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Abstract

Pecin, Diego; Poggi, Marcus; Uchoa, Eduardo. Exact Algorithms
for the Capacitated Vehicle Routing Problem. Rio de Janeiro,
2014. 116p. DSc Thesis — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Vehicle Routing Problems are among the most difficult combinatorial

problems to solve to optimality. They were proposed in the late 1950’s

and since then have been widely studied. This interest arises from their

practical importance, as well as the difficulty of providing efficient algorithms

to solve them. This thesis is mainly concerned with the exact resolution of

the Capacitated Vehicle Routing Problem (CVRP). In this problem, a set of

customers, each one associated to a demand, must be serviced by a fleet of

vehicles. All vehicles have the same (limited) capacity and initially are located

in the same central depot. A solution is a set of routes, starting and ending

at the depot, that visit every customer exactly once. The only constraint on

a route is that the sum of the demands of its customers does not exceed the

vehicle capacity. The objective is to find a solution with minimum total cost.

The best performing exact algorithms for the CVRP developed in the last

10 years are based in the combination of cut and column generation. Some

authors only used cuts expressed over the variables of the original formulation,

in order to keep the pricing subproblem relatively easy. Other authors could

reduce the duality gaps by also using a restricted number of cuts over the

Master LP variables, stopping when the pricing becomes prohibitively hard.

A particularly effective family of such cuts are the Subset Row Cuts. This

thesis introduces a technique for greatly reducing this impact on the pricing

of these cuts, thus allowing much more cuts to be added. The newly proposed

Branch-Cut-and-Price algorithm also incorporates and combines for the first

time (often in an improved way) several elements found in previous works, like

route enumeration, variable fixing and strong branching. All the instances used

for benchmarking exact algorithms, with up to 199 customers, were solved to

optimality. Moreover, some larger instances with up to 360 customers, only

considered before by heuristic methods, were solved too.

Keywords
Routing Problems; Column Generation; Cut Separation; Branch-

Cut-and-Price; Integer Programming; Algorithmic Engineering.
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Resumo

Pecin, Diego; Poggi, Marcus; Uchoa, Eduardo. Algoritmos Exatos
para o Problema de Roteamento de Véıculos Capacitado. Rio de
Janeiro, 2014. 116p. Tese de Doutorado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Os Problemas de Roteamento de Véıculos estão entre os problemas

combinatoriais mais dif́ıceis de se resolver à otimalidade. Eles foram propostos

no final da década de 1950, e desde então eles têm sido amplamente estudados.

O interesse deve-se a sua importância prática, bem como da dificuldade de se

fornecer algoritmos eficientes para resolvê-los. Esta tese trata principalmente

da resolução exata do Problema de Roteamento de Véıculos com Capacidades

(PRVC). Neste problema, um conjunto de clientes, cada um associado a uma

demanda, deve ser atendido por uma frota de véıculos. Todos eles têm o mesma

capacidade e, inicialmente, estão localizados no mesmo depósito. Uma solução

é um conjunto de rotas que começam e terminam no depósito e visitam cada

cliente uma única vez. A restrição em uma rota é que a soma das demandas

de seus clientes não exceda a capacidade do véıculo. O objetivo é encontrar

uma solução com um custo mı́nimo. Os melhores algoritmos exatos para o

PRVC desenvolvidos nos últimos dez anos são baseados na combinação de

geração de cortes e colunas. Alguns autores utilizaram apenas cortes sobre as

variáveis da formulação original, com a finalidade de manter o subproblema de

geração de colunas relativamente fácil. Outros puderam reduzir os limites duais

utilizando também um número restrito de cortes expressos nas variáveis do

problema mestre, parando de incluir tais cortes quando o subproblema tornava-

se proibitivamente dif́ıcil. Uma famı́lia eficaz de tais cortes são os Subset

Row Cuts. Esta tese apresenta uma técnica para reduzir consideravelmente

o impacto que tais cortes causam no subproblema de geração de colunas,

permitindo assim que muito mais cortes sejam adicionados. O novo algoritmo

Branch-Cut-and-Price proposto também incorpora e combina pela primeira

vez vários elementos presentes em trabalhos anteriores, como enumeração de

rotas, fixação de variáveis e strong branching. Todas as instâncias usadas em

algoritmos exatos, com até 199 clientes, foram resolvidas à otimalidade. Além

disso, algumas maiores, com até 360 clientes, apenas consideradas antes em

métodos heuŕısticos, também foram resolvidas.

Palavras–chave
Problemas de Roteamento; Geração de Colunas; Separação de Cortes;

Branch-Cut-and-Price; Programação Inteira; Engenharia de Algoritmos.
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Before going to sleep, ask what you have done
for the CVRP during the day, if it was noth-
ing, it was a wasted day!

Eduardo Uchoa Barboza.
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1
Introduction

Vehicle Routing Problems (VRPs) correspond to an important class of

combinatorial optimization problems that aim at determining an optimal set of

routes for a fleet of vehicles. Initially, the vehicles are considered to be located

in one or more depots in order to deliver goods to a set of customers. In general,

a solution requires finding routes, that begin and end in the same depot,

such that all customers’ demands are serviced and all operational constraints

are satisfied. Some typical constraints are limited capacity of the vehicles,

customers requiring delivery or collection of goods (in some cases both), and

periods of the day on which a customer can be serviced. The overall goal is to

minimize the operational cost of the transport. For instance, this cost can be

a function of the total distance or time traveled.

VRPs play a central role in fields such as transportation, distribution and

logistics. They were first introduced in the literature by Dantzig and Ramser

(14) in 1959, when a problem of oil distribution from supply stations was

studied. It is remarked in Toth and Vigo (59) that a high percentage of the

value added to commercial goods comes from the costs related to their trans-

portation (between 5% to 20%). This suggests that the use of computational

methods for planning the transport may often result in significant savings.

Since the work in (14) the VRPs have become widely studied. This

interest arises from their practical importance, they can model many real-world

logistic problems, as well as the difficulty of providing efficient algorithms to

solve them. Note that part of the difficulty of solving VRPs comes from the

fact that it generalizes the well-known Traveling Salesman Problem (TSP), a

strongly NP-Hard problem. Moreover, depending on the constraints involved

in the routing problem, only to prove that a given problem has a feasible

solution may require solving of a difficult combinatorial problem. For instance,

determining whether a given set of vehicles can service all customers is

equivalent to solving a Bin Packing Problem, which is also known to be NP-

Hard.

The Capacitated Vehicle Routing Problem (CVRP) is the basic variant

introduced in (14). It can be described as follows. A set of customers, each one
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Chapter 1. Introduction 13

associated to a demand, must be serviced by a fleet of vehicles. All vehicles

have the same (limited) capacity and initially are located in the same central

depot. A solution is a set of routes, starting and ending at the depot, that

visit every customer exactly once. The only constraint on a route is that the

sum of the demands of its customers does not exceed the vehicle capacity. The

objective is to find a solution with minimum total cost. Many authors also

assume that the number of routes is fixed to an additional input number. The

CVRP is a widely studied problem due to its own applications, since it can

model adequately a significant number of real logistic systems. Furthermore,

it plays a particularly important role on general vehicle routing research, for

being the most basic and prototypical variant. This thesis is mainly concerned

with the exact resolution of the CVRP, i.e. in proving a given solution is, in

fact, optimal for this combinatorial problem.

A short list of important VRPs that have been studied in the last

decades follows. The Vehicle Routing Problem with Time Windows (VRPTW)

corresponds to a variation of the CVRP that restricts customer’s services to

occur inside given time windows, vehicles also have identical limited capacity.

The Multi Depot Capacitated Vehicle Routing Problem (MDCVRP) is the

variation that considers more than one depot. Another variation is the Vehicle

Routing Problem with Simultaneous Pick-up and Delivery (VRPSPD) where,

as the name says, customers can be served by a delivery, a pick-up or both. This

problem includes the CVRP as the special case where there are only pick-up’s

(or deliveries). In the Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

vehicles may have distinct capacities and costs. Finally, the Generalized Vehicle

Routing Problem (GVRP) considers clusters of customers. Each cluster has an

associated demand and can contain one or more customers. The demand of

each cluster must be fully collected in exactly one customer of the cluster.

This problem is a generalization of the CVRP and, as in the classical CVRP,

identical vehicles are given, routes must start and end at the depot and the

capacity of the vehicle must not be exceeded.

Several exact methods have been proposed to solve VRPs in the last three

decades. Branch-and-Bound is a widely used approach to solve many combin-

atorial problems such as the VRPs. An algorithm based on this approach uses

a search tree to enumerate all possible feasible solutions of the problem be-

ing optimized, where each tree node represents a part of the solution space.

Starting on the root node, a problem can be divided into two by splitting the

feasible region of the problem. This procedure is called branching. On each

node of the search tree one can solve some relaxation of the problem to calcu-

late a bound on the value of an optimal solution for this node. For instance, a
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Chapter 1. Introduction 14

bound can be obtained solving the Linear Programming (LP) relaxation of a

Mixed Integer Programming (MIP) formulation, which is obtained by relaxing

the integrality of its integer variables. This procedure is called bounding. A

lower bound may allow stopping the search on a given branch of the tree by

indicating that no solution of an interesting (smaller) value can be found. The

fundamental idea of the Branch-and-Bound algorithm is to safely discard a

node if its lower bound is greater or equal to the best known upper bound (the

value of a solution) for the problem. This step is called pruning. This allows

to discard large subsets of fruitless candidate solutions.

The current most efficient approaches for VRPs are those based on

solving MIP formulations. One way to improve bounds from relaxed MIPs

is to add to the formulation cutting planes, i.e. constraints that are satisfied

by all integer feasible solutions but may not be satisfied by some continuous

solutions of the relaxed MIP. Suppose one solves the linear relaxation of the

formulation. The obtained optimum is tested for being an integer feasible

solution. If it is not, a linear inequality that separates this fractional optimum

from the set of feasible solutions must exist. These inequalities are called

violated inequalities. Finding such an inequality is the goal of a so called

separation problem and such violated inequality is called a cut. Cuts can be

added to the relaxed linear program. Then, the current non-integer solution

is no longer feasible to the relaxation. This process can be repeated until an

optimal integer solution is reached or no violated inequalities is found. Note

that the value of the optimal solution of the relaxed problem defines a lower

bound, possibly stronger (greater) than the first bound obtained without cuts.

When it is not possible to find additional violated inequalities, the algorithm

proceeds by branching, like in the Branch-and-Bound approach. An algorithm

that combines cutting planes with Branch-and-Bound is called Branch-and-

Cut. These algorithms are among the best methods for solving arbitrary MIP

formulations because general cutting planes have been widely studied (see, for

example, Nemhauser and Wolsey (44) and Wolsey (62)).

However, nowadays the best results for VRPs are obtained by column

generation techniques. These techniques are used to solve formulations with ar-

bitrarily many variables, or columns as they are referred within this technique.

It was introduced in 1958 by Ford and Fulkerson (23) for the multicommodity

flow problem and it was later generalized to linear programming by Dantzig

and Wolfe in 1960 (15). The algorithm starts with a small number of columns,

which gives rise to a small linear program called restricted master (or Master

LP). Next, the algorithm tries to find new columns suitable to improve the cur-

rent solution. Finding such columns corresponds to solve an auxiliary problem
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Chapter 1. Introduction 15

called pricing subproblem. This iterative process continues until no improving

columns are found. The huge number of columns considered in column genera-

tion algorithms correspond to the exponentially many variables obtained when

Dantzig-Wolfe decomposition is applied to MIP formulations (see Chapter 2

for more details). Since column generation is used to solve a linear program,

the relaxed MIP, its optimal solution is a lower bound for the formulation and

thus can be fractional. Therefore, to ensure that a feasible integer solution is

found, the technique must be combined with Branch-and-Bound. The resulting

algorithm is called Branch-and-Price (see, for example, Desaulniers, Desrosiers

and Solomon (16), Lübbecke and Desrosiers (36)).

Branch-and-Bound can be used together with column and cut generation.

This combination is called Branch-Cut-and-Price (BCP). The focus of this

thesis is to develop BCP algorithms for the CVRP.

The CVRP can be formally defined on a complete undirected graph

G = (V,E), where V = {0, 1, . . . , n} is the set of vertices and E is the set

of edges. The vertices from set V+ = V \{0} represent customers and the

vertex labeled 0 represents the depot. Each customer i ∈ V+ has an associated

integer demand di > 0 and the depot has a fictitious demand d0 = 0. At the

depot are located K vehicles, each one having the same integer capacity Q.

