishing Corporation Journal of Engineering, Volume 2013 Article ID 230120, 18 pages.*

http://dx.doi.org/10.1155/2013/230120

Shames, D. (1973) Solid Mechanics: A Variational Approach. McGraw-Hill.

Gray. (1997) Ruled Surfaces. Mathworld. 1 April, 2005.

http://mathworld.wolfram.com/RuledSurface.html

Timoshenko, S. e Woinowsky-Krieger, S. (1959) *Theory of plates and shells*. McGraw– Hill New York.

Tomás, A. e Martí, P. (2010). Shape and size optimization of concrete shells. *Engineering Structures.* **32**, 1650-1658.

Vorovich, I.I. (1999) Nonlinear Theory of Shallow Shells, Applied Mathematical Sciences, Vol.133, Springer-Verlag, New York.

Apêndice 1

Neste Apêndice estão apresentadas as tabelas de valores usados para gerar as figuras apresentadas no Capítulo 6. As tabelas seguem a mesma numeração das Figuras, para facilitar a correlação dos dados.

Carga (kPa)	ω0 (rad/s)	f (Hz)
0	19,5406898	3,11
2	18,4097174	2,93
3,5	17,5300722	2,79
5	16,5247634	2,63
7	15,1424638	2,41
10	12,6920236	2,02
13	9,5504336	1,52
16	4,4610578	0,71
16,5	2,7645992	0,44
16,8	0,5654862	0,09

Tabela 6.1 - Carga x Frequência Natural da casca conoidal mais flexível.

Tabela 6.2 - Carga x ω_0^2 da casca conoidal mais flexível.

Casca conoidal Caso SASALL		
ω_0^2 (Hz)	Sobrecarga q (kPa)	
9,6721	0	
8,5849	2	
7,7841	3,5	
6,9169	5	
5,8081	7	
4,0804	10	
2,3104	13	
0,5041	16	
0,1936	16,5	
0,0081	16,8	

Carga (kPa)	ω0 (rad/s)	f (Hz)
0	128,3025356	20,42
5	126,8574042	20,19
10	125,4122728	19,96
15	123,9671414	19,73
20	122,4591782	19,49
30	119,38042	19
40	116,1131664	18,48
50	112,7202492	17,94
60	109,2016684	17,38
90	96,9494674	15,43
120	77,8486002	12,39
150	50,4539354	8,03
165	26,8291786	4,27
170	9,9274244	1,58

Tabela 6.3 - Carga x Frequência Natural da casca conoidal mais rígida.

Tabela 6.4 - Carga x ω_0^2 da casca conoidal mais rígida.

Casca conoidal Caso EEEE		
ω_0^2 (Hz)	Sobrecarga q (kPa)	
416,9764	0	
407,6361	5	
398,4016	10	
389,2729	15	
379,8601	20	
361	30	
341,5104	40	
321,8436	50	
302,0644	60	
238,0849	90	
153,5121	120	
64,4809	150	
18,2329	165	
2,4964	170	

Casca Hh = 0,5 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
4,1	0	
3,94	2	
3,21	4	
2,78	5	
2,26	6	
1,59	7	
Casca Hh = 0,5 m C	aso EEEE	
Frequência natural em Hz	Sobrecarga em kPa	
12,86	0	
12,47	5	
11,88	10	
11,23	15	
10,51	20	
8,59	30	
4,98	40	
1,99	44	
Casca Hh = 1,0 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
4,57	0	
4,64	1	
4,49	2	
4,2	4	
3,88	6	
3,53	8	
3,15	10	
2,71	12	
0,94	17	
Casca Hh = 1,0 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
17,36	0	
17,11	5	
16,34	15	
15,09	30	
13,68	45	
12,03	60	
10,03	75	
7,33	90	
,68	105	

Tabelas 6.5 – Variação da frequência natural mínima com o nível de carregamento estático. Influência da curvatura da casca na carga crítica.

Casca Hh = 2,0 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
4,74	0	
4,58	4	
4,45	6	
4,31	8	
4,03	12	
3,72	16	
3,56	18	
3,39	20	
2,91	25	
2,35	30	
1,14	37	
Casca Hh = 2,0 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
23,02	0	
22,39	20	
21,94	30	
21,47	40	
20,5	60	
19,46	80	
18,34	100	
17,12	120	
15,07	150	
10,6	200	
1,49	245	
Casca Hh = 2,5 m C	aso SASALL	
Frequência natural em Hz	Sobrecarga em kPa	
4,6	0	
4,43	5	
4,16	10	
3,88	15	
3,58	20	
3,24	25	
2,87	30	
2,43	35	
1,9	40	
1,15	45	
0,62	47	

Casca Hh = 2,5 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
24,21	0	
23,23	30	
22,12	60	
20,94	90	
19,67	120	
18,28	150	
16,73	180	
14,99	210	
12,93	240	
9,9	270	
1,28	308	

Tabela 6.6 – Carga crítica q_{cr} (kPa) x Altura H_h (m)

Casca conoidal Caso SASALL		
Altura Hh em m	Carga crítica em kPa	
0,5	7	
1	17	
1,5	17	
2	37	
2,5	47	

Casca conoidal Caso EEEE		
Altura Hh em m	Carga crítica em kPa	
0,5	44	
1	105	
1,5	170	
2	245	
2,5	308	

Casca a = 3,0 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
3,64	0	
3,36	5	
3,2	7	
3,02	9	
2,83	11	
2,41	15	
1,75	20	
1,18	23	
0,55	25	
Casca a = 3.0 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
38,21	0	
36,64	50	
35.94	70	
35.21	90	
34,44	110	
32,8	150	
27,85	250	
20,59	350	
2,3	450	
Casca a = 9,0 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
6,41	0	
6,35	2	
6,09	4	
5,81	6	
5,53	8	
4,9	12	
4,18	16	
3,77	18	
1,58	25	

Tabelas 6.8 - Variação da frequência natural mínima com o nível de carregamento estático. Influência do comprimento a da casca na carga crítica.

Casca a = 9,0 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
15,4	0	
14,09	20	
12,44	40	
10,42	60	
9,17	70	
7,67	80	
5,68	90	
4,29	95	
2,03	100	
Casca a = 12,0 m Caso SASALL		
Frequência natural em Hz	Sobrecarga em kPa	
5,78	0	
5,65	1	
5,51	2	
5,36	3	
5,19	4	
4,79	6	
4,26	8	
3,53	10	
1,51	13	
Casca a = 12,0 m Caso EEEE		
Frequência natural em Hz	Sobrecarga em kPa	
11,91	0	
11,55	5	
10,98	10	
9,67	20	
7,96	30	
6,87	35	
5,48	40	
3,46	45	
0,74	48	