

YULY ANDREA HERRERA ROJAS

ESTUDO ELETROQUÍMICO E CARACTERIZAÇÃO DAS CAMADAS DE PRODUTOS DE CORROSÃO POR CO2 EM AÇOS API5L X80 E API 5CT P110

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio.

> Orientador: Profa. Ivani de S. Bott Co-orientador: Adriana Forero Ballesteros

Rio de Janeiro Outubro de 2014

YULY ANDREA HERRERA ROJAS

ESTUDO ELETROQUÍMICO E CARACTERIZAÇÃO DAS CAMADAS DE PRODUTOS DE CORROSÃO POR CO2 EM AÇOS API5L X80 E API 5CT P110

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Ivani de Souza Bott

Orientador e Presidente Departamento de Engenharia de Materiais – PUC Rio

Dra. Adriana Forero Ballesteros

Co- Orientador Departamento de Engenharia de Materiais – PUC Rio

Dra. Luciana Iglésias Lourenço Lima

Vallourec Tubos do Brasil

Dr. Javier Alejandro Carreño Velasco INT

Prof. José Eugênio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC- Rio

Rio de Janeiro, 06 de outubro de 2014.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Yuly Andrea Herrera Rojas

Graduou-se em Engenharia Metalúrgica pela Universidad Industrial de Santander (UIS) em 2012. Ingressou no curso de mestrado em Engenharia de Materiais no ano de 2012. Realizou pesquisa na área de corrosão por CO₂.

Ficha Catalográfica

Herrera Rojas, Yuly Andrea

Estudo eletroquímico e caracterização das camadas de produtos de corrosão por CO2 em aços API5L X80 e API 5CT P110 / Yuly Andrea Herrera Rojas ; orientadora: Ivani de S. Bott ; coorientadora: Adriana Forero Ballesteros. – 2014.

167 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2014. Inclui bibliografia

Engenharia de materiais – Teses. 2.
Corrosão por CO2. 3. Carbonato de Ferro. 4. EIS.
MEV. 6. Eletroquímica. 7. Perda de massa. I.
Bott, Ivani de S. II. Ballesteros, Adriana Forero. III.
Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Engenharia de Materiais. IV.
Título.

PUC-Rio - Certificação Digital Nº 1221649/CA

CDD: 620.11

Agradecimentos

A Deus por não me deixar cair nos momento difíceis e ser a grande luz que ilumina meu caminho.

À minha Orientadora Professora Ivani de S. Bott pelo estimulo e ensinamentos, mas sobre tudo pela confiança depositada em mim neste processo de aprendizagem.

À minha Co-orientadora Adriana F. Ballesteros pelos ensinamentos e orientação na realização dos ensaios.

Ao IBP (Instituto Brasileiro de Petróleo) e à PUC-Rio pelos auxílios concedidos, sem os quis este trabalho não poderia ter sido realizado.

Ao Engenheiro do DCMM Marcos Henrique pela colaboração na análise por MEV

A Karla Avellar pela sua colaboração na análise por MEV

Ao técnico de Laboratório Asafe Bittencourt pelo auxilio concedido.

A Margarita Habran pela ajuda brindada nos momentos mais difíceis longe da minha casa.

A meus grandes amigos equatorianos Marco Guamán e Patricia Portón por sua amizade neste tempo todo e seus bons conselhos.

A Lúcia e Lourdes minhas vizinhas pela sua amizade e carinho nesta experiência de vida.

A minha família toda pelas palavras de animo seu apoio e confiança nesta experiência longe de casa.

A John Castellanos meu grande companheiro de vida pelo seu apoio e compressão em todo momento, por me mostrar que a vida sempre pode ser melhor quando esta cheia de amor e verdade.

A mis padres Ana Belcy y Luis Alberto y a mis hermanos Antonio, Claudia, Freddy y Angie por apoyarme en todo momento y ser ese gran motor que me impulsa a seguir adelante cumpliendo cada meta propuesta.