Additionally, each edge (i, j) ∈ E has an associated cost cij ≥ 0, expressing

the cost (distance or time, for example) to go from vertex i to vertex j. The

cost structure is assumed symmetric, i.e., cij = cji and cii = 0. The CVRP

consists of finding K routes satisfying the following constraints: (i) each route

starts and ends at the depot; (ii) each customer is visited by exactly one route,

and (iii) the total demand of all customers in any route is at most Q. The goal

is to minimize the sum of the lengths of all routes.

1.1
Brief History of Exact Algorithms

There is a wealth of publications on exact algorithms for the CVRP.

Christofides, Mingozzi and Toth (11) presented in 1981 a landmark exact

algorithm that uses Lagrangean bounds. One of these bounds is based on

q-routes, a relaxation of a feasible CVRP route that allows routes repeat

customers as long as the vehicle capacity constraint is satisfied. Therefore,

the set of valid CVRP routes is strictly contained in the set of q-routes. The

Branch-and-Bound algorithm obtained could solve to optimality instances with

up to 25 vertices, a respectful size at the time.

Several other algorithms using Lagrangean relaxation appear in the

literature. Christofides et al. (11) also describe a lower bound based on k-degree
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center trees, which are minimum spanning trees having degree K ≤ k ≤ 2K at

the depot, plus 2K − k least-cost edges. Lagrangean bounds based on K-trees

(sets of n+K−1 edges spanning V ) having degree 2K at the depot were used

by Fisher (22) and by Martinhon, Lucena, and Maculan (41), among others.

Miller (42) presented an algorithm based on minimum b-matchings having

degree 2K at the depot and 2 on the remaining vertices. Lagrangean bounds

can be improved by dualizing capacity inequalities (22, 42) and also comb and

multistar inequalities (41).

Another family of exact algorithms stems from the formulation of the

CVRP as a set partitioning problem by Balinski and Quandt (5). A column

covers a set of vertices S with total demand not exceeding Q and has the

cost of a minimum route over {0} ∪ S. Unfortunately, the formulation was

not practical at the time because pricing over the exponential number of

columns requires the solution of a hard problem. Agarwal, Marthur, and Salkin

(2) proposed a column generation algorithm on a modified set partitioning

problem where column costs are given by a linear function over the vertices

that yields a lower bound on the actual route cost. Columns with the modified

cost can be priced by solving easy knapsack problems. Hadjiconstantinou et

al. (29) derive lower bounds from heuristic solutions to the dual of the set

partitioning formulation. The dual solutions are obtained by the so-called

additive approach, combining the q-route and k-shortest path relaxations.

For further information and comparative results on the algorithms mentioned

above, we refer the reader to the surveys by Toth and Vigo (58, 59).

Column generation started to be used in exact algorithms for the

VRPTW. Desrosiers, Soumis and Desrochers (18) and Desrochers, Desrosiers

and Solomon (17) showed that this technique could perform very well on tightly

constrained instances (those with narrow time windows). As the CVRP can be

regarded as the particular case of VRPTW where time windows are arbitrar-

ily large, column generation was viewed as a non-promising approach for the

problem. In fact, until the early 2000’s, the best performing algorithms for the

CVRP were branch-and-cut algorithms that separated quite complex families

of cuts identified by polyhedral investigation. Naddef and Rinaldi (43) survey

the most effective exact branch-and-cut methods proposed in the literature up

to 2002. In spite of their sophistication, some instances from the literature with

only 50 customers could not be solved to optimality in the work of Lysgaard

et al. (38), which is considered the most efficient branch-and-cut algorithm for

the CVRP. At that moment, the Branch-Cut-and-Price algorithm by Fukasawa

et al. (24) showed that the combination of cut and column generation could

be much more effective than each of those techniques taken alone.
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Chapter 1. Introduction 17

According to the classification proposed in (51), the BCP algorithm in

(24) only uses robust cuts. A cut is said to be robust when the value of the dual

variable associated to it can be translated into costs in the pricing subproblem.

Therefore, the structure and the size of that subproblem remain unaltered,

regardless of the number of robust cuts added. On the other hand, non-

robust cuts are those that change the structure and/or the size of the pricing

subproblem, each additional cut makes it harder. Robustness is a desirable

property of a BCP. Even with good pricing heuristics, at least one call to the

exact pricing is necessary to establish a valid dual bound. With the addition of

non-robust cuts, there is a risk of having to solve to optimality an intractable

subproblem. Nevertheless, since Jepsen et al. (33) and Baldacci et al. (3) it

is known that some non-robust cuts1 can be effectively used, at least if their

separation is restricted in order to avoid an excessive impact on the pricing.

We briefly review the most recent works proposing exact algorithms for

the CVRP, all of them are based on the combination of column and cut

generation.

1. Fukasawa et al. (24) presented a BCP algorithm where the column are

associated to the q-routes without k-cycles (32). The separated cuts are

the same used in previous algorithms over the edge CVRP formulation.

Those cuts are robust with respect to q-route pricing. If the column

generation at the root node is found to be too slow, the algorithm may

automatically switch to a branch-and-cut. This may be advantageous in

a few instances. All benchmark instances from the literature with up to

134 customers could be solved to optimality, an expressive improvement

over previous methods.

2. Baldacci, Christofides and Mingozzi (3) presented an algorithm

based on column and cut generation. The columns are associated to

elementary routes. Besides cuts for the edge formulation, Strengthened

Capacity Cuts and Clique Cuts are separated. Those later cuts are

effective but non-robust. An important new idea is introduced. Instead

of branching, the algorithm finishes in the root node (therefore, it is not

a BCP) by enumerating all elementary routes with reduced cost smaller

than the duality gap. A set-partitioning problem containing all those

routes is then given to a MIP solver. The algorithm could solve almost

all instances solved in (24), usually taking much less time. However, the

1While the adjective non-robust focus on their negative aspect; some authors call them
strong cuts, focusing on their positive aspect, a greater potential for significantly reducing
the integrality gaps. A more neutral nomenclature is master cuts, since they are defined over
the variables of the Master LP obtained by the Dantzig-Wolfe decomposition.
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exponential nature of some algorithmic elements, in particular the route

enumeration, made it fail on some instances with many customers per

vehicle.

3. Pessoa et al. (47) presented some improvements over (24). Cuts from

an extended formulation with load indices were also separated. Those

cuts do not change the complexity of the pricing of q-routes by dynamic

programming. Additionally, the idea of performing elementary route

enumeration and MIP solving to finish a node was borrowed from (3).

However, in order to avoid a premature failure when the root gap is

too large, it was hybridized with traditional branching. The overall

improvement was not sufficient for solving larger instances.

4. The algorithm by Baldacci, Mingozzi and Roberti (4) improved

upon (3). It introduces the concept of ng-routes, a route relaxation that

is more effective than the q-routes without k-cycles. Instead of Clique

Cuts, Subset Row Cuts (33) and Weak Subset Row Cuts, that have less

impact on the pricing, are separated. The resulting algorithm is not only

faster on average, it is much more stable than the algorithm in (3), being

able to solve even some instances with many customers per vehicle.

5. The recent work by Contardo (12) introduced new twists on the use of

non-robust cuts and on route enumeration. The columns are associated

with q-routes without 2-cycles, a relatively poor relaxation. The partial

elementarity of the routes is enforced by non-robust Strong Degree

Cuts. Robust cuts from edge formulation and non-robust Strengthened

Capacity Cuts and Subset Row Cuts are also separated. The enumeration

of elementary routes is directed to a pool of columns. As soon as the

duality gap is sufficiently small to produce a pool with reasonable size (a

few million routes), the pricing starts to be performed by inspection.

From this point, an aggressive separation of non-robust cuts can be

performed, leading to very small gaps. The reported computational

results are very consistent. In particular, the hard instance M-n151-k12

(150 customers, 12 routes) was solved to optimality for the first time (in

6 hours), setting a new record.

6. Finally, the recent work by Røpke (56) went back to robust BCP. Its

linear relaxation differs from (24) only by the use of the more effective

ng-routes. The power of the algorithm comes mainly from a sophisticated

and aggressive strong branching, able to reduce significantly the average

size of the enumeration trees. The overall results are comparable with
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the results in (12, 4). A long run of that algorithm (5.5 days) could also

solve M-n151-k12.

1.2
Contributions of this Thesis

The central problem addressed in this thesis is the Capacitated Vehicle

Routing Problem. However, contributions for two other important problems

are also presented, the Shortest Path Problem with Resource Constraints (SP-

PRC) and the Elementary Shortest Path Problem with Resource Constraints

(ESPPRC). These problems arise as the pricing subproblem to be solved when

VRPs are tackled by column generation and branch-and-price.

1.2.1
Contributions to the SPPRC and ESPPRC

The algorithms for both the SPPRC and ESPPRC are presented in

Chapter 5. The main contributions of this chapter are listed below.

– Describes a clever combination of Decremental State-Space Relaxation

(DSSR) (54), ng-routes (3), bidirectional search (53) and completion

bounds to compute solutions to the SPPRC.

– Extends this algorithm in order to solve the more difficult ESPPRC.

– Solves the ESPPRC for CVRP instances with up to 199 customers, a

result that doubles the size of the ESPPRC instances solved to date.

A significant part of the result of this chapter was obtained in the joint

work with Rafael Martinelli published in Martinelli et al. (40) and previously

partly reported in (39). In particular, this previous work does not contain the

bidirectional search and some experiments involving the ESPPRC.

1.2.2
Contributions to the CVRP

The Branch-Cut-and-Price algorithm proposed for the CVRP are de-

scribed in Chapters 6, 7 and 8. It is a quite complex and sophisticated BCP

that incorporates, often in an enhanced way, elements from all previous al-

gorithms described in Section 1.1.

– The most important original contribution of this part of the thesis is the

introduction of the limited memory Subset Row Cuts (lm-SRCs). They

are a weakening of the SRCs that can be controlled and dynamically

adjusted, making the lm-SRCs as effective in improving the lower bounds

as SRCs, but still much less costly in the pricing.
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– The underlying formulation used in the BCP has extended arc-load

variables. This allows a particularly effective fixing of variables by

reduced costs (superior to the fixing in (31)), with direct benefits on

the pricing.

Other elements to be remarked in the proposed BCP are: (i) the columns

in the BCP are associated to ng-routes (4). The pricing subproblem is solved

by a bidirectional dynamic programming algorithm that also uses completion

bounds to eliminate labels; (ii) like in (47), the BCP hybridizes branching with

the route enumeration technique introduced in (3). Actually, inspired by (56),

it performs an aggressive strong branching; (iii) as soon as the gap of a BCP

node is sufficiently small, the elementary routes that can be part of the optimal

solution can be enumerated into a large pool, as suggested in (12). From that

point, since the pricing will be performed by inspection, all lm-SRCs may be

immediately lifted to SRCs; and (iv) the lm-SRCs are still non-robust cuts. If

the separation of some of them makes the algorithm substantially slower, the

BCP performs a rollback, the offending cuts are removed even if it decreases

the lower bound of the node.

Overall, we believe that this is one of the most sophisticated BCP

algorithms ever implemented. All the instances used for benchmarking exact

algorithms, with up to 199 customers, were solved to optimality. Moreover,

some larger instances with up to 360 customers, only considered before by

heuristic methods, were solved too.

The techniques introduced in this work, including the lm-SRCs, can be

possibly applied on many other problems where BCP is currently applied,

including several VRP variants, parallel machine scheduling or network design.

An extended abstract of this work was published in Pecin et al. (45) and

a full paper was submitted to Operations Research.

There is also another working paper, motivated by this recent research,

proposing a new set of benchmark instances able to push the limits of the

state-of-the-art algorithms for the CVRP.

1.3
Thesis Outline

This work is organized as follows.

– Chapter 2 briefly reviews the Dantzig-Wolfe decomposition and the

column generation technique. It also shows how cuts expressed over the

original formulation (robust cuts) can be translated and added to the

reformulation.
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– Chapter 3 presents the CVRP formulations used by the algorithms

proposed in this thesis.

– Chapter 4 proposes a column and cut generation algorithm to compute

lower bounds to the CVRP. The columns are associated to ng-routes and

only robust cuts (Rounded Capacity Cuts and Strengthened Combs) are

separated.

– Chapter 5 describes the pricing algorithms of the column and cut

generation algorithm for the CVRP.

– Chapter 6 proposes a branch-cut-and-price algorithm for the CVRP.

– Chapter 7 presents the labeling algorithms for pricing, variable fixing

and route enumeration of the proposed BCP algorithm.

