

Luciana Boher e Souza

Deposição de parafina em linhas de petróleo. Estudo numérico e experimental

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica.

Orientadora: Prof. Angela Ourivio Nieckele Co-Orientador: Prof. Luis Fernando Alzuguir Azevedo

Rio de Janeiro Setembro de 2014

Luciana Boher e Souza

Deposição de parafina em linhas de petróleo. Estudo numérico e experimental

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Angela Ourivio Nieckele

Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Prof. Luis Fernando Alzuguir Azevedo Co-Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Paulo Roberto de Souza Mendes Departamento de Engenharia Mecânica – PUC-Rio

Dr. João Neuenschwander Escosteguy Carneiro Instituto Sintef do Brasil

Prof. Geraldo Afonso Spinelli Martins Ribeiro Departamento de Engenharia Mecânica – PUC-Rio

> Dr. Daniel Merino Garcia REPSOL

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 10 de setembro de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e dos orientadores.

Luciana Boher e Souza

Graduou-se em Engenharia Mecânica no Instituto Politécnico – Campus Regional da Universidade do Estado do Rio de Janeiro em Nova Friburgo (IPRJ -UERJ) em 2005. Concluiu o Mestrado em Engenharia Nuclear no Instituto Militar de Engenharia (IME – Rio de Janeiro) em 2008, na área de Controle Ambiental.

Ficha Catalográfica

Souza, Luciana Boher e

Deposição de parafina em linhas de petróleo. Estudo numérico e experimental / Luciana Boher e Souza ; orientadora: Angela Ourivio Nieckele ; coorientador: Luis Fernando Alzuguir Azevedo. – 2014.

220 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2014.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Garantia de escoamento. 3. Deposição de parafina. 4. Escoamentos laminar e turbulento. 5. Modelo termodinâmico de fases multisólidas. 6. Difusão molecular. 7. Efeito Soret. I. Nieckele, Angela Ourivio. II. Azevedo, Luis Fernando Alzuguir. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título. PUC-Rio - Certificação Digital Nº 0912559/CA

À minha família e a todos que sempre me apoiaram

Agradecimentos

Agradeço a Deus as bênçãos recebidas todos os dias, e a oportunidade de aqui estar, aprendendo e evoluindo a cada momento.

Agradeço a minha orientadora Professora Angela Nieckele a sua dedicação para a realização deste trabalho, em especial suas grandes habilidades e empenho no estudo numérico da tese, e a sua paciência e inestimável confiança.

Ao meu orientador Professor Luis Fernando Azevedo a liderança e a grande dedicação para a realização deste trabalho, e o imenso apoio ao longo do curso.

Ao Carlos Frederico o apoio e os auxílios sempre presentes e essenciais.

Aos meus amigos Marilyn e Andres, companheiros durante bons anos deste curso.

A todos os meus colegas do laboratório da PUC-Rio que de uma forma ou de outra contribuíram para o desenvolvimento deste trabalho. Agradeço, em especial, a Helena Maria a sua amizade e a enorme dedicação ao projeto experimental desta tese.

Agradeço ao Felipe Fleming a grande e fundamental contribuição para esse estudo.

Ao Luis Renato Minchola a parceria nos trabalhos ao longo do doutorado.

Aos membros da Comissão Examinadora a disponibilidade e o conhecimento para analisar a tese.

A todos os funcionários e professores do Departamento de Engenharia Mecânica da PUC-Rio a ajuda e os ensinamentos.