Resumo

Rojas, Yuly Andrea Herrera; Bott, Ivani de Souza; Ballesteros, Adriana Forero. Estudo eletroquímico e caracterização das camadas de produtos de corrosão por CO₂ em aços API5L X80 e API 5CT P110. Rio de Janeiro, 2014. 167p. Dissertação de Mestrado - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho foi estudada a formação de camadas de produtos de corrosão em dois aços, o API 5L X80 usado para transporte de óleo e gás e o API 5CT utilizado em poço de petróleo "case tubing". Foram utilizadas as técnicas de perda de massa e técnicas eletroquímicas tais como resistência a polarização linear RPL, curvas tafel e espectroscopia de impedância eletroquímica EIS foram empregadas para determinar as taxas de corrosão. Os ensaios foram realizados em condições estáticas numa solução de salmoura 3% wt de NaCl sob 55 bar de pressão parcial de CO_2 e total de 75bar, tempos de exposição de 7, 15, 21 e 30 dias e temperaturas de 25°C, 50°C e 75°C. Microscopia eletrônica de varredura MEV foi usada para a análise da morfologia. DRX e EDS foram utilizadas para determinar a composição química. As camadas formadas foram avaliadas em função da espessura, morfologia e composição química. Encontrou-se que a 25°C só houve formação de camada de carbonato de ferro após 30 dias de imersão para ambos os aços e que para 50°C e 75°C houve formação de duas camadas para todos os tempos de imersão cuja composição química mostrou o carbonato de ferro FeCO₃ como principal produto de corrosão para os dois aços. A condição de teste que apresentou menor taxa de corrosão e maior proteção da camada de carbonato de ferro FeCO₃ foi para 75°C e 30 dias de tempo de imersão. Os resultados de RPL e EIS são semelhantes aos obtidos por perda de massa mantendo a mesma tendência de redução com o tempo e a temperatura.

Palavras-chave

Corrosão por CO2; Carbonato de Ferro; EIS; MEV; Eletroquímica; perda de massa.

Abstract

Rojas, Yuly Andrea Herrera; Bott, Ivani de Souza. (Advisor); Ballesteros, Adriana Forero (Co-advisor). **Electrochemical and characterization study of CO₂ corrosion scale on API 5LX-80 and API5CT P110 steels.** Rio de Janeiro, 2014. 167p. MSc. Dissertation – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

This study evaluated the CO₂ corrosion layer formation on the surface of two different steels, the API 5L X80 used for oil and gas transportation and the API 5CT used in oil production (case tubing). Techniques such as weight loss and electrochemical techniques as linear polarization resistance (LPR), Tafel curves, electrochemical impedance spectroscopy (EIS) were employed to determine the corrosion rate. Tests were conducted under static conditions in a brine 3% wt solution of of NaCl under CO₂ partial pressure of 55 bar and total of 75 bar, immersion times of 7, 15, 21 and 30 days and temperatures of 25°C, 50°C and 75°C. Analysis of the scale morphology was carried out by Scanning Electron Microscopy (SEM), and X-ray Diffraction. (XRD) and Energy Dispersive Spectroscopy (EDS) were used to determine the chemical composition. The layers formed were evaluated as a function of its thickness, morphology and chemical composition. It was found out that at 25°C only after 30 days of immersion there was iron carbonate layer formation for both steels and at 50°C and 75°C there was the growth of two layers for all immersion times, being the chemical composition of these layers identifyed as iron carbonate FeCO₃ as the main corrosion product for the two steels. The lowest corrosion rate and most protective layer of iron carbonate FeCO₃ was for the condition at 75°C and 30 days of immersion. The results obtained of LPR and EIS were similar to those obtained by mass loss showing the same tendency, reducing with time and temperature.

Keywords

CO2 Corrosion; Iron carbonate; EIS; SEM; Electrochemistry; weight loss.

