4 FORMULAÇÃO PARA A ANÁLISE DINÂMICA.

Apresenta-se neste capítulo a formulação para análise dinâmica do arco abatido. O princípio de Hamilton é utilizado para se obter a equação de movimento do sistema.

4.1. Equação Diferencial de Movimento

Para obter a equação que descreve o movimento da estrutura quando esta é submetida a um carregamento dinâmico, emprega-se a equação:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial V_1(\mathbf{t})} \right) - \left(\frac{\partial \mathcal{L}}{\partial V_1(\mathbf{t})} \right) = 0$$
(4.1)

conhecida como equação de Euler-Lagrange.

mara isto, precisa-se da função de Lagrange do sistema, dada por:

$$\mathcal{L} = \overline{T} - \overline{\Delta \pi}_t \tag{4.2}$$

onde $\overline{\Delta m}_t$ representa a variação da energia potencial adimensional total do arco e \overline{T} representa a energia cinética na sua forma adimensional.

O deslocamento total, $V_{1T}(t)$, pode ser escrito como a soma de um deslocamento estático inicial, V_1 , mais a componente dependente do tempo, $V_1(t)$, ou seja:

$$V_{1T}(t) = V_1(t) + V_1 \tag{4.3}$$

Considera-se adicionalmente que o carregamento total \bar{q}_t é dado pela soma de um carregamento dinâmico $\bar{q}(t)$ e de um pré-carregamento estático \bar{q} , ou seja:

$$\overline{q_t} = \overline{q}(t) + \overline{q} \tag{4.4}$$

Assim, a variação da energia potencial total do sistema produzida somente pelo carregamento dinâmico é dada por:

$$\frac{\Delta \pi_t}{AEL} = \frac{\Delta \pi_d}{AEL} - \frac{\Delta \pi_s}{AEL}$$
(4.5)

onde

$$\frac{\Delta \pi_d}{AEL} = A_0 \left(V_{1T}(t) \right)^4 + B_0 \left(V_{1T}(t) \right)^3 + C_0 \left(V_{1T}(t) \right)^2 + \overline{q_t} D_0 V_{1T}(t)$$
(4.6)

$$\frac{\Delta \pi_s}{AEL} = A_0 \left(V_1 \right)^4 + B_0 \left(V_1 \right)^3 + C_0 \left(V_1 \right)^2 + \bar{q} D_0 V_1$$
(4.7)

Inserindo as equações (4.6) e (4.7) em (4.5) e substituindo $V_{1T}(t)$ pela equação (4.3), tem-se:

$$\overline{\Delta\pi}_{t} = \left(\left(V_{1}(t) + V_{1} \right)^{4} - V_{1}^{4} \right) A_{o} + \left(\left(V_{1}(t) + V_{1} \right)^{3} - V_{1}^{3} \right) B_{o} + \left(\left(V_{1}(t) + V_{1} \right)^{2} - V_{1}^{2} \right) C_{o} + \left(\overline{q}_{t} \left(V_{1}(t) + V_{1} \right) - \overline{q} V_{1} \right) D_{o}$$

$$(4.8)$$

onde as constantes A_0 , B_0 , $C_0 \in D_0$ foram definidas no Capítulo 3.

Agora se define a energia cinética do sistema que é dada pela seguinte expressão:

$$T = \frac{1}{2} \int_{-L/2}^{L/2} \rho A\left(\left(\frac{d\bar{v}_t}{dt}\right)^2 + \left(\frac{d\bar{w}_t}{dt}\right)^2\right) dz$$
(4.9)

Onde $\frac{d\bar{v}_t}{dt} e \frac{d\bar{w}_t}{dt}$ representam as velocidades nas direções vertical e horizontal do arco, respectivamente, ρ é a massa por unidade de volume e *t*, o tempo.