Ao CNPq o suporte financeiro concedido durante o curso de doutorado e a PUC-Rio a infraestrutura, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Souza, Luciana Boher; Nieckele, Angela Ourivio; Azevedo, Luis Fernando Alzuguir. **Deposição de parafina em linhas de petróleo. Estudo numérico e experimental**. Rio de Janeiro, 2014. 220p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Parafinas de alto peso molecular presentes no petróleo escoando em ambientes de baixa temperatura cristalizam-se e depositam-se nas paredes internas dos dutos, ocasionando a redução da taxa de escoamento e o aumento do custo de produção, podendo levar até mesmo ao bloqueio das linhas de transporte. O processo de deposição é complexo e envolve conhecimento multidisciplinar, de modo que diferentes abordagens têm sido propostas para a sua modelagem. O principal objetivo deste trabalho foi investigar o fenômeno de deposição de parafina em uma geometria simples, com condições bem controladas, utilizando uma abordagem numérica e experimental, com foco no melhor entendimento dos mecanismos que induzem a deposição, a formação dos depósitos e seu envelhecimento. Experimentalmente, foram conduzidos testes com fluidos de laboratório que permitiam a visualização e a medição da evolução espacial e temporal de depósitos de parafina formados sob escoamentos laminar e turbulento. Numericamente, foi desenvolvido um modelo multicomponente para escoamento laminar, chamado de entalpia-porosidade. Tanto a espessura quanto a composição do depósito foram determinadas através de um modelo termodinâmico acoplado às equações de conservação de massa, de quantidade de movimento linear, de energia e de espécies. Os resultados indicaram que o efeito Soret não influencia a deposição de parafina. A espessura do depósito foi bem avaliada numericamente para regime permanente, apresentando diferenças na sua evolução temporal. O modelo composicional desenvolvido fornece importantes dados além da espessura depositada, como a temperatura inicial de aparecimento de cristais (TIAC) e o número de carbono crítico (NCC) do sistema, ampliando a previsão do processo de deposição com informações sobre a composição e o envelhecimento do depósito. As investigações numéricas mostraram que maiores taxas de cisalhamento e temperaturas da parede resultam em depósitos menos espessos. Mostrou-se também que maiores taxas de cisalhamento resultam em depósitos mais densos, e que maiores temperaturas da parede tendem a aumentar a saturação de sólido na região intermediária do depósito.

Palavras-chaves

Garantia de Escoamento; Deposição de Parafina; Escoamentos Laminar e Turbulento; Modelo Termodinâmico de Fases Multisólidas; Difusão Molecular; Efeito Soret.

Abstract

Souza, Luciana Boher; Nieckele, Angela Ourivio; Azevedo, Luis Fernando Alzuguir. **Wax deposition in pipelines. Numerical and experimental study**. Rio de Janeiro, 2014. 220p. Ph.D. Thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

High molecular weight paraffins crystallize and deposit on the inner walls of production lines and oil pipelines operating in cold environments, causing reductions in flow rate, increase of the production cost, or even the total blockage of the transport lines. Wax deposition is a complex process involving multidisciplinary knowledge, so that different approaches have been proposed for its modeling. The primary purpose of this work was to investigate the wax deposition process in a simple geometry under well-controlled conditions, using a numerical and experimental approach, focusing on a better understanding of the phenomena controlling the wax deposition, the formation of the deposit and its aging. Controlled experiments were conducted using laboratory solutions which allowed visualization and measurement of the spatial and temporal evolution of wax deposits under laminar and turbulent flows. A multicomponent model for laminar flow, called enthalpy-porosity, was developed. The thickness and composition of the deposit were determined by a thermodynamic model coupled with conservation equations of mass, linear momentum, energy and species. The results indicated that the Soret effect does not contribute to wax deposition. The thickness of the deposit was well predicted by the numerical model for steady state, presenting, however, differences in its temporal evolution. The multicomponent model developed provides valuable information in addition to the deposited thickness, such as the wax appearance temperature (WAT) and the critical carbon number (CCN) of the wax-oil system. These are relevant information for the prediction of the deposit composition and the aging process. The numerical results demonstrated that higher flow rates and wall temperatures lead to thinner deposits. It was also shown that the deposit wax content is higher for higher shear rates, while higher wall temperatures lead to higher solid content in the intermediate region of the deposit.

Keywords

Flow Assurance; Wax Deposition; Laminar and Turbulent Flow; Multisolidphase Thermodynamic Model; Molecular Diffusion; Soret Effect.

Sumário

1 Introdução	26
1.1 Objetivos e Metodologia do Trabalho	30
1.2 Organização do Trabalho	31
2 Fundamentos Teóricos	33
2.1 Depósito de Parafina e Características Básicas	33
2.2 Mecanismos de Transporte de Parafina	36
2.2.1 Difusão molecular	37
2.2.2 Difusão Browniana	38
2.2.3 Dispersão por cisalhamento	38
2.2.4 Deposição por efeitos gravitacionais	41
2.2.5 Efeito Soret	42
2.3 Adesão da Camada Depositada	43
2.4 Influência de Outros Materiais na Cristalização da Parafina	45
2.5 Morfologia dos Cristais e Envelhecimento do Depósito	45
2.6 Revisão de Estudos sobre a Deposição de Parafina	47
2.6.1 Modelos termodinâmicos de deposição	57
3 Montagens e Procedimentos Experimentais	63
3.1 Seção de Testes Retangular	63
3.1.1 Descrição da seção de testes retangular	64
3.1.2 Medição e controle da temperatura	68
3.1.3 Visualização e processamento de imagens	69
3.2 Procedimentos Experimentais	70
3.2.1 Solução de querosene com parafina	70
3.2.2 Metodologia experimental	72