– Chapter 8 reports detailed computational results of the BCP.

– Chapter 9 contains the conclusions of this work.
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2
IP Reformulation

Many mixed integer programming problems have a special structure that

makes them suitable for the application of the Dantzig-Wolfe decomposition

(also refered to as Dantzig-Wolfe reformulation), which was originally proposed

to be applied to linear programs (15). This decomposition aims at explicitly

considering a subset of the original problem constraints. When this decompos-

ition was proposed the main objective was to reduce as much as possible the

number of constraints present in the linear program to be solved, allowing it

to fit in the memory of the computers available at the time.

The constraints removed of the mixed integer problem, usually those with

a well-defined structure, are treated by separated subproblems. The solutions

of these subproblems are then combined into a coordinating problem. The

reasoning of the method is that it may be easier to solve a large number of

smaller size (typically well-structured) subproblems than to solve the original

problem, whose size and complexity are beyond what can be solved within

a reasonable amount of time. The drawback is that the coordinating problem

may potentially have to consider an exponential number of variables. However,

the decomposition relies on column generation technique for improving the

tractability of large-scale linear programs.

This chapter briefly review the Dantzig-Wolfe approach: the decomposi-

tion of a mixed integer program, its reformulation and the column generation

procedure. We also show how cuts expressed over the variables of the original

formulation can be translated to be added to the reformulation, thus defining

what Poggi de Aragão and Uchoa called by robust cuts (51).

To simplify the presentation, we assume a pure integer program (IP)

whose variables are bounded. The extension to the unbounded case is presented

in (60), while the extension to the mixed integer case is presented in (61).

2.1
The Dantzig-Wolfe Decomposition

Consider the following integer program IP with n variables:
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ZIP = min cx

s.t. Ax = b

Dx ≤ d

x ∈ Zn+.

(IP)

Since we are supposing that Q = {x ∈ Zn+ | Dx ≤ d} is a finite set, let p

be the number of elements in Q, that is, Q = {x1, . . . , xp}. Let Q be a n × p
matrix where each column correspond to an element of Q. For each x ∈ Q,

there exist an unique vector λ satisfying the following relation:

x = Qλ

s.t. 1λ = 1

λ ∈ {0, 1}p.

(X )

The traditional reformulation of integer programming problems, pro-

posed by Gilmore and Gomory (25), (26), consists in replacing the x vari-

ables of IP by its equivalent expression given by X . Relaxing the integrality

constraints, we get the Dantzig-Wolfe Master LP (DWM):

ZDWM = min (cQ)λ

s.t. (AQ)λ = b

1λ = 1

λ ≥ 0.

(DWM)

Let ZLP be the value of an optimal solution of the linear relaxation of IP.

The value ZLP gives a lower bound on the value of ZIP . An interesting property

of the Dantzig-Wolfe decomposition is that ZDWM is always ZLP ≤ ZDWM ≤
ZIP , since solve the DWM is equivalent to solve the following problem:

ZDWM = min cx

s.t. Ax = b

x ∈ Conv(Dx ≤ d;x ∈ Zn+),

(2.1)

where Conv(S) denotes the convex hull of set S. The drawback of this approach

is that in general p (the number of λ variables) is very large. On the other hand,

it is common that the lower bound ZDWM be considerably better than ZLP .

This is possibly the main motivation for the use of that decomposition.
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Block diagonal case

If the integer program has a constraint matrix of the form

A1 A2 · · · Ak

D1 0 · · · 0

0 D2 · · · 0
...

. . .
...

0 0 · · · Dk


,

then k disjoint sets of constraints are identified: Dx ≤ d partitions into

Dixi ≤ di, i = 1, . . . , k, where x = (x1, x2, . . . , xk), with xi being an ni-vector

for i = 1, . . . , k. In this case, the problem can be written as follows:

ZIP ′ = min
k∑
i=1

(cixi)

s.t.
k∑
i=1

(Aixi) = b

Dixi ≤ di ∀i = 1, . . . , k

xi ∈ Zni
+ ∀i = 1, . . . , k.

(IP’)

For each i = 1, . . . , k, let Qi be the set (finite by our hypothesis) of

elements defined by the subset of constraints Dixi ≤ di and let Xi be the

X relation for the variables xi and λi. Replacing each xi by its equivalent

expression (xi = Qiλi) and relaxing the integrality constraints of each λi, we

get the following linear program:

ZDWM ′ = min

k∑
i=1

(ciQi)λi

s.t.

k∑
i=1

(AiQi)λi = b

1λi = 1 ∀i = 1, . . . , k

λi ≥ 0 ∀i = 1, . . . , k.

(DWM’)

2.2
Column Generation

Column generation is a technique commonly used to solve a linear

program with a huge number of variables (columns), as those obtained with

the Dantzig-Wolfe decomposition. Let consider the solution of DWM. If the

number p is too large, it may not be practical to solve DWM by explicitly

considering all of its variables at once. Since most of the variables will be non-
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basic and therefore assume a value of zero in the optimal solution, the technique

leverages this idea to solve DWM by considering only implicitly the total set of

its variables. The DWM is split into two problems, the master problem and the

subproblem. Initially, just a small number of the λ variables are considered,

generating the so-called restricted master linear program (Restricted DWM).

Next, the algorithm tries to find new columns with negative reduced cost,

suitable to improve the current solution of the restricted master. This is

done by solving the subproblem, which incorporates the dual variables of the

Restricted DWM as part of the objective function. If such columns are found,

the restricted master is updated and then re-solved. This iterative process

continues until no improving columns is found. In many cases, this allows

large linear programs that had been previously considered intractable to be

solved.

A more formal description of the technique follows. The procedure

starts by considering a Q′ matrix containing a subset of the columns of Q.

The following linear program is called Restricted Dantzig-Wolfe Master LP

(RDWM):
ZRDWM = min (cQ′)λ′

s.t. (AQ′)λ′ = b (1)

1λ′ = 1 (2)

λ′ ≥ 0

(RDWM)

Consider that there is a feasible solution for RDWM with the columns

in Q′. If necessary, to obtain feasibility one can use artificial columns not

present in Q with high cost in the objective function. Given an optimal solution

of RDWM, let µ and ν be the vector of dual multipliers associated with

constraints (1) and (2), respectively. The following subproblem, refered to

as Pricing Subproblem (PS), must be solved to find variables with negative

reduced cost with respected to µ and ν:

v(µ, ν) = min (c− µA)x−ν

s.t. Dx ≤ d

x ∈ Zn+

(PS)

The column generation algorithm solves DWM by alternating the solu-

tion of RDWM and the solution of PS. If the value of the optimal solution

of the subproblem is negative (that is, if v(µ, ν) < 0) then x∗, the optimal

solution found for PS, defines a new column q′ = (Ax∗) (with cost cx∗), which

is added to matrix Q′ of RDWM. In this scheme, the solution of RDWM gives

duals for PS and the solution of PS gives columns for RDWM. This process

is repeated until v(µ, ν) = 0. When this happens, the current optimal solution
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of RDWM is also an optimal solution of DWM.

Note that the solution of DWM by column generation may require the

solution of the pricing subproblem several times, therefore this scheme is only

practical when constraints Dx ≤ d have a “nice structure”, which allows

the pricing supbroblem to be solved within a reasonable amount of time. If

the subproblem is known to be a strongly NP-Hard, the column generation

algorithm can fail, since there is a risk of having to solve to optimality an

intractable subproblem.

Consider the case in which the constraint matrix has a block diagonal

structure and the decomposition was conducted in order to take advantage

of this structure, thus obtaining the DWM’ problem shown above. Let Q′i

be a matrix containing a subset of the columns of the matrix Qi, for each

i = 1, . . . , k. The restricted master problem defined by such matrices is as

follows:

ZRDWM ′ = min
k∑
i=1

(ciQ
′
i)λ
′
i

s.t.
k∑
i=1

(AiQ
′
i)λ
′
i = b (1)

1λ′i = 1 ∀i = 1, . . . , k (2)

λ′i ∈ 0 ∀i = 1, . . . , k.

(RDWM’)

Let µi and νi be the vector of dual multipliers associated with constraints

(1) and (2), respectively. The pricing consists in solving k independent sub-

problems, each one defined as follows:

v(µi, νi) = min (ci − µA)xi−νi
s.t. Dixi ≤ di

xi ∈ Zn+

(PS’)

2.3
Adding Cuts

Consider a fractional solution λ̄ of DWM, which in the original formu-

lation IP corresponds to the solution x̄ = Qλ̄. A violated cut aix ≤ bi (such

that aix̄ > bi) can be added to DWM to cut the solution λ̄, just as if aix ≤ bi

belonged to the original subset of constraints Ax = b in IP:
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ZDWM ′′ = min (cQ)λ

s.t. (AQ)λ = b

(aiQ)λ ≤ bi

1λ = 1

λ ≥ 0.

(DWM”)

The addition of the row ai to the matrix A and the dual variable µi to

the vector µ do not change the structure of the pricing subproblem. Of course,

these two elements must now be considered in the calculation of (c − µA)x.

According to the classification proposed by (51), this cut is said to be robust

because the value of the dual variable associated to it can be translated into

costs in the pricing subproblem.

On the other hand, a violated cut πiλ ≤ bi (such that πiλ̄ > bi) usually

introduces coefficients in the DWM that can not be calculated by a linear

transformation of the subproblem solutions. Therefore, the effect of the new

dual variable in the reduced costs can only be taken into account in the pricing

subproblem by changing its structure. These changes have the potential of

making it considerably more difficult to solve. Such cuts will be referred as

non-robust cuts, according to (51).
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3
Mathematical Formulations

This chapter revisits the CVRP formulations that may be considered as

starting points in the design of the algorithms presented in this thesis. To

explain the formulations, the following notation is used. Given a vertex set

S ⊆ V , let δ(S) denote the set of edges e ∈ E which have only one endpoint

in S. As usual, when a single vertex i ∈ V is considered, we write δ(i) rather

than δ({i}). For any set S ⊆ V , let d(S) =
∑

i∈S d(i), and k(S) = dd(S)/Qe.
Edges are also indicated through a single index e = (i, j).

3.1
The Two-Index Formulation

The classical Two-Index Formulation (TIF), a.k.a. Edge Formulation,

proposed by Laporte and Nobert (34), uses a variable xe for each edge e ∈ E,

indicating the number of times the edge is traversed by any vehicle. If edge e

is not adjacent to the depot, then there are only two possible values for xe: 0,

which means that the edge is not used or 1, otherwise. If the edge is adjacent,

then the value 2 may be assigned, thus allowing routes with a single customer.

The formulation is defined as:

(TIF) min
∑
e∈E

cexe (3.1)

subject to

∑
e∈δ(i)

xe = 2, ∀ i ∈ V+, (3.2)

∑
e∈δ(0)

xe = 2K, (3.3)

∑
e∈δ(S)

xe ≥ 2k(S), ∀ S ⊆ V+, (3.4)

xe ∈ {0, 1}, ∀ e ∈ E \ δ(0), (3.5)

xe ∈ {0, 1, 2}, ∀ e ∈ δ(0). (3.6)
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Constraints (3.2) ensure that each customer is serviced by only one

vehicle. Constraint (3.3) imposes that K vehicles must leave and enter in the

depot. These constraints are also referred to as Degree Constraints. Constraints

(3.4) states that any subset S that does not include the depot must have at

least k(S) vehicles leave and enter S. These constraints are usually referred

as Rounded Capacity Cuts (RCCs) and ensure that a solution will not have

any vehicle servicing more than its capacity Q and will not have any subtours,

i.e., every route must include the depot. Although computing the minimum

number of vehicles with capacity Q required to serve subset S corresponds to

solve a NP-hard problem (the Bin-Packing Problem – BPP), it can be shown

that the trivial lower bound k(S) does not invalidate the TIF formulation, i.e.

all integer solutions satisfy the vehicle capacity constraints. Finally, constrains

3.5 and 3.6 are the integrality constraints.

Note that there is a exponential number of constraints of type (3.4),

which means that may be impractical to solve its linear relaxation considering

all these constraints at once. A cutting plane algorithm may be used to solve

this relaxation by generating these constraints dynamically (cuts) during the

optimization process.