Considerando, como no capítulo anterior, os parâmetros adimensionais:

$$\overline{z} = z/L; \quad \overline{v_t} = v_t/f; \quad \overline{w_t} = w_t/L; \quad \frac{d}{dz} = \frac{d}{Ld\overline{z}}$$
$$\delta = f/L; \quad \overline{q_t} = \overline{q}(t) = \frac{q_t f}{EA}; \quad \gamma = \frac{r_x^2 f^2}{L^4}; \quad K_i = \frac{k_i L}{EA}; i = 1, 2 \quad (4.10)$$

tem-se:

$$\overline{T} = \frac{T}{AEL} = \frac{1}{2} \int_{-1/2}^{1/2} \frac{\rho L^2}{E} \left(\delta^2 \left(\frac{d\overline{v_t}}{dt} \right)^2 + \left(\frac{d\overline{w_t}}{dt} \right)^2 \right) d\overline{z}$$
(4.11)

De forma similar ao capítulo anterior, tem-se para \overline{w}_t :

$$\overline{w_{t}} = \frac{8\delta^{2}V_{1T}(t)\operatorname{sen}(\pi z)}{\pi} - 8\delta^{2}V_{1T}(t)\overline{z}\cos(\pi z) + \frac{1}{4}\pi\delta^{2}(V_{1T}(t))^{2}\operatorname{sen}(\pi z)\cos(\pi z) + \left(\frac{\delta^{2}V_{1T}(t)K(V_{1T}(t)\pi^{3}-64)}{4\pi(K+4)} - \frac{1}{4}\delta^{2}(V_{1T}(t))^{2}\pi^{2}\right)\overline{z}$$

$$(4.12)$$

Inserindo os parâmetros adimensionais (4.10) na equação (4.11) e substituindo $V_{1T}(t)$ pela equação (4.3), tem-se:

$$\frac{T}{AEL} = \left(A_6 + B_6 V_1(t) + C_6 V_1^2(t)\right) \left(\frac{d\left(V_1(t)\right)}{dt}\right)^2$$
(4.13)

onde:

$$A_{6} = \frac{\delta^{2} \rho L^{2}}{12E} \left(\frac{128 \delta^{2} K^{2}}{\pi^{2} (K+4)^{2}} + \frac{768 \delta^{2} K (\pi^{2}-12)}{\pi^{4} (K+4)} + \frac{16 \delta^{2} (\pi^{2}-6)}{\pi^{2}} + 3 \right) \quad (4.14)$$

$$B_{6} = \frac{\delta^{4} \rho L^{2}}{6E} \left(-\frac{16K (3\pi^{2}-36+K\pi^{2}-9K)}{\pi (K+4)^{2}} + \frac{4 (9\pi^{2}-104)}{3\pi} + \frac{4K (\pi^{2}-3)}{\pi (K+4)} \right) \quad (4.15)$$

$$C_{6} = \frac{\pi^{2} \delta^{4} \rho L^{2}}{12E} \left(\frac{\pi^{2} K^{2}}{8 (K+4)^{2}} - \frac{(\pi^{2}-3)K}{4 (K+4)} + \frac{\pi^{2}}{8} - \frac{9}{16} \right) \quad (4.16)$$

Uma vez obtida a energia cinética, (4.13), e à variação da energia potencial total, (4.8), obtém-se a função de Lagrange, (4.2). Substituindo a equação (4.2) na equação (4.1), obtém-se a seguinte equação diferencial não linear de movimento:

$$(B_6 + 2C_6V_1(t)) \left(\frac{d}{dt} V_1(t)\right)^2 + 2\left(A_6 + B_6V_1(t) + C_6V_1^2(t)\right) \frac{d^2}{dt^2} V_1(t) + 4A_0V_1^3(t) + 3\left(B_0 + 3A_0V_1\right)V_1^2(t) + 2\left(C_0 + 3B_0V_1 + 6A_0V_1^2\right)V_1(t) + \overline{q_t}D_0 + 2C_0V_1 + 3B_0V_1^2 + 4A_0V_1^3 = 0 (4.17)$$