4 Modelagem Matemática	76
4.1 Hipóteses Fundamentais	78
4.2 Equação de Estado Cúbica de Peng-Robinson	79
4.3 Equilíbrio de Fases	82
4.3.1 Fugacidade	84
4.3.2 Equilíbrio sólido-líquido	85
4.4 Equilíbrio de Fase Sólido-líquido Local	89
4.4.1 Análise de estabilidade	91
4.4.2 Composição de equilíbrio	91
4.5 Equações de Conservação	93
4.5.1 Equação de conservação de massa	93
4.5.2 Equações de conservação de quantidade de movimento linear	93
4.5.3 Equação de conservação de energia	96
4.5.4 Equações de conservação de espécies	101
4.5.4.1 Fluxo difusivo molar	103
4.6 Condições Iniciais e de Contorno	105
5 Método Numérico	108
5.1 Solução do Equilíbrio de Fase Sólido-Líquido Local	111
5.2 Solução das Equações de Conservação	112
5.2.1 Equação de conservação de quantidade de movimento linear	113
5.2.2 Equação de conservação de massa	114
5.2.3 Equação de conservação de espécies	115
5.2.4 Equação de conservação de energia	116
5.3 Critérios de Convergência	117

5.4 Algoritmo de Solução1195.5 Malha Computacional e Teste de Malha1215.6 Teste de Passo de Tempo1235.7 Espessura de Regime Permanente125

6 Resultados	126
6.1 Validação do Modelo Termodinâmico	126
6.2 Resultados Experimentais Obtidos	129

6.3 Avaliação do Modelo Entalpia-Porosidade Desenvolvido	134
6.3.1 Influência do número de pseudocomponentes considerados	135
6.3.2 Influência dos mecanismos de transporte de massa	140
6.3.3 Evolução temporal da espessura para diferentes Reynolds	142
6.3.3 Comparação com o modelo de Minchola (2007)	145
6.4 Resultados do Modelo Entalpia-Porosidade	148
6.4.1 Campo de temperatura	149
6.4.2 Previsão da TIAC	153
6.4.3 Influência da morfologia do meio	154
6.4.4 Influência da taxa de cisalhamento	158
6.4.5 Influência da temperatura da parede	163
6.4.6 Estudo da composição do depósito	168
7 Conclusões	182
7.1 Sugestões para Trabalhos Futuros	184
Referências Bibliográficas	188
A Apêndices	204
A.1 Curva de Calibração da Bomba de Cavidade Progressiva	204
A.2 Caracterização da Solução de Querosene com Parafina a 20%	205
A.2.1 Determinação da massa específica	205
A.2.2 Determinação da viscosidade	206
A.2.3 Curva de solubilidade e TIAC	208
A.2.4 Calor específico à pressão constante	210
A.2.5 Determinação da condutividade térmica	211
A.3 Monitoramento da Solução de Querosene com Parafina	213
B Apêndices	215
B.1 Composição das Soluções de Parafina Utilizadas	215
B.2 Cálculo da Viscosidade Absoluta do Fluido Multicomponente	218