3.2
The Set Partitioning Formulation

The Set Partitioning Formulation (SPF) was originally proposed by

Balinski and Quandt (5) and is a general form to formulate VRPs. A binary

variable is assigned to each possible route. A route is a path that starts at

the depot, traverses a sequence of customers with total demand at most Q,

and returns to the depot (11). Let Ω be the set of routes and let λr be the

binary variable indicating whether the route is used or not. Each route r

has a cost cr, given by the sum of the cost of the edges in its path. Given

coefficients ari indicating the number of times that route r visits customer i,

the Set Partitioning Formulation follows:

(SPF) min
∑
r∈Ω

crλr (3.7)

subject to

∑
r∈Ω

ariλr = 1, ∀i ∈ V+, (3.8)∑
r∈Ω

λr = K, (3.9)

λr ∈ {0, 1}, ∀r ∈ Ω. (3.10)
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The objective function (3.7) minimizes the overall cost of the selected

routes. Constraints (3.8) guarantee that each customer is serviced by exactly

one route. Constraint (3.9) imposes the use of K vehicles. Finally, constraints

(3.10) force the variables to be binary.

The SPF has some important characteristics. First, it is a general

formulation and hence applies to a large class of VRPs because some specific

route constraints can be incorporated into the definition of the set Ω (e.g.,

time windows). Second, in general the dual bounds obtained with its linear

relaxation are tight, thus it has been widely used to formulate VRPs. Third,

the routes defined in the set Ω need not to be elementary routes (or feasible

routes), those visiting a customer at most once. We remark that, even allowing

routes to visit a customer more than once, the SPF naturally discards such

routes, since constraints (3.8) forbid λr = 1 for any route r with a coefficient

ari > 1. Therefore, this enlargement of Ω still leaves SPF as a formulation

for VRPs. This last characteristic plays an important role in the design of

algorithms based on the SPF, as explained later in this section.

However, as a variable is assigned to each possible route, there is a

exponential number of such variables. This is the drawback of this formulation,

as it requires the use of column generation techniques to deal with this huge

number of columns (variables). The pricing subproblem consists of finding a

column (interpreted as a route) with minimum reduced cost. Let πi be the

dual variable of the constraint in (3.8) corresponding to i ∈ V+ and π0 be the

dual variable of constraint (3.9). We can define the reduced cost c̄r of a route

r as follows:

c̄r = cr − π0 −
∑
i∈V+

ariπi. (3.11)

Therefore, the reduced cost of a route is its actual cost minus the dual variable

π0 and the dual variable πi of each customer i it visits. This means that it

is possible to compute the reduced cost of a route as the sum of the reduced

cost of the edges in its path. In view of this, we can formulate the problem

of finding the minimum reduced cost route as a shortest path problem with a

capacity constraint (since feasible routes must satisfy the vehicle capacity) on

a graph where the cost of an edge e = (u, v) ∈ E is given by its reduced cost:

c̄e = ce − (πu + πv)/2. (3.12)

Balinski and Quandt defined Ω as the set of elementary routes. In this

definition, coefficients air are always binary and the pricing subproblem requires
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finding the minimum cost capacitated elementary route, a strongly NP-hard

problem. A more tractable pricing problem could be obtained by changing the

definition of the Ω. The set of routes can be redefined to include all walks

leaving and returning to the depot such that the sum of the demands of the

visits of the walk does not exceed the vehicle capacity. These walks could revisit

the same customer, but each additional visit required a new accounting of its

demand. Christofides et al. (11) coined such routes as q-routes and used them

in their Lagrangean method.

The advantage of solving the relaxation of the SPF using Ω as the set

of q-routes is that the resulting pricing subproblem is weakly NP-hard and

a pseudo-polynomial dynamic programming algorithm for its resolution is

available. However, if the pricing becomes easier, on the other side, the resulting

lower bounds obtained are usually significantly worse than those obtained with

Ω defined as the set of elementary routes.

Route relaxation

Balancing the complexity of the pricing with the resulting lower bounds

has become crucial to the efficiency of the algorithms based on the SPF. One

idea is to impose some controlled amount of partial elementarity on the routes.

The goal is to obtain bounds as close as possible to the elementary route bound,

while still keeping the associated pricing problem tractable. Regarding route

relaxation, we highlight two alternatives:

– The more classical q-routes without k-cycles allows multiple visits to a

customer i, on the condition that at least k other customers are visited

between successive visits.

– The more recent ng-routes requires the definition of neighborhood sets

NG(i) ⊆ V+, for each customer i ∈ V+. A set NG(i) may stand for

the |NG(i)| (this cardinality is decided a priori) closest customers and

includes i itself. An ng-route allows multiple visits to a customer i, on

the condition that at least one customer j such that i /∈ NG(j) is visited

between successive visits.

This last route relaxation aims at obtaining a better compromise between

pricing efficiency and lower bound quality. It is extensively discussed in Chapter

5.
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3.3
The Arc-Load indexed Formulation

This extended formulation for the Asymmetric CVRP (therefore valid

for the CVRP) was presented in (47) (also in (27) for the unitary demand

case). Now GD = (V,A) is a complete directed graph with arc costs ca,

a ∈ A. For any set S ⊆ V , δ−(S) = {(i, j) ∈ A : i ∈ V \ S, j ∈ S}, and

δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \S}. Let define binary variables xqa indicating

that arc a = (i, j) is traversed by some vehicle (from i to j) carrying a load —

the sum of the demands of vertex i and of its preceding vertices in the route —

of exact q units. For convenience, let Qi = {di, . . . , Q}. The Arc-Load indexed

Formulation (ALF) is:

(ALF) min
∑
a∈A

ca

Q∑
q=0

xqa (3.13)

subject to

∑
a∈δ−(i)

Q∑
q=1

xqa = 1, ∀i ∈ V+, (3.14)

∑
i∈V+

x0
0i = K, (3.15)∑

a∈δ−(i)

xq−dia −
∑

a∈δ+(i)

xqa = 0, ∀i ∈ V+, q ∈ Qi, (3.16)

xqa ∈ {0, 1}, ∀a ∈ A, q ∈ Q1, (3.17)

xq(i,0) = 0, ∀ i ∈ V+, q ∈ Q1. (3.18)

Equations (3.14) and (3.15) are customer and depot degree constraints.

Balance equations (3.16) state that if an arc with index q − di enters vertex

i then an arc with index q must leave i. This both prevents cycles and routes

with total demand greater than Q. Variables with index distinct from 0 to

the depot can be removed. Note that variables xqij with q < di can also be

removed. To provide a more simple and precise notation of this formulation,

we define a directed multigraph GQ = (V,AQ), where AQ contains arcs (i, j)q,

for all i ∈ V+, j ∈ V and for all q = di, . . . , Q, plus arcs (0, j)0, for all j ∈ V+.

When working with variables xqa it is assumed that δ−(S) and δ+(S) are the

subsets of arcs in AQ, with any index, entering and leaving S, i.e., for any set

S ⊆ V , δ−(S) = {(i, j)q ∈ AQ : i ∈ V \ S, j ∈ S}, and δ+(S) is defined in a
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similar way. The ALF can be rewritten as:

(ALF) min
∑
aq∈AQ

cax
q
a (3.19)

subject to

∑
aq∈δ+(i)

xqa = 1, ∀i ∈ V+, (3.20)

∑
aq∈δ+(0)

xqa = K, (3.21)

∑
aq−di∈δ−(i)

xq−dia −
∑

aq∈δ+(i)

xqa = 0, ∀i ∈ V+, q ∈ Qi (3.22)

xqa ∈ {0, 1}, ∀aq ∈ AQ. (3.23)

This formulation can be viewed as defining an acyclic network N =

(VQ, AQ) with a set of nodes VQ = {(i, q) : i ∈ V ; q = di, . . . , Q}. The set of

arcs is also AQ, but an arc (i, j)q ∈ AQ is interpreted as going from (i, q) to

(j, q+di). Figure 3.1 gives an example of an integral solution depicted as a set

of K paths in such a network, in that case n = Q = 5, d1 = d3 = d4 = 2, and

d2 = d5 = 3.

Figure 3.1: Representation of a solution as a set of paths in N .

The linear relaxation of this formulation yields a weak bound, the same of

the bound obtained with the SPF with Ω defined as the set of q-routes without

any cycle elimination. Therefore, using the Arc-Load indexed Formulation

directly in a branch-and-bound algorithm is not interesting. However, this

formulation may be useful in a branch-and-cut approach for the CVRP. Of

course, since xij =
∑

(i,j)q∈AQ
xqij +

∑
(j,i)q∈AQ

xqji, any inequality valid for
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the TIF could be used in ALF. But the potential advantage of ALF is to

allow the derivation and separation of new families of cuts defined over this

pseudo-polynomially large extended variable space and a particularly effective

variable fixing. Anyway, working directly with this formulation is only practical

for small values of capacity, as there are O(|A|Q) variables and O(|V |Q)

constraints.
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4
A Column and Cut Generation Algorithm

In the work of Fukasawa et al. (24), a branch-and-cut approach is com-

bined with the q-routes approach (which are interpreted as column generation

instead of the original Lagrangean relaxation of Christofides et al. (11)) to

derive superior lower bounds than those obtained with pure column or cut

generation. Following their ideas, we combine cut generation with the more

promising ng-routes. This chapter presents the formulation used to build our

basic algorithm to compute lower bounds for the CVRP. As in (24), we op-

timize simultaneously over both the Two-Index Formulation (TIF) and the

Set Partitioning Formulation (SPF). Since the resulting formulation has an

exponential number of both columns and rows, this leads to a column and cut

generation algorithm.

4.1
Formulation

Let us consider the set Ω (see Section 3.2) as the set of all q-routes. For

each r ∈ Ω define a binary variable λr and coefficients aer, for each edge e ∈ E,

indicating how many times e is traversed with load q in route r. The new

formulation for the CVRP follows:

min
∑
e∈E

cexe (4.1)

subject to

∑
r∈Ω

aerλr = xe, ∀ e ∈ E, (4.2)∑
e∈δ(i)

xe = 2, ∀ i ∈ V+, (4.3)

∑
e∈δ(0)

xe = 2K, (4.4)

λr ∈ {0, 1}, ∀ r ∈ Ω, (4.5)

xe ∈ {0, 1}, ∀ e ∈ E \ δ(0), (4.6)

xe ∈ {0, 1, 2}, ∀ e ∈ δ(0). (4.7)
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Constraints 4.2 define the equivalence between variables λr and xe. Since the

set Ω contains q-routes (or any feasible route), the vehicle capacity constraints

are immediately satisfied.

This formulation can be rewritten by replacing every occurrence of xe

by its equivalent given by 4.2. The resulting formulation is indeed the Set

Partitioning Formulation as shown below, but here presented in a different

format, with edge costs ce and coefficients are. This new format is more

convenient to see how a generic cut expressed over the edge variables xe can

be included in the SPF and also how the reduced cost of a q-route (column)

can be expressed as the sum of the reduced costs of its edges. We will refer to

its linear relaxation as Dantzig-Wolfe Master (DWM):

(DWM) min
∑
r∈Ω

(∑
e∈E

cea
e
r

)
λr (4.8)

subject to

∑
r∈Ω

∑
e∈δ(i)

are

λr = 2, ∀i ∈ V+, (4.9)

∑
r∈Ω

∑
e∈δ(0)

are

λr = 2K, (4.10)

λr ≥ 0, ∀r ∈ Ω. (4.11)

It is easy to see that DWM is in fact the linear relaxation of SPF. First,

the total cost of a route r is cr =
∑

e∈E cea
e
r, ∀r ∈ Ω. Second, since ari denotes

the number of times route r traverses customer i ∈ V+, we can state that∑
e∈δ(i) a

r
e = 2ari , i ∈ V+. Finally, we can state that

∑
e∈δ(0) a

r
e = 2 because

every route must start and end at the depot.

The relationship between variables xe and λr given by equation 4.2 is

interesting because allows us to improve the DWM by including cuts expressed

in terms of xe variables. This means that any cut valid for the TIF can be

separated, translated and added as a valid cut for the SPF. For example, the

Rounded Capacity Cuts can be rewritten as follows:

∑
r∈Ω

∑
e∈δ(S)

areλr ≥ 2k(S) ∀S ⊆ V+. (4.12)

A generic cut of format
∑

e∈E αexe ≥ b can be included in the DWM as
∑

r∈Ω

(
∑

e∈E αea
r
e)λr ≥ b. This additional cut contributes with the value −αeπ to

the computation of the reduced cost c̄e of an edge e ∈ E, where π is the
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corresponding dual variable. Therefore, the structure of the pricing problem is

not changed, meaning that such cuts are robust.