Sumário

1 Introdução	23
2 Revisão Bibliográfica	25
2.1. Corrosão por CO ₂	
2.2. Mecanismo de corrosão por CO2	
2.3. Fatores ambientais que afetam a corrosão por CO2	26
2.3.1. Temperatura	26
2.3.2. Pressão parcial do CO ₂	28
2.3.3. pH	30
2.4. Formas de corrosão em sistemas com CO2	31
2.5. Produtos de corrosão por CO ₂	32
2.6. Condições Supercríticas de CO ₂	32
2.7. Estudos realizados sobre corrosão por CO ₂	34
2.8. Técnicas eletroquímicas para estudo de processos corrosivos	36
2.8.1. Curvas Tafel	36
2.8.2. Resistência à polarização linear	39
2.8.3. Espectroscopia de impedância eletroquímica	41
2.9. Velocidade de corrosão por perda de massa	44
3 Objetivos	45
3.1. Objetivo geral	45
3.2. Objetivos específicos	45
4 Materiais e métodos	46
4.1. Materiais	46
4.1.1. Amostragem dos corpos de prova	46
4.2. Metodologia	47
4.2.1. Caracterização Microestrutural	47
4.2.2. Ensaio de microdureza	48
4.2.3. Sistema para gravimetria	48

4.2.4. Sistema para avaliação eletroquímica	51
4.3. Ensaios de perda de massa	53
4.3.1. Preparação e posicionamento das amostras para gravimetria	53
4.3.2. Procedimento de pressurização	54
4.3.3. Procedimento de despressurização	55
4.3.4. Determinação da taxa de corrosão	55
4.4. Ensaios eletroquímicos	56
4.4.1. Preparação das amostras eletroquímicas	56
4.5. Análise da formação de camadas	56
4.5.1. Análise por meio de microscopia eletrônica de varredura (MEV)	57
4.5.2. Análise por meio de difração de raios x (DRX)	57
4.6. Matriz de ensaios	58
5 Resultados	59
5.1. Caracterização Microestrutural	59
5.2. Ensaio de microdureza	60
5.3. Composição química dos aços de estudo	60
5.4. Ensaio de perda de massa	61
5.4.1. Caracterização da camada formada na superfície do aço P110	
e X80 a 25ºC por 7 dias.	61
5.4.2. Caracterização da camada formada na superfície do aço P110	
e X80 a 50⁰C por 7 dias.	65
5.4.3. Caracterização da camada formada na superfície do aço P110	
e X80 a 75ºC por 7 dias.	68
5.4.4. Caracterização da camada formada na superfície do aço P110	
e X80 a 25ºC por 15 dias.	73
5.4.5. Caracterização da camada formada na superfície do aço P110	
e X80 a 50⁰C por 15 dias.	78
5.4.6. Caracterização da camada formada na superfície do aço P110	
e X80 a 75ºC por 15 dias.	82
5.4.7. Caracterização da camada formada na superfície do aço P110	
e X80 a 25°C por 21 dias.	86
5.4.8. Caracterização da camada formada na superfície do aço P110	
e X80 a 50⁰C por 21 dias.	91

5.4.9. Caracterização da camada formada na superfície do aço P110	
e X80 a 75ºC por 21 dias.	94
5.4.10. Caracterização da camada formada na superfície do aço	
P110 e X80 a 25ºC por 30 dias.	99
5.4.11. Caracterização da camada formada na superfície do aço	
P110 e X80 a 50ºC por 30 dias.	103
5.4.12. Caracterização da camada formada na superfície do aço	
P110 e X80 a 75ºC por 30 dias.	107
5.5. Espessura das camadas.	111
5.6. Ensaios eletroquímicos.	116
5.6.1. Resultados eletroquímicos para o API 5CT P110 e API 5L X80	
a 25ºC.	116
5.6.2. Resultados eletroquímicos para o API 5CT P110 e API 5L X80	
a 50°C.	120
5.6.3. Resultados eletroquímicos para o API 5CT P110 e API 5L X80	
a 75ºC	124
6 Discussão	129
6.1. Formação de filmes de produtos de corrosão nas diferentes	
condições de ensaio.	129
6.2. Influência do pH na formação de camadas de corrosão por CO2	143
6.3. Correlação entre a taxa de corrosão e o tempo de imersão	145
6.4. Análise da corrosão localizada tipo pite após 30 dias de imersão	146
6.5. Resistência à polarização linear	148
6.6. Espectroscopia de Impedância Eletroquímica	150
7 Conclusões	159
8 Referências Bibliográficas	162