Lista de Figuras

Figura 1.1 - Ilustração esquemática de uma instalação de	27
produção offshore com dados típicos da Bacia de Campos	
Figura 1.2 - Amostras de (a) linha quase totalmente bloqueada	27
por depósito de parafina; (b) depósito sendo removido em	
procedimento de limpeza	
Figura 1.3 - Depósitos retirados após procedimento de limpeza	28
Figura 1.4 - Passagem de PIG para a remoção mecânica de	29
depósito de parafina	
Figura 2.1 - Mecanismos de transporte radial de parafina	36
propostos na literatura e suas correspondentes direções de fluxo	
de massa	
Figura 2.2 - Perfil de concentração de cristais de parafina	39
Figura 2.3 - Exemplo de resultado mostrando a concentração de	40
partículas como uma função da posição radial	
Figura 2.4 - Avaliação da simetria das espessuras de depósito, δ,	42
nas paredes superior e inferior de um canal	
Figura 2.5 - Teor de parafina do depósito em função do tempo	54
para diferentes Reynolds	
Figura 2.6 - Ilustração dos modelos termodinâmicos de (a)	59
solução sólida e de (b) fases multisólidas	
Figura 3.1 - Vista esquemática da seção de testes retangular	64
Figura 3.2 - Vista em corte transversal esquemática do canal de	65
escoamento da seção de testes retangular	
Figura 3.3 - Vista superior esquemática do canal de escoamento	66
de 600 mm da seção de testes retangular	
Figura 3.4 - Fotografia da seção de testes retangular	67
Figura 3.5 - Localização dos termopares ao longo do canal	68
retangular	

Figura 3.6 - Localização da junção dos termopares	69
Figura 3.7 - Localização dos pontos de visualização das	70
espessuras de depósito ao longo do canal retangular	
Figura 4.1 - Tipo de problema do equilíbrio de fases	83
Figura 4.2 - Ciclo termodinâmico de mudança de fase sólido-	86
líquido	
Figura 4.3 - Esquema da seção de teste	105
Figura 5.1 - Segmento de malha deslocada para um domínio	109
bidimensional	
Figura 5.2 - Fluxograma do procedimento de execução numérica	120
Figura 6.1 - Depósitos de parafina para três posições axiais no	130
início do canal. Re=660. T $_{\rm in}$ = 40°C, T $_{\rm w}$ = 15°C. (a) 0 min (b) 1	
min (c) 30 min	
Figura 6.2 - Depósitos de parafina para três posições axiais no	131
início do canal. Re=6000. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$. (a) 0 min (b) 1	
min (c) 30 min	
Figura 6.3 - Distribuição espacial da espessura dos depósitos de	132
parafina para regime permanente referentes aos números de	
Reynolds ensaiados. Re= 660, 2019, 6000. Solução de	
querosene com parafina a 20%. T_{in} = 40°C, T_{w} = 15°C	
Figura 6.4 - Distribuição espacial e temporal da espessura dos	137
depósitos para Re=660 considerando difusão molecular.	
Comparação entre 2 e 12 pseudocomponentes com os dados	
experimentais. Canal de 600 mm. Solução a 20%. $T_{in} = 40^{\circ}C$,	
$T_w = 15^{\circ}C$	
Figura 6.5 - Distribuição espacial da espessura dos depósitos	138
para Re=1732 em regime permanente considerando difusão	
molecular. Comparação entre 2 e 12 pseudocomponentes com	
dados experimentais. Canal de 1 m. Solução a 15%. $T_{in} = 40^{\circ}C$,	
$T_w = 15^{\circ}C$	
Figura 6.6 - Reprodução dos resultados de Leiroz (2004).	139
Evolução temporal e espacial da espessura do depósito de	
parafina no canal	

Figura 6.7 - Distribuições espacial e temporal das espessuras	140
dos depósitos de parafina para Re=660, considerando 12	
pseudocomponentes. Influência dos mecanismos considerados.	
Canal de 600 mm. Solução a 20%. T_{in} = 40°C, T_{w} = 15°C	
Figura 6.8 - Distribuições espacial e temporal das espessuras	141
dos depósitos de parafina para Re=660, considerando 2	
pseudocomponentes. Influência dos mecanismos considerados.	
Canal de 600 mm. Solução a 20%. T_{in} = 40°C, T_{w} = 15°C	
Figura 6.9 - Comparação das espessuras em $x/L = 0.8$ dos	143
depósitos experimental e numéricos. Re = 1732. Considerando 2	
ou 12 pseudocomponentes e difusão molecular. Canal de 1 m.	
Solução a 15%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C	
Figura 6.10 - Comparação das espessuras em $x/L = 0.8$ dos	145
depósitos experimentais e numéricos. Re= 660 e 2019.	
Considerando 12 pseudocomponentes e difusão molecular.	
Canal de 600 mm. Solução a 20%. T_{in} = 40°C, T_{w} = 15°C	
Figura 6.11 - Distribuição espacial da espessura dos depósitos	147
para diferentes Reynolds em regime permanente. Comparação	
com os resultados numéricos de Minchola (2007). T _{in} = 40° C, T _w	
= 15°C	
Figura 6.12 - Distribuição espacial e temporal da espessura do	149
depósito para Re=1078, considerando 12 pseudocomponentes e	
difusão molecular. Canal de 600 mm. Solução a 20%. T_{in} = 40°C,	
$T_w = 15^{\circ}C$	
Figura 6.13 - Campos de temperatura para Re=1078,	150
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$. (a) 30s; (b)	
regime permanente	
Figura 6.14 - Perfis de temperatura em três diferentes posições	152
axiais no canal 30 s após o resfriamento das paredes. Re=1078,	
12 pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C	