4.2
Column Generation

The reduced cost of a column (λ variable) is the sum of the reduced costs

of the edges in the corresponding q-route. Suppose that, at a given instant,

there are nR constraints over the xe variables in the DWM, including equalities

(4.10) and (4.9). Constraint (4.10) has the dual variable π0, the constraint in

(4.9) corresponding to i ∈ V+ has the dual variable πi, and each additional

constraint l, n < l < nR, of format
∑

r∈Ω (
∑

e∈E α
l
ea
r
e)λr ≥ bl, has the dual

variable πl. The reduced cost of an edge e ∈ E is defined as:

c̄e = ce −
nR−1∑
l=0

αleπl. (4.13)

The pricing subproblem for solving the DWM consists in finding a shortest

path in G from node 0 (the depot) to node 0 satisfying the capacity constraint

(i.e., the shortest q-route), with respect to the current edge reduced costs c̄e.

This problem is a particular case of the well known Shortest Path Problem with

Resource Constraints (SPPRC) and can be solved in O(n2Q) time, as shown

in Chapter 5. As mentioned before, a significantly stronger linear relaxation

for DWM would be obtained if Ω was redefined as the set of elementary routes,

thus resulting in solving the Elementary Shortest Path Problem with Resource

Constraints (ESPPRC). On the other hand, the pricing subproblem would

become strongly NP-hard. A possible alternative is pricing q-routes without

s-cycles (32). While pricing q-routes without 3-cycles is not much more costly

than pricing ordinary q-routes (24), using values of s larger than 4 can make

the algorithm too slow.

In view of this, our pricing algorithms are based on the ng-route relaxa-

tion (4), a more recent alternative for imposing partial elementarity. From now

on, Ω is redefined to be a set of ng-routes. Since the definition of the ng-routes

can be naturally extended to generate only elementary routes (simply setting

NG(i) = V+, ∀i ∈ V+), such routes are also considered. The main contribution

of our pricing algorithms (in this part of the thesis) is a clever combination of

Decremental State-Space Relaxation (DSSR) (54), ng-routes (3), bidirectional

search (53) and completion bounds, as described in detail in Chapter 5.
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4.3
Cut Generation

Besides the RCCs 3.4, there are several known families of valid CVRP

cuts over the edge variables. The package CVRPSEP (37) contains effective

heuristic separation procedures for the following families of cuts: rounded

capacity, framed capacities, strengthened combs, multistars, and extended

hypotours. While all those families may play a significant role in branch-and-

cut algorithms over the TIF (like (38)), only RCCs and (by a much smaller

degree) strengthened combs cuts can strengthen the SPF in a significant way

(24). It seems that most cuts in the other families are already implicitly given

by constraints (3.8)-(3.9). Indeed, Letchford and Salazar (35) proved that all

generalized large multistar cuts are implied by those constraints even if the

definition of Ω includes all q-routes.

Therefore, we included only the rounded capacity and strengthened

combs cuts, using the separation procedures available in the CVRPSEP

package. Initially, the DWM includes only degree constraints 4.9 and 4.10,

then those cuts are being added during the algorithm. We convert a solution

λ̄ from DWM into a corresponding x̄, using Equation 4.2. If this solution is

fractional, it is given as input to the CVRPSEP package (37) The violated

cuts found are translated back into λ variables to be introduced in the DWM.

4.4
A Column and Cut Generation Algorithm

The algorithm starts by adding columns using the heuristic pricing

described in Section 5.4.6. When the heuristic is not able to find more columns

with negative reduced cost, it looks for all violated cuts. We have found that

this strategy works better than call the cut separation procedure after the

convergence of the exact pricing (both heuristic pricing and cut separation

perform quickly). The violated cuts found are added to the DWM and the

heuristic pricing restarts. These passes are repeated until both heuristic and

separation fail. At this point, the exact pricing (Section 5.4) is called. If

negative reduced cost are found, the whole processes restarts. This procedure

is repeated until both column generation and cut separation fail.
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5
Pricing without Non-Robust Cuts

Column generation has become a widely applied technique for exactly

solving different routing problems. Currently, it is involved in almost all of the

current most efficient approaches to routing problems. These approaches use

the Set Partitioning Formulation, defined in Section 3.2. The resolution of its

linear relaxation requires the use of column generation techniques. In order to

obtain the best possible lower bounds, ideally the set Ω should only contain

elementary routes. In that case, the pricing subproblem to be solved can be

modeled as the Elementary Shortest Path Problem with Resource Constraints

(ESPPRC).

The ESPPRC is a shortest path problem on a graph where the customers

have an amount of resources that are consumed during a visit. The resource

constraints require that the total of the resources consumed by any feasible

solution does not exceed the existing limits. There may be edges with negative

cost, and these edges may generate negative cycles, but because a feasible

solution must be an elementary path, revisiting a customer is strictly forbidden.

The ESPPRC is a difficult to solve NP-Hard problem (see Dror (20)).

In general, the current best performing algorithms have acceptable processing

times when the optimal solution is a path with at most fifteen customers. We

refer to Pugliese and Guerriero (52) for a review of the approaches proposed

throughout the last three decades. The following publications are central:

Feillet et al. (21), Chabrier (8), Righini and Salani (53, 54), and Boland (7).

Instead of solving the ESPPRC, the original work of Christofides et al.

(11) solves its relaxation, the Shortest Path Problem with Resource Constraints

(SPPRC). This is possible because the SPF remains a valid formulation even

if the pricing subproblem is redefined to be the SPPRC. This relaxation does

allow revisiting a same customer in a route. The resulting non-elementary

routes are often called q-routes. However, the resource constraints are the

same as the ESPPRC, and therefore, every time a customer is visited, the

relevant resource consumption is counted, and the total consumption must

still respect the existing limits. A recent survey about the SPPRC can be

found in (19). This relaxation has some interesting properties. First, as distinct
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from the original problem, it can be solved in pseudo-polynomial time using a

dynamic programming algorithm. In addition, even relaxing the elementarity

constraint, the SPF bounds found by its linear relaxation are still reasonable,

especially when there are few customers per route. Furthermore, to strengthen

the bounds of the linear relaxation, (11) also demonstrated that size two

cycles can be forbidden with almost no extra effort. In search of even better

bounds, researchers tried other cycle elimination devices in order to make non-

elementary routes closer to elementary routes, without dealing with the whole

complexity of the ESPPRC.

The work of Irnich and Villeneuve (32) devised an algorithm that

solves the SPPRC by forbidding cycles up to a given size. This algorithm is

significantly more complicated, resulting in a complexity that grows factorially

with the size of the cycles being forbidden. On account of this, their method

quickly becomes impractical. Eliminating cycles of size four or more is already

too time consuming compared with the bound improvement obtained. Such

behavior was verified in practice by Fukasawa et al. (24) for the CVRP.

Recently, Baldacci et al. (4) proposed another compromise between

elementary routes and q-routes: ng-routes. These ng-routes are restricted

non-elementary routes built accordingly to customer sets, ng-sets, which are

associated with each customer and limit their “memory”. When a path arrives

at given customer, it “forgets” previous visits to customers that do not belong

to the its ng-set. Further visits to those customers are them allowed. As

the set sizes increase, the problem becomes harder to solve. This is due to

the fact that the ng-routes generated are going to be increasingly closer to

elementary routes. Although the SPPRC with ng-routes can be solved in

pseudo-polynomial time for a fixed ng-set size, to the best of our knowledge,

there is no work that solves this problem for ng-sets larger than 26 (55).

The work described in this chapter aims at efficiently solving both the

SPPRC with restricted non-elementary routes and the ESPPRC. The first

improvement is obtained by adapting the Decremental State-Space Relaxation

(DSSR) technique of Righini and Salani (54) to the SPPRC with ng-routes.

This technique was initially proposed for the ESPPRC, where the elementarity

restriction is relaxed and the problem is then solved iteratively, rebuilding the

restrictions as needed, until the optimal solution is found. The main difference

of our algorithm is to relax the restriction imposed by the ng-sets instead of

relaxing the elementarity of the routes. A quite similar approach was developed

independently by Roberti and Mingozzi (55), their algorithm was applied on

the Delivery Man Problem.

Our algorithm is accelerated by using completion bounds. Because an
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iteration of the DSSR is a relaxation for its next iteration, the completion

bounds estimate lower bounds for completing the paths being built on a given

iteration. Also, given an upper bound for the optimal solution (which is usually

equal to zero for pricing algorithms), it avoids the extension of paths that may

exceed the known upper bound on the next DSSR iteration. Therefore the

DSSR algorithm is also used to systematically compute improved completion

bounds.

These two techniques were already used together in the work of Pecin

(46). In that work, a column generation procedure that uses the ESPPRC as

the pricing subproblem was proposed for the CVRP. Using the algorithm of

(24), instances with up to 100 customers could be solved to optimality pricing

only elementary routes.

Furthermore, we also present algorithms based on bidirectional dynamic

programming, including the combination of this technique with DSSR. This

combination was first used in (54) to solve the ESPPRC. We extend their work

to the context of the ng-routes.

Finally, we demonstrate how our algorithms for the SPPRC with restric-

ted non-elementary routes can be easily extended to generate only elementary

routes. We also highlight the two new elements existing in our approach that al-

low us to double the size of the ESPPRC instances solved thus far. We compare

our results for the ESPPRC with our implementation of the best algorithm

proposed in (54).

The proposed algorithms are then applied to the CVRP. We report

experiments demonstrating that our algorithms are able to solve the SPPRC

with ng-set sizes up to 64 and the ESPPRC for hard instances obtained when

solving the column generation. The results of the column generation algorithm

also provide a clear idea of the gains in the lower bounds comparing the SPPRC

with different ng-set sizes and also with the ESPPRC, as well as the time

required for computing them. We show that our algorithms price elementary

routes for instances up to 199 customers.

As mentioned in Section 1.2.1, part of the contents described in this

chapter is a joint work with the doctoral thesis of Rafael Martinelli (39) and

therefore has similarities with his text.

This chapter is organized as follows. Section 5.1 presents the (E)SPPRC

and explains the required mathematical notation. The basic q-route relaxation

is presented in Section 5.2. The ng-route relaxation is described in Section

5.3. Section 5.4 explains our labeling algorithms to price ng-routes. Section

5.5 shows how our algorithms can be used to obtain only elementary routes

and also highlights the main elements that allowed us to build a very efficient
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method for solving the ESPPRC. Section 5.6 reports the computational results

for the CVRP. Finally, Section 5.7 presents some conclusions.

5.1
Shortest Path Problem with Resource Constraints

The pricing subproblem for solving the linear relaxation of the SPF (for

general VRPs) by column generation has been modeled by many authors as a

Shortest Path Problem with Resource Constraints (SPPRC). Let G = (V ,A)

be a directed graph with V , a vertex set composed of a set of customers C
plus a source vertex s and a destination vertex t and A, a complete arc set

minus {(s, t), (t, s)}. Let R be a set of resources. For each arc (i, j) ∈ A, let

cij (unrestricted in sign) be the cost of the arc and wrij be the consumption

of the edge, for each r ∈ R. For each pair i ∈ C and r ∈ R let ari and bri

be two non-negative values, such that the total resource consumption along a

path from s to i must belong to the interval [ari , b
r
i ]. The SPPRC aims to find

a minimum cost, non necessarily elementary, path from s to t that satisfies all

resource constraints. When the shortest path must be elementary, the problem

becomes the Elementary SPPRC (ESPPRC).

The resources constraints can model different types of restrictions. For

instance, most vehicle routing problems consider that the vehicles have a

known capacity, and this capacity cannot be exceeded in a single route. Other

problems have time windows, which require the route to visit a customer in a

given interval of time. Moreover, one can also view the elementarity constraint

as resource constraints, where each customer defines a binary resource and

when a route visits a customer, it consumes all of the associated resource.

In this work, we deal only with the capacity constraint, in addition to

the obvious elementarity constraint. The customer set C corresponds to the set

V+, and the source s and the destination t are interpreted as a single vertex

representing the depot, labeled 0 (therefore, the solution of the problem is

a route instead of a path). The cost cij is equal to the current reduced cost

of the corresponding edge (given by Equation 4.13). The pricing of q-routes

corresponds to an SPPRC with a single resource 0 (the vehicle capacity). For

each (i, j) ∈ A, w0
ij = dj, and for each i ∈ V+, a0

i = di and b0
i = Q. However, the

pricing of elementary routes requires the definition of |V+| additional resources.