Lista de Figuras

Figura 2. 1- Diagrama de Pourbaix para o sistema Fe-H ₂ O-CO ₂ a	
51 °C, com valores diferentes de atividade iônica, mostrando a	
região do FeCO3 (adaptado MISHRA et al. 1997) [13].	31
Figura 2. 2- Diagrama de Pressão por temperatura do CO2	33
Figura 2. 3- Determinação das inclinações numa curva tafel.	38
Figura 2. 4 Determinação de Icorr (WOLYNEC, 2003).	
Figura 2. 5- Determinação do RPL em um gráfico E vs I.	
Figura 2 6- Diagrama de Nyquist.	43
Figura 2.7- Circuito equivalente Handles.	44
Figura 4. 1-Dimensões dos corpos de prova retangulares para	
perda de massa. (a) aspecto da superfície do corpo de prova (b).	47
Figura 4. 2-Dimensões dos corpos de prova cilíndricos para ensaios	
eletroquímicos. (a) estado superficial do corpo de prova.	47
Figura 4. 3 Desenho esquemático.	48
Figura 4. 4- Desenho esquemático do sistema montado.	49
Figura 4. 5- Vaso de pressão (a) vista frontal (b) vista superior.	50
Figura 4. 6- Posicionamento dos corpos de prova dentro do vaso de	
pressão. CP's para perda de peso.	50
Figura 4. 7- Vaso de transferência (a) vista frontal (b) vista superior.	51
Figura 4. 8 Montagem do vaso de pressão no processo de	
desaeração saturação e transferência da solução.	51
Figura 4. 9- Adaptação da haste para o eletrodo de trabalho.	52
Figura 4. 10-Vaso de pressão para ensaios eletroquímicos.	53
Figura 5. 1- Caracterização microestrutural dos aços estudados.	59
Figura 5. 2- Aspecto da superfície dos corpos de prova retirados do	
vaso de pressão a 25ºC após 7 dias de imersão.	62
Figura 5. 3- Aspecto da superfície do aço P110 e X80 após 7 dias	
de imersão a 25ºC obtidas por Microscopia eletrônica de varredura.	63

Figura 5. 4- Análise da seção transversal do aço P110 e X80 após 7 dias de imersão a 25°C obtidas por Microscopia eletrônica de varredura. 63 Figura 5. 5- Difratograma apresentado para o aço P110 e X80 a temperatura ambiente (25°C) após 7 dias de imersão (a) análise dos produtos de corrosão na superfície (b) análise da camada formada em pó. 64 Figura 5. 6- Aspecto da superfície dos corpos de prova retirados do vaso de pressão a 50°C após 7 dias de imersão. 65 Figura 5. 7-Aspecto da superfície do aço P110 e X80 após 7 dias de imersão a 50°C obtidas por Microscopia eletrônica de varredura. 66 Figura 5. 8- Análise da seção transversal do aço P110 e X80 após7 dias de imersão a 50°C obtidas por Microscopia eletrônica de varredura. 67 Figura 5. 9- Difratograma apresentado para o aço P110 e X80 a (50°C) após 7 dias de imersão (a) análise dos produtos de corrosão na superfície (b) analise da camada formada em pó. 68 Figura 5. 10- Aspecto da superfície dos corpos de prova retirados do vaso de pressão a 75ºC após 7 dias de imersão. 69 Figura 5. 11-Aspecto da superfície do aço P110 e X80 após 7 dias de imersão a 75°C obtidas por Microscopia eletrônica de varredura. 70 Figura 5. 12- Analise da seção transversal do aço P110 e X80 após 7 dias de imersão a 75ºC obtidas por Microscopia eletrônica 71 de varredura. Figura 5. 13- Difratograma apresentado para o aco P110 e API X80 a (75°C) após 7 dias de imersão (a) analise dos produtos de corrosão na superfície (b) analise da camada formada em pó. 72 Figura 5. 14- Aspecto da superfície dos corpos de prova retirados do vaso de pressão a 25°C após 15 dias de imersão. 74 Figura 5. 15- Aspecto da superfície do aço P110 e X80 após 15 dias de imersão a 25°C obtidas por Microscopia eletrônica de varredura. 75 Figura 5. 16- Analise da seção transversal do aço P110 e X80