Figura 6.15 - Perfis de temperatura em três diferentes posições	152
axiais no canal em regime permanente de espessura. Re=1078,	
12 pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. T _{in} = 40°C, T _w = 15°C	
Figura 6.16 - Saturação de sólido percentual em função da	153
temperatura para as soluções de querosene com 15% e 20% de	
parafina	
Figura 6.17 - Perfis de velocidade axial adimensional em três	155
diferentes posições axiais no canal no regime permanente.	
Re=1078, 12 pseudocomponentes e difusão molecular. Canal de	
600 mm. Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C. C=1,0x10 ⁶ m ⁻²	
Figura 6.18 - Campos de velocidade axial adimensional para	156
Re=1078, considerando 12 pseudocomponentes e difusão	
molecular. Canal de 600 mm. Solução a 20%. T $_{\rm in}$ = 40°C, T $_{\rm w}$ =	
15°C. (a) 30 s; (b)2 min. C=1,7x10 ¹¹ m ⁻²	
Figura 6.19 - Perfis de velocidade axial adimensional em três	157
posições axiais no canal 30 s após o resfriamento das paredes.	
Re=1078, 12 pseudocomponentes e difusão molecular. Canal de	
600 mm. Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C. C=1,7x10 ¹¹ m ⁻²	
Figura 6.20 - Perfis de velocidade axial adimensional em três	157
posições axiais no canal 2 minutos após o resfriamento das	
paredes. Re=1078, 12 pseudocomponentes e difusão molecular.	
Canal de 600 mm. Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$.	
C=1,7x10 ¹¹ m ⁻²	
Figura 6.21 - Distribuição espacial da espessura dos depósitos	159
em regime permanente para diferentes números de Reynolds,	
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.22 - Espessura média dos depósitos ao longo do tempo	160
para diferentes números de Reynolds simulados, considerando	
12 pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. T _{in} = 40°C, T _w = 15°C	

Figura 6.23 - Espessura e saturação de sólido médias no	161
depósito em função do tempo para Reynolds igual a 1078,	
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.24 - Campos de porosidade em regime permanente de	162
espessura para diferentes Reynolds, considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C. (a)Re=660; (b) Re=1078;	
(c) Re=2019	
Figura 6.25 - Perfis de temperatura adimensional em três	163
diferentes posições axiais no canal em regime permanente para	
diferentes Reynolds, considerando 12 pseudocomponentes e	
difusão molecular. Canal de 600 mm. Solução a 20%. T _{in} = 40° C,	
$T_w = 15^{\circ}C$	
Figura 6.26 - Distribuição espacial da espessura dos depósitos	164
em regime permanente para diferentes temperaturas da parede,	
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. T _{in} = 40ºC	
Figura 6.27 - Espessura média dos depósitos ao longo do tempo	165
para diferentes temperaturas da parede. Re = 1078 e	
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. T _{in} = 40ºC	
Figura 6.28 - Campos de porosidade em regime permanente de	166
espessura para diferentes temperaturas da parede. Re = 1078 e	
considerando 12 pseudocomponentes e difusão molecular. Canal	
de 600 mm. Solução a 20%. T_{in} = 40°C. (a) T_w = 15°C; (b) T_w =	
20° C; (c) T _w = 25° C	
Figura 6.29 - Fração molar total do pseudocomponente 12 em	167
regime permanente de espessura para diferentes temperaturas	
da parede. Re = 1078 e considerando 12 pseudocomponentes e	
difusão molecular. Canal de 600 mm. Solução a 20%. T_{in} =	
40°C. (a) $T_w = 15^{\circ}C$; (b) $T_w = 20^{\circ}C$; (c) $T_w = 25^{\circ}C$	