For each arc (u, v) ∈ A and each i ∈ V+, wiuv is defined as 1 if i = v and 0

otherwise, and for each i ∈ V+, aii = 1 and bii = 1.
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5.2
The q-route Relaxation

The pricing of q-routes can be computed by the following dynamic

programing algorithm. Let T be a dynamic programming matrix of dimension

|V |×(Q+1). Let each entry T (i, q) be the minimum reduced cost value of a path

that starts at the depot, visits a set of customers (some may be visited more

than once) and ends at customer i with cumulative demand of q (including

di). Initially, define T (i, q) = +∞, for all i ∈ V and q ∈ {0, . . . , Q}. Then, use

the following recurrence equation to fill matrix T , which gives a complexity of

O(n2Q): {
T (i, di) = c̄0i

T (i, q) = minj∈V+{T (j, q − di) + c̄ji}

Houck et al. (30) and Christofides et al. (11) noticed that one can

find minimum cost q-routes without 2-cycles (subpaths i → j → i, i 6= 0)

without changing this complexity. Restricting the q-routes to those without

such cycles improves the SPF bounds. Remark that minimum cost q-routes

without s-cycles can be found in O(s!s2n2Q) time (32, 24), which is pseudo-

polynomial for fixed s. Of course, larger values of s give stronger bounds.

However, experiments with q-routes with s-cycle elimination in (24) suggest

that it is not worthy to use values of s above four. From this point, the pricing

indeed becomes much slower. Unhappily, 4-cycle elimination is not enough to

obtain bounds really close to the elementary bounds in some instances.

5.3
The ng-Route Relaxation

A simple alternative to cycle elimination for obtaining partial element-

arity in the routes would be to select a subset S of customers to forbid be-

ing revisited. The algorithm for the SPPRC would be run defining unitary

resources only for those customers. However, this is not likely to produce near-

elementary routes if |S| is significantly smaller than |V+|. Recently, Baldacci

et al. (4) devised a better way to impose partial elementarity. Instead of car-

rying the information that a certain customer was already visited by a path

in all its extensions, a more limited memory mechanism is proposed. It takes

advantage of the fact that the cycles that are likely to appear when pricing

non-elementary routes, even when they are too long to be efficiently avoided

by s-cycle elimination, only use edges with small cost and are confined to

relatively small “neighborhoods” in the graph.

This new route relaxation, coined ng-route relaxation in (4) was intro-

duced for both the CVRP and VRPTW, and it was later extended to the

DBD
PUC-Rio - Certificação Digital Nº 1012686/CA



Chapter 5. Pricing without Non-Robust Cuts 44

Generalized VRP (GVRP) by (6), where it was used to solve transformed

Capacitated Arc Routing Problem (CARP) instances.

For each customer i ∈ V+, let NG(i) ⊆ V+ be a subset of customers

that have a relationship with i, such that NG(i) 3 i. A possible representation

for this relationship can be a neighborhood relationship, i.e., NG(i) contains

the nearest customers of i, including i. These sets are called ng-sets, and they

contain the customers that customer i is able to “remember.” For instance,

when a path P is being built, by the time it arrives at customer i, it has a

set Π(P ) that represents its “memory” thus far. If customer i belongs to set

Π(P ), the extension is forbidden. On the other hand, if i does not belong to

set Π(P ), the extension is allowed and set Π(P ) is updated to “forget” the

customers that customer i is not able to “remember,” i.e., the customers that

do not belong to NG(i). It is clear that if a customer is “forgotten,” it can

be used to form a cycle in future extensions of path P . At this point, we can

conclude that the size of the ng-sets is an important factor in the quality of

solutions because the larger the ng-sets are, the greater the smallest cycles that

can appear in a path. The size of each ng-set NG(i) is limited by ∆(NG(i)),

which is a parameter defined a priori. Obviously, this size also changes the

pricing complexity.

Let P = (0, i1, . . . , ip−1, ip) be a path starting at the depot, visiting a

sequence of customers and ending at customer ip and V (P ) be the set of

customers visited by path P . The set Π(P ) of prohibited extensions (the

“memory”) of path P can be defined as follows:

Π(P ) =

{
ik ∈ V (P )\{ip} : ik ∈

p⋂
s=k+1

NG(is)

}
∪ {ip} . (5.1)

That is, Π(P ) contains customer ip and every customer ik, k = 1, . . . , p−
1, of P that belongs to all sets NG(ik+1), . . . , NG(ip). Given q(P ) =

∑
i∈V (P ) di

as the total demand (load) collected by path P and c̄(P ) as the total reduced

cost of path P , let L(P ) = (c̄(P ), v(P ), q(P ),Π(P )) be a label associated with

a path P , which ends at customer v(P ) = ip. We say that a label L(P ) can be

extended to a vertex ip+1 if the following two conditions hold:

1. ip+1 /∈ Π(P ) and

2. q(P ) + dip+1 ≤ Q.

If the extension is performed, the vertex ip+1 becomes the last vertex of

a new path P ′ = (0, . . . , ip, ip+1) and a new label L(P ′) can be obtained from

L(P ) by the following operations:

L(P ′) = (c̄(P ) + c̄ipip+1 , ip+1, q(P ) + dip+1 ,Π(P ) ∩NG(ip+1) ∪ {ip+1}). (5.2)
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If vertex ip+1 is the depot, then the new path P ′ defines a route. From

this point, L(P ′) can not be extended to any vertex. We call ng-routes (resp.

ng-paths) w.r.t ng-sets NG(i) the routes (paths) obtained by any label setting

algorithm that implements the above ideas. An ng-route allows multiple visits

to a customer i, on the condition that at least one customer j such that

i /∈ NG(j) is visited between successive visits.

A forward dynamic programming algorithm can be used to compute

ng-routes. This algorithm is exponential on the size of ∆(NG(i)), remaining

pseudo-polynomial for fixed ∆(NG(i)). Furthermore, its efficiency depends on

the use of some techniques to speed up its execution.

Let P1 = (0, i1, . . . , ip−1, ip) and P2 = (0, ip+u, . . . , ip+2, ip+1) be feasible

ng-paths w.r.t ng-sets NG(i), associated, respectively, with labels L(P1) and

L(P2), we say that P2 is a feasible completion for P1 if the following proposition

holds:

Proposition 1 The route R = (0, i1, . . . , ip−1, ip, ip+1, ip+2, . . . , ip+u, 0) given

by the concatenation of L(P1) and L(P2) is a feasible ng-route w.r.t ng-sets

NG(i) iff q(P1) + q(P2) ≤ Q and Π(P1) ∩ Π(P2) = ∅.

Proof 1 Obviously, if q(P1) + q(P2) > Q then the resulting route can not be a

feasible ng-route because it does not satisfy the capacity constraint imposed to

feasible routes.

Suppose that there exists a customer v ∈ (Π(P1) ∩ Π(P2)) and that the

last occurrence of v on P1 has index k. Thus, v ∈ NG(ik) ∩ · · · ∩ NG(ip).

Analogously, let k′ be the index of the last occurrence of v on P2. Therefore,

v ∈ NG(ip+1)∩ · · · ∩NG(ik′ ). The route R is not a feasible ng-route w.r.t ng-

sets NG(i) since the repetition of v on cycle H = (ik = v, . . . , ip, ip+1, . . . , v =

ik′ ) does not respect the ng-sets.

If Π(P1) ∩ Π(P2) = ∅ then there are two cases. If the resulting route has

no cycle H passing by (ip, ip+1) then it must be a feasible ng-route w.r.t ng-sets

NG(i) because the cycles on P1 or on P2 are allowed, since both P1 and P2 are

feasible ng-paths. Otherwise, if it has such cycle, then H must be allowed by

the ng-sets, because any vertex v that repeats in H does not belong to both

Π(P1) and Π(P2).

If P2 is a feasible completion for P1 and L(P1) is concatenated with L(P2),

the resulting new label represents a route with total demand (load) and total

reduced cost given by, respectively, q(P1) + q(P2) and c̄(P1) + c̄ipip+1 + c̄(P2).

To reduce the number of possible labels, a dominance rule is incorporated

into the algorithm. A label L(P1) dominates a label L(P2) if every feasible

completion of P2 yields a route with reduced cost not smaller than the feasible
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route obtained by applying the same completion into P1. Sufficient conditions

for that are:

(i) v(P1) = v(P2), (ii) q(P1) ≤ q(P2), (iii) Π(P1) ⊆ Π(P2), and

(iv) c̄(P1) ≤ c̄(P2).

The maximum number of non-dominated labels is bounded by 2∆−1nQ, where

∆ = maxi{∆(NG(i))}. Unless Q is very large, if ∆ is small the algorithm is

guaranteed to be reasonably fast. However, large values of ∆ may cause an

exponential explosion on the number of labels.

5.4
Pricing Algorithms

As discussed earlier, a basic ng-route relaxation implementation does

not allow the use of large ng-sets, a limitation which weakens the quality

of the lower bounds found. To address this issue, we provide an efficient

implementation, adapting the Decremental State-Space Relaxation for the ng-

route relaxation. This technique was introduced in (54) to solve the ESPPRC.

The original version of the algorithm helps reduce the number of labels to be

managed during the dynamic programming algorithm that builds elementary

paths. First, it relaxes the elementarity of the paths and, at each iteration,

identifies which customers are being repeated on the best path found and then

prohibits the repetition of these customers in subsequent iterations.

The main difference of our algorithm is that instead of relaxing the

elementarity of the paths, the new algorithm relaxes the ng-set of each

customer, therefore relaxing the ng-route restrictions.

The algorithms presented also use bidirectional dynamic programming

that exploits the symmetry of the CVRP and completion bounds.

5.4.1
Forward Labeling

The basic exact forward dynamic programming labeling algorithm as-

signs a label L(P ) = (c̄(P ), v(P ) = i, q(P ),Π(P ), pred(P )) to each feasible

ng-path P = (0, . . . , i), i ∈ V , storing its reduced cost, end vertex, load, set of

prohibited extensions, and a pointer to its predecessor label. Each pair (i, q)

where i ∈ V and q ∈ {0, . . . , Q} defines a bucket F (i, q). Buckets F (i, q) are

used to store labels representing paths that start at the depot and end at ver-

tex i with total load equal to q. Only non-dominated labels are stored in the

buckets.
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Algorithm 5.1 presents the pseudocode of our basic Forward Labeling.

At first, we set F (0, 0) with a single starting label L = (0, 0, 0, ∅, nil) and all

other buckets with no label. Next, a forward dynamic programming is used

to fill the buckets F (i, q), running from q = 0 up to q = Q. When processing

the bucket F (i, q), the algorithm iterates through all labels L(P1) belonging to

F (j, q− di), for all vertices j ∈ V+, such that q− di > 0. As the basic ng-route

relaxation algorithm, the extension from L(P1) to i can only be performed

if i /∈ Π(P1). If this condition holds, a new label, say L(P2), is then created

and it must be stored in the bucket F (i, q). Therefore, this is the right time

to check for the dominance rule, which can be verified for all the labels in

F (i, q′),∀q′ ≤ q. Surprisingly, we have found that the algorithm usually runs

faster if the dominance rule is tested only for labels of the same bucket, i.e.,

for the labels from inside F (i, q) (unless Q is very large). This comes from the

fact that labels associated with paths using less load are less likely to dominate

others using higher load. To accelerate the checking for dominated labels, we

keep the labels of a same bucket ordered by reduced cost.

Another way to improve the implementation of the dominance rule is

described in (4). When the paths of the bucket F (i, q) are being computed,

the algorithm uses a dominance list associated with the customer i, which

stores the best costs for every possible configuration of Π(P ) and q′ < q, to do

the dominance. This way, it is faster to check the list than to iterate through

the buckets F (i, q′) for each q′ < q. We do not use this technique because it

is not scalable, as the size of the dominance list is exponential in the value of

∆(NG(i)), reaching its size limit when ∆(NG(i)) ≈ 13.

Let NG(0) be defined as {0}. At the end of Algorithm 5.1 each bucket

F (0, q), 1 ≤ q ≤ Q, will contain a single label representing the minimum

reduced cost route with load q. The best routes are extracted by procedure

buildRoutes, which uses the pointers stored in the labels to build the routes.

5.4.2
Symmetric Bidirectional Labeling

We can take advantage of the symmetry of the CVRP to develop the

Symmetric Bidirectional Labeling algorithm, whose pseudocode is presented

in Algorithm 5.2. It starts by running the Forward Labeling in order to obtain

all non dominated labels representing paths with load q ≤ Q/2. In fact, an

additional extension beyond the load Q/2 must be performed, as pointed in

(53). This happens because the demand of a customer must be fully serviced by

a path that visits it, thus there may be a path that can not be splitted exactly

in the middle of its load. In view of this, the new algorithm actually performs
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Algorithm 5.1 Forward Labeling Algorithm

1: procedure forwardLabeling(N)
2: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
3: output: the best ng-routes w.r.t ng-sets NG(i).