após 15 dias de imersão a 25°C obtidas por Microscopia eletrônica

de varredura.	76
Figura 5. 17- Difratograma apresentado para o aço P110 e X80 a	
temperatura ambiente (25ºC) após 15 dias de imersão (a) analise	
dos produtos de corrosão na superfície (b) analise da camada	
formada em pó.	77
Figura 5. 18- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 50ºC após 15 dias de imersão	78
Figura 5. 19- Aspecto da superfície do aço P110 e X80 após 15	
dias de imersão a 50ºC obtidas por Microscopia eletrônica de	
varredura.	79
Figura 5. 20- Analise da seção transversal do aço P110 e X80 após	
15 dias de imersão a 50ºC obtidas por Microscopia eletrônica de	
varredura.	80
Figura 5. 21- Difratograma apresentado para o aço P110 e X80 a	
(50ºC) após 15 dias de imersão (a) analise dos produtos de	
corrosão na superfície (b) analise da camada formada em pó.	81
Figura 5. 22- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 75ºC após 15 dias de imersão.	82
Figura 5. 23- Aspecto da superfície do aço P110 e X80 após 15	
dias de imersão a 75ºC obtidas por Microscopia eletrônica de	
varredura.	83
Figura 5. 24- Analise da seção transversal do aço P110 e X80 após	
15 dias de imersão a 75ºC obtidas por Microscopia eletrônica de	
varredura.	84
Figura 5. 25- Difratograma apresentado para o aço P110 e X80 a	
(75ºC) após 15 dias de imersão (a) analise dos produtos de	
corrosão na superfície (b) analise da camada formada em pó.	85
Figura 5. 26- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 25ºC após 21 dias de imersão.	87
Figura 5.27- Aspecto da superfície do aço P110 e X80 após 21	
dias de imersão a 25ºC obtidas por Microscopia eletrônica de	
varredura.	88
Figura 5. 28- Analise da seção transversal do aço P110 e X80	

após 21 dias de imersão a 25ºC obtidas por Microscopia eletrônica

de varredura.	89
Figura 5.29 - Difratograma apresentado para o aço P110 e X80 a	
temperatura ambiente (25ºC) após 21 dias de imersão (a) analise	
dos produtos de corrosão na superfície (b) analise da camada	
formada em pó.	90
Figura 5. 30- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 50ºC após 21 dias de imersão.	91
Figura 5. 31- Aspecto da superfície do aço P110 e X80 após 21	
dias de imersão a 50ºC obtidas por Microscopia eletrônica de	
varredura.	92
Figura 5. 32-Analise da seção transversal do aço P110 e X80 após	
21 dias de imersão a 50ºC obtidas por Microscopia eletrônica de	
varredura.	93
Figura 5. 33-Difratograma apresentado para o aço P110 e X80 a	
(50°C) após 21 dias de imersão (a) analise dos produtos de	
corrosão na superfície (b) analise da camada formada em pó.	94
Figura 5. 34- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 75ºC após 21 dias de imersão.	95
Figura 5.35-Aspecto da superfície do aço P110 e X80 após 21 dias	
de imersão a 75ºC obtidas por Microscopia eletrônica de varredura.	96
Figura 5. 36- Analise da seção transversal do aço P110 e X80	
após 21 dias de imersão a 75ºC obtidas por Microscopia eletrônica	
de varredura.	97
Figura 5. 37- Difratograma apresentado para o aço P110 e X80 a	
(75°C) após 21 dias de imersão (a) analise dos produtos de	
corrosão na superfície (b) analise da camada formada em pó.	98
Figura 5. 38- Aspecto da superfície dos corpos de prova retirados	
do vaso de pressão a 25ºC após 30 dias de imersão.	99
Figura 5. 39- Aspecto da superfície do aço P110 e X80 após 30	
dias de imersão a 25ºC obtidas por Microscopia eletrônica de	
varredura.	101
Figura 5.40- Analise da seção transversal do aço P110 e API X80	
em 30 dias de imersão a 25ºC obtidas por Microscopia eletrônica	
de varredura.	102