Note-se que empregando o princípio da energia potencial estacionária $(\frac{\partial(\Delta \pi/AEL)}{\partial V_1} = 0)$, aplicado à equação (3.16), encontra-se a equação de equilíbrio estático, ou seja, $\bar{q}D_0 + 2C_0V_1 + 3B_0V_1^2 + 4A_1^3 = 0$ que pode ser inserida na equação (4.17). Tem-se assim:

$$(B_6 + 2C_6V_1(t)) \left(\frac{d}{dt} V_1(t)\right)^2 + 2\left(A_6 + B_6V_1(t) + C_6V_1^2(t)\right) \frac{d^2}{dt^2} V_1(t) + 4A_0V_1^3(t)$$

$$+ 3\left(B_0 + 3A_0V_1\right)V_1^2(t) + 2\left(C_0 + 3B_0V_1 + 6A_0V_1^2\right)V_1(t) + \overline{q}(t)D_0 = 0$$

$$(4.18)$$

Linearizando a equação diferencial de movimento (4.18), tem-se:

$$2A_{6}\frac{d^{2}}{dt^{2}}V_{1}(t) + 2\left(C_{0} + 3B_{0}V_{1} + 6A_{0}V_{1}^{2}\right)V_{1}(t) + \bar{q}(t)D_{0} = 0$$
(4.19)

Considera-se que a estrutura está submetida a uma excitação harmônica da forma:

$$\overline{q}(t) = \overline{q_o} \operatorname{sen}(\Omega t) \tag{4.20}$$

onde \bar{q}_o é a magnitude do carregamento dinâmico adimensional e é a frequência de excitação.

4.1.1. Vibração Livre do Sistema.

O sistema é considerado em vibração livre se não há forças externas dinâmicas excitando o arco, ou seja, $\bar{q}(t) = 0$. Portanto, o carregamento adimensional \bar{q}_t esta em função somente do carregamento estático \bar{q} . Neste caso, a equação (4.19) toma a seguinte forma:

$$2A_{6}\frac{d^{2}}{dt^{2}}V_{1}(t) + 2\left(C_{0} + 3B_{0}V_{1} + 6A_{0}V_{1}^{2}\right)V_{1}(t) = 0$$
(4.21)

Levando (4.21) à forma característica de um sistema em vibração livre sem amortecimento tem-se.

$$\left(\frac{d^2 V_1(t)}{dt^2}\right)^2 + \omega_o^2 V_1(t) = 0$$
(4.22)

onde a frequência natural ω_o , escrita em função da rigidez generalizada, K_o , e da massa generalizada, M_o , é dada por:

$$\omega_o^2 = \frac{K_o}{M_o} = \frac{2(C_0 + 3B_0V_1 + 6A_0V_1^2)}{2(A_6)}$$
(4.23)

$$M_0 = 2A_6 \tag{4.24}$$

$$K_o = 2\left(C_0 + 3B_0V_1 + 6A_0V_1^2\right) \tag{4.25}$$

A solução da equação diferencial homogênea (4.22) que descreve o deslocamento vertical adimensional em função do tempo é dada por:

$$V_{1}(t) = \frac{vel_{o}}{\omega_{o}} \operatorname{sen}(\omega_{o}t) + V_{1o} \cos(\omega_{o}t)$$
(4.26)

onde vel_o e V_{1o} representam, respetivamente, a velocidade e o deslocamento inicial do sistema em t = 0.

4.1.2. Vibração Forçada do Sistema.

Considerando agora $\bar{q}(t) = \bar{q}_0 \operatorname{sen}(! t)$ e a equação (4.19), tem-se:

$$2A_{6}\frac{d^{2}}{dt^{2}}V_{1}(t) + 2\left(C_{0} + 3B_{0}V_{1} + 6A_{0}V_{1}^{2}\right)V_{1}(t) + \overline{q}_{o}\operatorname{sen}\left(\Omega t\right)D_{0} = 0 \qquad (4.27)$$