4: F (i, q)← ∅, ∀i ∈ V, q ∈ {0, . . . , Q}
5: F (0, 0)← {(0, 0, 0, ∅, nil)}
6: for q := 0, . . . , Q do
7: for all i ∈ V do
8: if q − di > 0 then
9: for all j ∈ V+ do

10: for all L1 = (c̄1, j, q − di,Π1, ) ∈ F (j, q − di) do
11: if i /∈ Π1 then
12: L2 = (c̄1 + c̄ji, i, q, (Π1 ∩NG(i)) ∪ {i}, pointer to L1)
13: insert← true
14: for all L ∈ F (i, q) do
15: if L2 dominates L then delete L
16: else if L dominates L2 then insert← false, break

17: if insert then
18: F (i, q)← F (i, q) ∪ L2

19: return buildRoutes()

the Forward Labeling to obtain all labels L(P ) (q(P ) = q, v(P ) = i) where

q−di ≤ Q/2 (this imposes a slight change in the pseudocode of Algorithm 5.1,

because now line 8 must include the condition that tests if q−di ≤ Q/2). Next,

the routes are obtained by a concatenation step that exploits the symmetry of

the problem, as explained below.

Let B(j, q) be a bucket containing all non dominated labels representing

paths that start at the depot and end at customer j with total load less than

or equal q. The routes with load q ≤ Q/2 are obtained from buckets F (0, q),

as before. All the other routes are obtained by concatenating the labels from

F (i, q) with the labels from B(j,Q − q), for all i ∈ V+, j ∈ V and q > Q/2.

Since the concatenation can be time consuming, we use the fact that the labels

are sorted in the buckets in increasing reduced cost order (IRCO) to accelerate

this step. Procedure Save saves pointers to labels for subsequent concatenation

and procedure buildRoutes concatenates the labels to build the routes.

Remark that if the problem is represented using a directed graph (e.g.,

if the problem is the Asymmetrical CVRP), the associated pricing will be per-

formed over an asymmetric reduced cost matrix. In this case, the bidirectional

algorithm must explicitly run some backward labeling procedure before the

concatenation, extending the labels from the depot but following the opposite

direction of the arcs. In the case of the ACVRP, the backward procedure can

be performed running the Forward Labeling over the transposed cost matrix.
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Algorithm 5.2 Symmetric Bidirectional Labeling Algorithm

1: procedure bidirectionalLabeling(N)
2: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
3: output: the best ng-routes w.r.t ng-sets NG(i).

4: Run Forward Labeling to obtain all labels L(P ) where q(P )− dv(P ) ≤ Q/2

5: B(i, q)← F (i, q),∀i ∈ V, q ∈ {0, . . . , Q/2} . Copies only the pointers
6: for all i ∈ V do
7: for q := 1, . . . , Q/2 do
8: for all L ∈ B(i, q − 1) do
9: B(i, q)← B(i, q) ∪ {L} . Copies only the pointers

10: for all i ∈ V+ do
11: for all j ∈ V such that j 6= i do
12: for q = Q/2 + 1 to Q do
13: for all L1 = (c̄1, i, q,Π1, ) ∈ F (i, q) in IRCO do
14: for all L2 = (c̄2, j, ,Π2, ) ∈ B(j,Q− q) in IRCO do
15: c̄r ← c̄1 + c̄ij + c̄2

16: if c̄r ≥ 0 then break

17: if Π1 ∩Π2 = ∅ then
18: Save(pointer to L1, pointer to L2)

19: return buildRoutes()

5.4.3
Decremental State-Space Relaxation

The adapted DSSR is an iterative algorithm and it works by relaxing the

state-space of the original ng-sets NG(i). At each iteration k, the algorithm

uses the subsets Γki ⊆ NG(i) as a replacement for NG(i). These subsets Γki take

the role of NG(i) in the definition of the function Π, described in Equation

(5.1), and in the creation of new labels, as shown in Equation (5.2). The

algorithm initializes Γ0
i , ∀i ∈ V , as empty sets and executes the basic forward

dynamic programming Algorithm 5.1. As the best routes found by this dynamic

programming are not necessarily ng-routes w.r.t. the original ng-sets NG(i),

they cannot be considered as the output of the pricing without verifying their

feasibility. This test is performed and the Γki subsets are updated if necessary, as

described hereafter. If at the end of iteration k some subset Γki is updated, the

forward dynamic programming algorithm is executed again with new subsets

Γk+1
i .

Let a cycle of customers be defined as a sub-path H = (i, . . . , j), where

i = j, and let H (P ) be the set of all cycles of customers in the path P . To

evaluate if the best route R∗k found in the end of iteration k is an ng-route,

the algorithm must check if there is no cycle H ∈ H (R∗k) which would not
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be allowed to be created if the original ng-sets NG(i) were being used. This

happens only when the first customer j of cycle H (we also refer to it as the

repeated customer of the cycle) is in all NG(l), ∀l ∈ V (H), i.e., customer

j is not “forgotten” by any other customer of the cycle. In this case, we

designate such a cycle H as a forbidden cycle w.r.t the original ng-sets NG(i).

If any such cycle H is found, we add the repeated customer j to subsets Γk+1
l ,

∀l ∈ V (H). This prohibits cycle H from appearing in any path obtained in

the next iterations. More than that, this prohibits any cycle H
′

= (j, . . . , j)

in which V (H
′
) ⊆ V (H) from appearing in the next iterations. On the other

hand, if no such forbidden cycle is found at the end of iteration k, then the

best route R∗k is an ng-route and the algorithm stops.

Algorithm 5.3 reports the DSSR pseudocode. The input parameter of

the algorithm are the original ng-sets NG(i), ∀i ∈ V . The procedures with

self-explanatory names selectBestRoute, isNGRoute and updateNGSets are

responsible, respectively, for extracting the best route of a set of routes,

determining if a given route is a valid ng-route with respect to ng-sets NG(i)

and to update the subsets Γki to the next iteration. Algorithm 5.3 also uses

the procedure forwardLabeling, which is presented in Algorithm 5.1, to obtain

ng-routes with respect to subsets Γki passed as input parameters.

It is noteworthy to mention that if the best route found is indeed an

ng-route, the algorithm can stop and return only this route. However, if the

objective is to find a set of feasible solutions, as is the case of the pricing, the

algorithm can also return this route together with any other route certified to

be an ng-route. In fact this is a small drawback of DSSR, since the state-space

relaxation may produce the undesirable effect of losing some suboptimal routes.

Nevertheless, if the best route is not an ng-route and one needs to find any

feasible solution, any route that is indeed an ng-route can be returned, even if

the best route is not feasible. In this case, we consider it as being a heuristic

run of the algorithm, not an exact one. This method is useful to quickly price

routes on intermediate iterations of column generation algorithms, where there

is no need to generate the optimal solution.

5.4.4
Decremental State-Space Relaxation with Bidirectional Search

Righini and Salani (54) also solve the ESPPRC by combining the

Decremental State-Space Relaxation technique with bidirectional dynamic

programming. Following their ideas, we also built a similar algorithm to

compute ng-routes, whose pseudocode is shown in Algorithm 5.4. The new

algorithm works exactly as Algorithm 5.3, but instead of solving each iteration
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Algorithm 5.3 Pure DSSR Algorithm

1: procedure DSSR(N)
2: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
3: output: the best ng-routes w.r.t ng-sets NG(i).

4: Γi ← ∅, ∀i ∈ V , ng ← false, k ← 0
5: while not ng do
6: R ← forwardLabeling(Γ)
7: R∗k ← selectBestRoute(R)
8: if isNGRoute(R∗k) then
9: ng ← true

10: else
11: updateNGSets(N, R∗k)

12: k ← k + 1

13: return buildRoutes()

14: procedure isNGRoute(R)
15: for all H = (v, . . . , v) ∈H (R) do
16: forbiddenCycle← true
17: for all l ∈ V (H) do
18: if v /∈ NG(l) then
19: forbiddenCycle← false
20: break
21: if forbiddenCycle then
22: return false
23: return true

24: procedure updateNGSets(N, R)
25: for all H = (v, . . . , v) ∈H (R) do
26: forbiddenCycle← true
27: for all l ∈ V (H) do
28: if v /∈ NG(l) then
29: forbiddenCycle← false
30: break
31: if forbiddenCycle then
32: for all l ∈ V (H) do Γl ← Γl ∪ {v}
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of the DSSR using the Forward Labeling (Algorithm 5.1) it uses the Symmetric

Bidirectional Labeling (Algorithm 5.2).

Algorithm 5.4 DSSR with Bidirectional Search Algorithm

1: procedure DSSRwithBidSearch(N)
2: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
3: output: the best ng-routes w.r.t ng-sets NG(i).

4: Γi ← ∅, ∀i ∈ V , ng ← false, k ← 0
5: while not ng do
6: R ← bidirectionalLabeling(Γ)
7: R∗k ← selectBestRoute(R)
8: if isNGRoute(R∗k) then
9: ng ← true

10: else
11: updateNGSets(N, R∗k)

12: k ← k + 1

13: return buildRoutes()

5.4.5
Completion Bounds

Besides dominance, there is a second mechanism for eliminating labels

along the labeling algorithms. If it can be proved that a partial path P can

not be completed into a route with negative reduced cost, then L(P ) can be

removed from its bucket. Of course, it is not possible to find the exact cost of

the best completion for every P without running the full original algorithms.

Instead, one needs to devise completion bounds, i.e., lower bounds on the cost

of the completions; they should be obtained in a relatively fast way.

To further speed up the Algorithm 5.3, we calculate completion bounds

during the DSSR in a similar manner as performed by Pecin (46) for the

elementary route. At the end of iteration k, the completion bounds are

calculated for each customer i ∈ V+ with every load q ∈ {0, . . . , Q}, and then

used at iteration k + 1. As mentioned before, the completion bounds are used

to estimate a lower bound on the value of a route during its creation, thus

discarding any route that would not lead to a negative reduced cost. Given

T ∗k (i, q), the value of the best path which starts at customer i and ends at

the depot with load equal q (including di), the completion bounds T̂k(i, q) are

calculated as shown in Equation (5.3) and represents a lower bound on the

value of the best path that starts at customer i and ends at the depot with

load less than or equal q.
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T̂k(i, q) = min
q′≤q
{T ∗k (i, q′)} . (5.3)

It is important to observe that due to the symmetry of the CVRP, T ∗k (i, q)

can be obtained directly from the buckets F (i, q). This is true because the value

of the best path that starts at the depot and ends at customer i with total load

equal q has the same value as T ∗k (i, q), as shown by (4). On the other hand, if

the problem is the ACVRP, to obtain these values, the direction of the edges

has to be reversed, as also shown by (4). In this case, the last iteration of the

DSSR algorithm has to be executed again before the calculation.

After calculating the completion bounds at the end of iteration k − 1,

they can be used at iteration k to avoid the extension of a given label

L(P ) = (c̄(P ), j, q(P ),Π(P )) to a customer i if the following conditions hold:

c̄(P ) + c̄ji + T̂k−1(i, Q− q(P )) ≥ 0. (5.4)

This equation calculates a lower bound on the value of the reduced cost

of any route the label L(P ) can generate, because T̂k(Q − q(P ), i) is a lower

bound on the value of the best path, which would close path P after it is

extended to customer i. Obviously, if the value of Equation (5.4) is greater

or equal than zero, the label L(P ) cannot generate any route with a negative

reduced cost, and therefore, it can be discarded. It is interesting to highlight

that the completion bounds becomes stronger along the iterations of the DSSR,

because iteration k is a relaxation of iteration k+1, i.e., given that Γki ⊆ Γk+1
i ,

∀i ∈ V+.

Algorithm 5.5 reports the pseudocode for pricing ng-routes with DSSR

and completion bounds. It differs from Algorithm 5.3 only due to the use

of completion bounds. The procedures selectBestRoute, isNGRoute and up-

dateNGSets have the same meaning as before and generateCompletionBounds

is a new procedure that calculates the bounds as shown in Equation (5.3).

The procedure boundedForwardLabeling is a slight modification of procedure

forwardLabeling of Algorithm 5.1, in order to include the completion bounds

calculated as shown in Equation (5.4).