Figura 5.41- Difratograma apresentado para o aço P110 e X80 a (25°C) após 30 dias de imersão (a) análise dos produtos de 102 corrosão na superfície (b) análise da camada formada em pó. Figura 5. 42- Aspecto da superfície dos corpos de prova retirados do vaso de pressão a 50°C após 30 dias de imersão. 103 Figura 5. 43- Aspecto da superfície do aço P110 e X80 após 30 dias de imersão a 50°C obtidas por Microscopia eletrônica de 104 varredura. Figura 5. 44- Analise da seção transversal do aço P110 e API X80 em 30 dias de imersão a 50°C obtidas por Microscopia eletrônica de varredura. 105 Figura 5. 45-Difratograma apresentado para o aço P110 e X80 a (50°C) após 30 dias de imersão (a) analise dos produtos de 106 corrosão na superfície (b) analise da camada formada em pó. Figura 5. 46-Aspecto da superfície dos corpos de prova retirados do 107 vaso de pressão a 75°C após 30 dias de imersão. Figura 5. 47-Aspecto da superfície do aço P110 e X80 após 30 dias de imersão a 75°C obtidas por Microscopia eletrônica de varredura. 108 Figura 5. 48- Analise da seção transversal do aço P110 e X80 após 30 dias de imersão a 75°C obtidas por Microscopia eletrônica de 109 varredura. Figura 5. 49- Difratograma apresentado para o aço P110 e X80 a (75°C) após 30 dias de imersão (a) analise dos produtos de corrosão na superfície (b) analise da camada formada em pó. 110 Figura 5. 50- Espessura das camadas a 25°C. 112 Figura 5. 51- Espessura das camadas a 50°C. 113 Figura 5. 52- Espessura das camadas a 75°C. 115 Figura 5. 53- Impedância eletroquímica para o P110 a 25°C. 118 Figura 5. 54- Impedância eletroquímica para o X80 a 25°C. 118 Figura 5. 55- Representação do ajuste obtido para a simulação do circuito equivalente com os dados experimentais para o aço P110 a 25°C 119 Figura 5. 56- Curva de polarização Tafel para o aço X80 (ba=0.040V/ dec, bc= 0.145 V/dec) e o P110 (ba= 0.054V/dec,