Figura 6.30 - Evolução temporal do campo de porosidade para	169
Re = 1078, considerando 12 pseudocomponentes e difusão	
molecular. Canal de 600 mm. Solução a 20%. T_{in} = 40°C, T_{w} =	
15°C. (a) 30s; (b) 2min; (c) 10min; (d) Regime permanente de	
espessura	
Figura 6.31 - Fração molar total de 4 pseudocomponentes em	171
regime permanente de espessura. Re = 1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C. Pseudocomponentes (a)	
4; (b) 8; (c) 11; (d) 12	
Figura 6.32 - Evolução temporal da fração molar total do	173
pseudocomponente12. Re = 1078, e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. T_{in} = 40°C, T_{w} = 15°C. (a) 30s; (b) 2min; (c)	
10min; (d) regime permanente de espessura	
Figura 6.33 - Distribuição dos 12 pseudocomponentes	175
(composição total) dentro do depósito como uma função do	
tempo em x/L=0,5. Re = 660 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.34 - Distribuição dos 12 pseudocomponentes	175
(composição total) dentro do depósito como uma função do	
tempo em x/L =0,5. Re = 1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}$ C, $T_{w} = 15^{\circ}$ C	
Figura 6.35 - Distribuição dos 12 pseudocomponentes	176
(composição total) dentro do depósito como uma função do	
tempo em x/L =0,5. Re = 2019 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.36 - Distribuição média dos pseudocomponentes	177
(composição total) dentro do depósito, em x/L =0,5 em regime	
permanente de espessura para diferentes Reynolds,	

considerando 12 pseudocomponentes e difusão molecular. Canal	
de600 mm. Solução a 20%. T _{in} = 40°C, T _w = 15°C	
Figura 6.37 - Perfis de fração molar total dos	178
pseudocomponentes 4, 8, 10, 11 e 12 em regime permanente de	
espessura em x/L=0,5. Re=1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.38 - Variação da fração molar dos 12	179
pseudocomponentes dentro do depósito como uma função do	
tempo em x/L =0,5. Re = 1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 15^{\circ}C$	
Figura 6.39 - Variação da fração molar dos 12	180
pseudocomponentes dentro do depósito como uma função do	
tempo em x/L =0,5. Re = 1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 20^{\circ}C$	
Figura 6.40 - Variação da fração molar dos 12	180
pseudocomponentes dentro do depósito como uma função do	
tempo em x/L =0,5. Re = 1078 e considerando 12	
pseudocomponentes e difusão molecular. Canal de 600 mm.	
Solução a 20%. $T_{in} = 40^{\circ}C$, $T_{w} = 25^{\circ}C$	
Figura A.1 - Curva de calibração da bomba de cavidade	204
progressiva	
Figura A.2 - Representação de um picnômetro	205
Figura A.3 - Viscosímetro Cannon-Fenske	207
Figura A.4 - Variação da viscosidade com a temperatura para	209
uma solução de querosene com 2% de parafina em massa	
Figura A.5 - Curva de solubilidade da solução de querosene com	210
parafina a 20%	
Figura A.6 - Esquema da Célula K-c utilizada para medição da	212
condutividade térmica da solução de querosene com parafina	

Figura A.7 - Massa específica da solução de querosene com	214
parafina a 20%	
Figura A.8 - Viscosidade cinemática da solução de querosene	214
com parafina a 20%	

Lista de Tabelas

Tabela 5.1 - Resultado do teste de malha realizado	122
Tabela 5.2 - Tempo de convergência dos resultados em função	123
da malha utilizada	
Tabela 5.3 - Número de Courant dos passos de tempo utilizados	124
no teste	
Tabela 5.4 - Resultado do teste de passo de tempo realizado	125
Tabela 6.1 - Composição de alimentação do sistema utilizado	127
para a verificação do modelo termodinâmico	
Tabela 6.2 - Composição do sistema da Tab. 6.1 em função da	128
temperatura a 101,3 kPa	
Tabela 6.3 - Casos de deposição de parafina simulados com o	135
modelo entalpia-porosidade desenvolvido	
Tabela 6.4 - Valores de TIAC experimentais e previstas para as	154
soluções de querosene com parafina utilizadas	
Tabela 6.5 - Caracterização da solução de querosene com 20%	170
de parafina	
Tabela A.1 - Valores das massas específicas obtidos com o	206
picnômetro	
Tabela A.2 - Valores de condutividade térmica medidos com a	213
Célula K-c	
Tabela B.1 - Composição da solução a 20% considerando doze	216
pseudocomponentes	
Tabela B.2 - Composição da solução a 20% considerando dois	216
pseudocomponentes	
Tabela B.3 - Composição da solução a 15% considerando doze	217
pseudocomponentes	
Tabela B.4 - Composição da solução a 15% considerando dois	217
pseudocomponentes	