Levando (4.27) à forma característica de um sistema em vibração forçado sem amortecimento tem-se:

$$\frac{d^2 V_1(t)}{dt^2} + \omega_o^2 V_1(t) + Cte_1 \operatorname{sen}(\Omega t) = 0$$
(4.28)

onde:

$$Cte_1 = \frac{q_d}{M_o} \tag{4.29}$$

$$\overline{q}_d = D_0 \overline{q}_o \tag{4.30}$$

A solução da equação diferencial (4.28) que descreve o deslocamento vertical adimensional em função do tempo é dada por:

$$V_{1}(t) = Y_{\max} \operatorname{sen}(\Omega t) + V_{1o} \cos(\omega_{o} t) - \frac{Y_{\max}\Omega - vel_{o}}{\omega_{o}} \operatorname{sen}(\omega_{o} t)$$
(4.31)

onde:

$$r = \frac{\Omega}{\omega_o} ; \qquad Y_{est} = \frac{q_d}{K_o} ; \qquad Y_{max} = \frac{Y_{est}}{r^2 - 1}$$
(4.32)

Aqui r representa a relação entre a frequência de excitação e a frequência natural do sistema, Y_{est} e Y_{max} são os deslocamentos estático e máximo, respetivamente, e vel_o e V_{1o} são as condições iniciais do sistema.

Na formulação acima, considerando $V_1 = 0$, obtém-se a equação diferencial para o arco parabólico sem carregamento estático inicial.

4.2. Princípio da Conservação da Energia - Plano de Fase do Sistema

Partindo do princípio da conservação da energia, tem-se:

$$\overline{\Delta \pi_t} + \overline{T} = \overline{C} \tag{4.33}$$

onde \bar{C} é uma constante que representa a energia total do sistema.

Inserindo as equações (4.8) e (4.13) na expressão (4.33), obtém-se:

$$\overline{C} = \left(\left(V_1(t) - V_1 \right)^4 - V_1^4 \right) A_o + \left(\left(V_1(t) - V_1 \right)^3 - V_1^3 \right) B_o + \left(\left(V_1(t) - V_1 \right)^2 - V_1^2 \right) C_o + \left(\overline{q}_t \left(V_1(t) - V_1 \right) - \overline{q} V_1 \right) D_o + \left(A_6 + B_6 V_1(t) + C_6 V_1^2(t) \right) \left(\frac{d \left(V_1(t) \right)}{dt} \right)^2 \right)$$
(4.34)

Explicitando a velocidade na equação (4.34), é possível encontrar a solução analítica do sistema que defina a órbita no plano de fase associada a um par de condições iniciais.

$$\frac{d\left(\mathbf{V}_{1}(\mathbf{t})\right)}{dt} = \sqrt{\frac{\overline{C} - \overline{\Delta \pi_{t}}}{\left(A_{6} + B_{6} \mathbf{V}_{1}(\mathbf{t}) + C_{6} \mathbf{V}_{1}^{2}(\mathbf{t})\right)}}$$
(4.35)

4.3. Frequência Natural do Sistema.

A frequência natural do sistema pode ser obtida a partir da equação (4.23). Novamente as caraterísticas físicas e geométricas do arco parabólico são descritas na Tabela 2.1, enquanto os valores adotados para $\lambda \in \alpha$ estão dados na Tabela 3.1.

A Tabela 4.1 mostra as frequências naturais do sistema quando o arco encontra-se sem carregamento estático.

Tabela 4.1 - Frequência natural ω_o do sistema na configuração descarregada.

α λ	2.75	4.58	8.71	17.61
0	41.20	56.63	96.88	189.04
4	31.88	36.31	50.54	88.45
50	29.37	29.87	31.83	39.09

Como se observa na equação (4.23), a frequência natural da estrutura encontra-se em função da rigidez efetiva e da massa do sistema. Se a estrutura encontra-se submetida a um pré-carregamento estático, a rigidez do sistema varia, variando, portanto, a frequência ω_o . Este efeito é ilustrado na Tabela 4.2, onde se mostra para $\lambda = 8.71$ a variação da frequência com o nível de carga estática. Mostra-se que ao encontrar-se o arco submetido a um carregamento estático compressivo à medida que $(qp/N_p)_{aprox}$ aumenta, o valor da rigidez efetiva do sistema diminui. Quando ω_o se torna zero, tem-se a carga crítica do arco.

Tabela 4.2 - Frequência natural ω_o do arco em torno um carregamento estático, $\lambda = 8.71$.