bc=0.186 V/dec) a 25⁰C após 30 dias de imersão a 75 bar.	120
Figura 5.57- Impedância eletroquímica para o P110 a 50ºC.	121
Figura 5. 58- Impedância eletroquímica para o X80 a 50ºC.	122
Figura 5. 59- Representação do ajuste obtido para a simulação do	
circuito equivalente com os dados experimentais para o aço P110 a	
50°C.	123
Figura 5. 60- Curva de polarização Tafel para o aço P110	
(ba=0.135V/ dec, bc= 0.170 V/dec) X80 (ba=0.058 V/dec,	
bc=0.101V/dec) a 50ºC após 30 dias a 75 bar.	124
Figura 5. 61- Impedância eletroquímica para o P110 a 75ºC.	126
Figura 5. 62 Impedância eletroquímica para o X80 a 75ºC.	126
Figura 5. 63- Representação do ajuste obtido para a simulação do	
circuito equivalente com os dados experimentais para o aço P110 a	
75°C.	127
Figura 5. 64- Curva de polarização Tafel para o aço X80	
(ba=0.082V/ dec, bc= 0.176 V/dec) e o P110 (ba= 0.096V/dec,	
bc=0.115 V/dec) a 75 ⁰C após 30 dias a 75 bar.	128
Figura 6. 1- Seção transversal do P110 (a) e X80 (b) a 50°C e do	
P110 (c) e X80 (d) a 75ºC após 7 dias de imersão.	130
Figura 6. 2-Comparação das taxas de corrosão e a espessura da	
camada nas três temperaturas após 7 dias de imersão.	133
Figura 6. 3- Seção transversal do P110 (a) e X80 (b) a 50°C e do	
P110 (c) e X80 (d) a 75ºC após 15 dias de imersão.	134
Figura 6. 4- Comparação das taxas de corrosão e a espessura da	
camada nas três temperaturas após 15 dias de imersão.	135
Figura 6. 5- Seção transversal do P110 (a) e X80 (b) a 50°C e do	
P110 (c) e X80 (d) a 75ºC após 21 dias de imersão.	137
Figura 6. 6-Comparação das taxas de corrosão e a espessura da	
camada nas três temperaturas após 21 dias de imersão.	138
Figura 6. 7- Seção transversal do P110 (a) e X80 (b) a $25^{\circ}C$ e do	
P110 (c) e X80 (d) a 50°C e P110 (e) e X80 (f) a 75°C após 30 dias	
de imersão.	140
Figura 6. 8-Comparação das taxas de corrosão e a espessura da	
camada nas três temperaturas após 30 dias de imersão.	141

Figura 6. 9- Comportamento do pH com tempo de exposição (a)	
25°C, (b) 50°C e (c) 75°C.	144
Figura 6. 10-Comportamento da taxa de corrosão com respeito à	
temperatura e tempos de imersão.	146
Figura 6. 11- Superfície das amostras depois da remoção da	
camada formada após 30 dias de imersão. P110 a uma	
temperatura de 25°C (A), 50°C (B) e a 75°C (C); X80 a uma	
temperatura de 25ºC (D), 50ºC (E) e 75ºC (F).	148
Figura 6. 12- Mudança da Rp calculada por Resistência à	
polarização e Impedância eletroquímica para os dois aços durante	
os 30 dias de ensaio nas três temperaturas de estudo.	150
Figura 6. 13- Gráficos de Nyquist de Impedância obtidos a 25ºC	
P110 (a) e X80 (b)	151
Figura 6. 14- Gráficos de Nyquist de Impedância obtidas a 50°C	
P110 (a) e X80 (b) e a 75ºC P110 (c) e X80 (d)	153
Figura 6. 15- Circuito elétrico equivalente para todos os tempos de	
corrosão a (50ºC e 75ºC)	153
Figura 6. 16- Morfologia da Seção transversal após 7 dias (a) 50ºC	
e (b)	155
Figura 6. 17-Comparações das taxas de corrosão obtidas por meio	
de Perda de massa, (RPL) e (EIS); a 25ºC (a), 50ºC (b) e 75ºC (c).	158