Lista de Símbolos

- A parâmetro da PR-EOS
- At área da seção transversal do canal retangular
- a largura do canal retangular
- ai parâmetro a da PR-EOS para o componente i
- a_m parâmetro a de mistura da PR-EOS
- B parâmetro da PR-EOS
- b_i parâmetro b da PR-EOS para o componente i
- b_m parâmetro b de mistura da PR-EOS
- c_j concentração molar da mistura na fase j
- c_{j,i} concentração molar do componente i na fase j
- Co número de Courant
- Cp calor específico a pressão constante
- ΔCp_i calor específico de fusão
- D_M coeficiente de difusão molecular
- D_T coeficiente de difusão por gradiente térmico
- f_i fugacidade do componente i
- $f_{j,i} \quad \ \ fugacidade \ \ do \ \ componente \ \ i \ na \ fase \ j$
- $f_{j,i}^{puro}$ fugacidade do componente i puro na fase j
 - H Entalpia
- H* entalpia de gás ideal
- ΔH^{f} entalpia de fusão
- J fluxo difusivo molar
- K condutividade térmica
- K_{ef} condutividade térmica efetiva do meio poroso
- *K* permeabilidade efetiva do meio
- $k_{i,j}$ parâmetro de interação binária entre os componentes i e j
- L comprimento resfriado do canal retangular

- M peso molecular
- m Massa
- m_i parâmetro da PR-EOS
- n número de componentes (ou espécies)
- n_{j,i} fração molar do componente i na fase j
- P Pressão
- P_c pressão crítica
- P^f pressão de fusão
- Q vazão volumétrica
- R constante universal dos gases perfeitos
- Re número de Reynolds
- Sporo termo fonte da equação de conservação
 - S Entropia
 - S_j fração volumétrica da fase j (ou saturação da fase j)
 - S_o fração volumétrica da fase líquida (porosidade)
 - T temperatura
- T_{in} temperatura na entrada do canal retangular (quente)
- T_w temperatura da parede de cobre do canal retangular (fria)
- t Tempo
- Δt passo de tempo
- T_c temperatura crítica
- T^f temperatura de fusão
- U energia interna
- U, V componentes cartesianos da velocidade nas direções x e y
- ∀ Volume
- u vetor velocidade
- v volume molar específico
- v_c volume molar crítico
- x, y coordenadas cartesianas horizontal e vertical
- x_{j,i} composição molar do componente i na fase j
- w fator acêntrico
- w fração mássica

- Z fator de compressibilidade
- z_i composição de alimentação (fração molar total do componente i no sistema)

Símbolos gregos

- α_i parâmetro da PR-EOS para o componente i
- β_i fração molar da fase j
- Γ coeficiente de difusão na equação geral de conservação
- δ espessura do depósito de parafina
- Λ parâmetro variável função da porosidade do meio
- λ_i calor latente molar do componente i
- μ viscosidade dinâmica (ou absoluta)
- $\mu_{j,i}$ potencial químico do componente i na fase j
- v viscosidade cinemática
- ρ massa específica
- τ tensor das tensões viscosas
- φ variável dependente na equação geral de conservação
- ϕ_i coeficiente de fugacidade do componente i

Abreviaturas

NCC	Número de Carbono Crítico
PR-EOS	equação de estado cúbica de Peng-Robinson
TDMA	algoritmo matricial tridiagonal
TIAC	Temperatura de Início de Aparecimento de Cristais
WDT	Wax Disappearance Temperature

Subscritos e Superescritos

*	iteração anterior
0	passo de tempo anterior
0	fase líquida (ou fase óleo)
S	fase sólida
n, s, e, w	faces dos volumes de controle
P, N, S, E, W	pontos nodais do domínio computacional

PUC-Rio - Certificação Digital Nº 0912559/CA

"Tecnologia por uma sociedade melhor"

Sintef