V 1	(qp/N)aprox			ωo			
	α=0	α=4	α=50	α=0	α=4	α=50	
	0.00	0.00	0.00	0.00	96.82	50.53	31.84
	0.10	0.23	0.07	0.03	83.76	45.62	31.11
	0.20	0.40	0.12	0.06	69.96	40.71	30.43
	0.30	0.52	0.16	0.08	54.92	35.79	29.81
	0.40	0.58	0.19	0.11	37.13	30.86	29.27
	0.50	0.60	0.22	0.13		25.95	28.80
	0.60	0.58	0.23	0.15		21.04	28.41
	0.70	0.53	0.24	0.18		16.07	28.09

0.80	0.46	0.25	0.20		11.04	27.85
0.90	0.38	0.25	0.22		5.88	27.70
1.00	0.28	0.25	0.24			27.63
1.10	0.18	0.25	0.27		2.57	27.65
1.20	0.09	0.25	0.29		7.86	27.75
1.30	0.01	0.25	0.31		12.93	27.93
1.40	-0.05	0.26	0.33		17.92	28.20
1.50	-0.09	0.27	0.35		22.81	28.54
1.60	-0.09	0.29	0.38	21.66	27.74	28.97
1.70	-0.07	0.32	0.40	44.26	32.66	29.47
1.80	0.01	0.35	0.43	60.65	37.59	30.03
1.90	0.15	0.40	0.45	75.14	42.47	30.67
2.00	0.35	0.46	0.48	88.61	47.42	31.38

Na Figura 4.1 mostra-se a variação de ω_o para um arco com $\lambda = 8.71$ e diferentes valores de α , em função do deslocamento V_1 produzido pelo carregamento estático inicial.

Figura 4.1 - Frequência natural ω_o versus deslocamento estático V_1 , $\lambda = 8.71$.

Na Figura 4.2 mostra-se a variação de ω_o e ω_o^2 com respeito ao parâmetro de carga qp/N_p .

Figura 4.2 - Comportamento de ω_o^2 e ω_o em função do carregamento estático adimensional. $\lambda = 8.71$.

4.3.1. Planos de Fase do Sistema em Vibração Livre.

A Tabela 4.3 apresenta para níveis crescentes do parâmetro de carregamento estático (variando de 0 a 100% da carga crítica) a coordenada V1 relativa ao ponto de sela e da constante \bar{C}_{lim} associada a este ponto de sela para um arco de esbeltez $\lambda = 8.71$ e rigidez $\alpha = 0$. O valor de \bar{C}_{lim} representa a energia no ponto de sela de onde partem as duas órbitas homoclínicas que delimitam os dois vales potenciais (bacias de atração conservativas). A Figura 4.3 apresenta, para os níveis de carregamento apresentados na Tabela 4.3 ali, as curvas de nível de igual energia para alguns pares de condições iniciais. Verifica-se que a área relativa ao conjunto de condições iniciais associados ao vale pré-crítico (bacia de atração conservativa) diminui à medida que a carga aumenta, desaparecendo quando a carga atinge o valor crítico, enquanto o vale pós-crítico aumenta.

Porcentagem da Carga Crítica	(qp/Np)aprox	V_1	Clim
0%	0.000	0.000	1.94E-07
10%	0.060	0.023	1.75E-07
20%	0.120	0.047	1.45E-07
30%	0.180	0.074	1.17E-07
40%	0.240	0.103	9.08E-08
50%	0.299	0.134	6.65E-08
60%	0.359	0.170	4.41E-08
70%	0.419	0.211	2.35E-08
80%	0.479	0.260	4.92E-09
90%	0.539	0.327	-1.14E-08
100%	0.599	0.498	-2.47E-08

Tabela 4.3 - Valores de \overline{C}_{lim} para $\lambda = 8.71$ e $\alpha = 0$.

Figura 4.3 - Curvas de nível de igual energia para níveis crescentes de carregamento estático e energia associada ao ponto de sela, \bar{C}_{lim} . Para $\lambda = 8.71$ e $\alpha = 0$.