Lista de Tabelas

Tabela 4. 1- Composição química dos aços P110 e API X80	46	
Tabela 4. 2- Condições operacionais para avaliar o desempenho		
dos aços API X 80 e P110 em ambientes contendo CO ₂ 5		
Tabela 5. 1 Composição química dos aços de estudo.	60	
Tabela 5. 2- Resultados do ensaio de microdureza em escala		
Vickers HV 500g dos aços API 5L X80 e API 5CT P110.	60	
Tabela 5. 3- Taxas de corrosão após 7 dias de imersão	73	
Tabela 5. 4- Taxas de corrosão após 15 dias de imersão	86	
Tabela 5. 5- Taxas de corrosão após 21dias de imersão.	99	
Tabela 5. 6 Taxas de corrosão após 30 dias de imersão.	111	
Tabela 5. 7- Espessura das camadas a 25ºC.	111	
Tabela 5. 8 Espessura das camadas a 50ºC.	114	
Tabela 5. 9 Espessura das camadas a 75ºC.	114	
Tabela 5. 10- Valores de Resistência à polarização (RPL), corrente		
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o P110.	116	
Tabela 5. 11- Valores de resistência à polarização (RPL), corrente		
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o X80.	117	
Tabela 5. 12-Valores de velocidade de corrosão extraida da		
Impedância Eletroquímica para o P110 a 25ºC.	117	
Tabela 5. 13- Valores de velocidade de corrosão extraída da		
Impedância Eletroquímica para o X80 a 25ºC.	118	
Tabela 5. 14- Valores de Resistência à polarização (RPL), corrente		
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o P110.	120	
Tabela 5. 15- Valores de Resistência à polarização (RPL), corrente		
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o X80.	121	
Tabela 5. 16-Valores de velocidade de corrosão extraída da		
Impedância Eletroquímica para o P110 a 50ºC.	123	
Tabela 5. 17-Valores de velocidade de corrosão extraída da		
Impedância Eletroquímica para o X80 a 50ºC.	123	

Tabela 5. 18- Valores de Resistência à polarização (RPL), corrente	
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o P110	
a 75⁰C.	125
Tabela 5. 19- Valores de Resistência à polarização (RPL), corrente	
de corrosão (Icorr), Velocidade de corrosão (Vcorr) do Aço o X80	
a 75ºC.	125
Tabela 5. 20- Valores de velocidade de corrosão extraída da	
Impedância Eletroquímica para o P110 a 75ºC.	127
Tabela 5. 21-Valores de velocidade de corrosão extraída da	
Impedância Eletroquímica para o X80.	127
Tabela 6. 1-Taxas de corrosão obtidas nos ensaios de perda de	
massa após 7 dias de imersão a 25ºC, 50ºC e 75ºC para o aço	
P110 e X80.	132
Tabela 6. 2- Taxas de corrosão obtidas nos ensaios de perda de	
massa após 15 dias de imersão a 25ºC, 50ºC e 75ºC para o aço	
P110 e X80.	135
Tabela 6. 3-Taxas de corrosão obtidas nos ensaios de perda de	
massa após 21 dias de imersão a 25ºC, 50ºC e 75ºC para o aço	
P110 e X80.	137
Tabela 6. 4-Taxas de corrosão obtidas nos ensaios de perda de	
massa após 30 dias de imersão a 25ºC, 50ºC e 75ºC para o aço	
P110 e X80.	141
Tabela 6. 5 Classificação da corrosão localizada (pite) segundo a	
norma ASTM G46-94.	147
Tabela 6. 6- Parâmetros do circuito elétrico equivalente a	
diferentes tempos de corrosão a 50ºC para o P110.	156
Tabela 6. 7 Parâmetros do circuito elétrico equivalente a diferentes	
tempos de corrosão a 50ºC para o X80.	156
Tabela 6. 8- Parâmetros do circuito elétrico equivalente a	
diferentes tempos de corrosão a 75ºC para o P110.	156
Tabela 6. 9- Parâmetros do circuito elétrico equivalente a	
diferentes tempos de corrosão a 75ºC para o X80.	157

Lista de abreviaturas

AM	Austenita-Martensita
API	American Petroleum Institute
ASTM	American Society for Testing and Materials
В	Constante de Tafel
ba	Tafel anódica
bc	Tafel catódica
Bar	Unidade de pressão
CO ₂	Dióxido de Carbono
Cdl	Capacitância da dupla camada
CPE	Elemento de fase constante
DRX	Difração de raios X
EIS	Espectroscopia de impedância eletroquímica
EDS	Espectroscopia por energia dispersiva
Hv	Dureza vickers
Icorr	Corrente de corrosão
MEV	Microscopia eletrônica de varredura
MO	Microscopia Otica
mpy	Milésima de polegada por ano
mm/y	Milímetros por ano
Rp	Resistência à Polarização
RPL	Resistência à Polarização Linear