Finally, Algorithm 5.6 combines ng-routes, DSSR, symmetric bidirec-

tional search and completion bounds. It differs from 5.4 only by using com-

pletion bounds. Given c̄(R∗k), the reduced cost of the best route at the k-

th iteration of the DSSR, this algorithm calculates completion bounds when

c̄(R∗k) > ρc̄(R∗
k′

) (we use ρ = 0.5), where k
′
< k is the iteration in which the last

calculation was performed. These completion bounds are obtained by running

the boundedForwardLabeling procedure. Next, the bidirectionalLabeling pro-

cedure uses these bounds by running the boundedForwardLabeling instead of
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Algorithm 5.5 DSSR with Completion Bounds Algorithm

1: procedure DSSRwithBounds(N)
2: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
3: output: the best ng-routes w.r.t ng-sets NG(i).

4: Γi ← ∅, ∀i ∈ V , ng ← false, k ← 0
5: T̂ (i, q)← −∞, ∀i ∈ V+, q ∈ {0, . . . , Q}
6: while not ng do
7: R ← boundedForwardLabeling(Γ, T̂ )
8: R∗k ← selectBestRoute(R)
9: if isNGRoute(R∗k) then

10: ng ← true
11: else
12: updateNGSets(N, R∗k)

13: T̂ ← generateCompletionBounds(F )

14: k ← k + 1

15: return buildRoutes()

16: procedure BoundedForwardLabeling(Γ, T̂ )
17: F (i, q)← ∅, ∀i ∈ V, q ∈ {0, . . . , Q}
18: F (0, 0)← {(0, 0, 0, ∅, nil)}
19: for q := 0, . . . , Q do
20: for all i ∈ V do
21: if q − di > 0 then
22: for all j ∈ V+ do
23: for all L1 = (c̄1, j, q − di,Π1, ) ∈ F (j, q − di) do
24: if i /∈ Π1 then
25: if checkCompletionBound(T̂ , L1, i) then
26: L2 = (c̄1 + c̄ji, i, q, (Π1∩NG(i))∪{i},pointer to L1)
27: insert← true
28: for all L ∈ F (i, q) do
29: if L2 dominates L then delete L
30: else if L dominates L2 then
31: insert← false, break

32: if insert then
33: F (i, q)← F (i, q) ∪ L2

34: return buildRoutes()

35: procedure generateCompletionBounds(F )
36: T̂ (i, q)← −∞, ∀i ∈ V+, q ∈ {0, . . . , Q}
37: T̂ (0, 0)← 0
38: for i ∈ V+ do
39: for q := 1, . . . , Q do
40: T̂ (i, q)← min(F (i, q)) . Minimum red. cost or +∞, if empty
41: if T̂ (i, q − 1) < T̂ (i, q) then
42: T̂ (i, q)← T̂ (i, q − 1)
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the Forward Labeling in line 4. The computation of completion bounds is also

accelerated with the bounds obtained in the previous calculation.

Algorithm 5.6 DSSR with Bidirectional Search and Completion Bounds

1: input: ng-sets NG(i) ⊆ V+, ∀i ∈ V+.
2: output: the best ng-routes w.r.t ng-sets NG(i).

3: Γi ← ∅, ∀i ∈ V , ng ← false, k ← 0
4: T̂ (i, q)← −∞,∀i ∈ V+, q ∈ {0, . . . , Q}
5: last← −∞
6: while not ng do
7: R ← symmetricBidirectionalLabeling(Γ) . Uses T̂
8: R∗k ← selectBestRoute(R)
9: if isNGRoute(R∗k) then

10: ng ← true
11: else
12: updateNGSets(R∗k)

13: k ← k + 1
14: if c̄(R∗k) > ρ.last then

15: boundedForwardLabeling(Γ, T̂ )
16: T̂ ← generateCompletionBounds(F )
17: last← c̄(R∗k)

18: return buildRoutes()

5.4.6
Heuristic Pricing

Even with the improvements described in sections 5.4.3, 5.4.4 and 5.4.5,

the exact ng-route pricing still requires a long time to be executed. Because

of this, a simple but effective heuristic was developed to quickly price a large

initial set of routes with negative reduced cost. It was based on the heuristic

pricing done for the elementary route pricing by Pecin (46). The purpose of

this heuristic is to reduce the number of calls to the exact ng-route pricing.

Therefore, the heuristic ng-route pricing is used as a hot-start for the exact

ng-route pricing.

The heuristic closely resembles the q-route pricing without eliminating

any cycle. The main difference between the pricing algorithms is that when

extending one path, the heuristic ng-route pricing respects the ng-sets NG(i).

Its data structure is also a (Q+1)×|V+| matrix, and each entry consists of just

one label (a quite similar approach is presented in (24) for q-routes). For each

customer and each capacity, this label is chosen as the best one with respect to

the reduced costs. In addition, as the ng-sets NG(i) must be respected, each

label of the dynamic programming matrix must contain the Π sets for each
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customer and capacity. This means that many non-dominated labels, those

that are less likely to lead to optimal solutions, may be dropped.

Notice that unlike the exact algorithms, the heuristic algorithms use

neither the dominance rules nor the speed-up techniques (DSSR, bidirectional

search and completion bounds) described in Section 5.4. Nevertheless, they are

responsible for obtaining more than 90% of the routes during the column gen-

eration. Moreover, it is straightforward to verify that its resulting complexity

is O(n2Q).

5.5
Achieving Elementarity

To achieve elementarity, we just define ∆(NG(i)) = V+, for all i ∈ V+

and use the same algorithms based on DSSR described before. This means

that the algorithms start with Γ0
i = ∅,∀i ∈ V+. At the end of each iteration

k, they identify all cycles on the best solution, and the repeated customer of

each cycle H ∈H (R∗k) is inserted on subsets Γk+1
l , ∀l ∈ V (H). Thus, if cycle

H = (i, . . . , j), i = j, is identified at the end of iteration k (that is, if cycle H

belongs to H (R∗k)), the next DSSR iterations will not generate any path with

a cycle H
′
= (i, . . . , j), in which V (H

′
) ⊆ V (H). Note, however, that it is still

possible to obtain a path that visits customer j more than once at iteration

k + 1, as this customer is not present in all subsets Γk+1
l . The algorithms stop

when the best route does not contain any cycle, i.e. it is an elementary route,

or its reduced cost is non-negative.

That way of increasing the state-space along the DSSR iterations differs

from the method used by Righini and Salani (54), allowing a better control

on the growth of the number of labels, turning the algorithm capable of

dealing with larger instances. The DSSR of (54) is performed prohibiting

the customers which repeat on the best route R∗k from repeating again in

subsequent iterations until an elementary route is found. This is equivalent

to inserting each repeated customer of each cycle H ∈ H (R∗k) in all subsets

Γk+1
i , rather than just considering this inclusion in subsets Γk+1

l , ∀l ∈ V (H).

We noted in computational experiments that this more aggressive increase

of the state-space is quite dangerous because the whole algorithm fails if the

number of labels to be treated in the dynamic programming becomes critical. In

contrast, the size of the largest subset Γki hardly exceeded 20 in our algorithms,

even for instances with 199 vertices.

Another important difference from our approach and that of (54) is the

way we use the DSSR to calculate completion bounds at each iteration to

accelerate the subsequent DSSR iterations. Computational results reveal that
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the use of completion bounds allow us to solve the column generation for CVRP

instances that would not be solved in an acceptable time if they were not used.

5.5.1
The Righini and Salani’s Algorithm

The best exact algorithm for the ESPPRC presented by Righini and

Salani (54) is based on DSSR combined with bidirectional dynamic program-

ming. Our implementation of this algorithm corresponds to Algorithm 5.4

using ∆(NG(i)) = V+, for all i ∈ V+. Additionaly, when running this al-

gorithm as being the Righini and Salani’s algorithm, the state-space along

the DSSR iterations is increased by inserting each repeated customer of each

cycle H ∈H (R∗k) in all subsets Γk+1
i instead of inserting in the subsets Γk+1

l ,

∀l ∈ V (H), as performed in our DSSR based algorithms.

5.6
Experimental Results

For the computational experiments, all algorithms were implemented

in C++ using Microsoft Visual C++ 2010 Express and IBM ILOG CPLEX

Optimizer 12.5 for solving the formulations. The experiments were conducted

on an Intel Core i7-3960X 3.30GHz with 64GB RAM running Linux Ubuntu

Server 12.04 LTS and are divided into three parts. First, we compare the

six exact pricing algorithms described in this chapter, running each one

inside a column generation schema for some classical CVRP instances. All

six algorithms were tested using different values of ∆(NG(i)), allowing us to

analyze the scalability of each one when the state-space relaxation is increased.

Second, using three of our algorithms we price elementary routes for these

selected CVRP instances. We compare the results obtained with our own

implementation of the best algorithm proposed by Righini and Salani (54).

Third, to improve the lower bounds and also demonstrate that our algorithms

still works well when robust cuts are added in the SPF, we included Rounded

Capacity Cuts and Strengthened Combs using the separation routines from

the CVRPSEP package (37). We separated and added these cuts in a similar

manner as done by Fukasawa et al. (24) for the CVRP.

For all tests, the column generation starts by calling the heuristic pricing

at each iteration. The heuristic pricing returns the best 20 routes with negative

reduced costs. If the heuristic is no longer capable of finding routes with

negative reduced cost, the column generation algorithm calls the exact pricing.

If the latter succeeds in obtaining at least one route with negative reduced

cost, the column generation procedure restarts by calling the heuristic pricing.
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Otherwise, the column generation stops and the current value is returned as

a lower bound. This procedure is stopped prematurely if the time limit of two

hours is exceeded.

5.6.1
Problem Instances

We used just a representative set extracted from the classical instance

datasets A, B, E, P and M. The general format of an instance name is X-nY -

kZ, where X corresponds to the type of dataset, Y refers to the number of

vertices and Z corresponds to the fix number of routes any feasible solution is

constrained. As usually adopted by exact methods, for all problem instances,

the cost matrix is calculated using Euclidean distance rounded to the nearest

integer value.

All optimal values shown in the tables were extracted from the work of

(24), except the optimal value for instance M-n151-k12, which was first proved

by (12) and the optimal values for instances M-n200-k17 and M-n200-k16,

which were first proved by the algorithm presented in Chapter 6.

5.6.2
Performance Evaluation

The results for the six algorithms are shown in Tables 5.1 and 5.2.

Columns Ins and OPT show the name and the optimum value of each instance.

Following these columns, the results for different values of ∆(NG(i)) are shown.

For each X, where ∆(NG(i)) = X, NG=X consists of eight columns, LB, It, T1,

T2, T3, T4, T5, and T6 which show the lower bound, the number of calls to

the exact pricing (for Algorithm 5.6) and the total time required to compute

it for, respectively, Algorithms 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.

The results from Tables 5.1 and 5.2 show that for small ng-set sizes

(NG=8), the best approach comes from Algorithm 5.2 followed by Algorithm

5.1. These algorithms do not use state-space relaxation. This is not a surprise

because the maximum number of non-dominated labels per bucket is limited

to 2∆−1, and therefore, the total number of labels handled by these algorithms

does not explode. In this case, a unique run of the dynamic programming

considering the entire state-space is in general better than running it in the

relaxed state-space several times. For an average ng-set size (NG=16), the pure

DSSR still does not improve the times of both the Algorithms 5.1 and 5.2,

but the combination of DSSR and completion bounds provides a reasonable

improvement. For large ng-set sizes (NG≥32), the pure DSSR significantly

outperforms the basic dynamic programming algorithms, but it is still a poor
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algorithm for most instances. However, the DSSR with completion bound

drastically improves the times.

We can also note that the bounds for NG=32 are almost as good as the

elementary for most instances (shown in Table 5.3). This is evidence that the

routes found by the pricing with large ng-sets are almost elementary when the

average size of the routes is up to 12 or 13 customers, in tipically less time than

the time required if the elementary constraint is imposed to the routes. But

this is not necessarily a rule. It is noteworthy to mention that the greater is the

ng-set size used, the better are the completion bounds obtained. In some cases,

the improved completion bounds resulting from the use of a large ng-set may

compensate the additional complexity imposed. This is indicated by the time

for running the instance M-n121-k7, which is significantly greater for NG=64

than the elementary for Algorithm 5.5.

On the other hand, our algorithms spend a lot of time trying to solve

the column generation for instance M-n121-k7, especially for large ng-set sizes.

This is mainly due to the average size of the routes (n/K) that are part of

an optimum solution for this instance, which is greater than 17, causing the

number of labels to be treated by the dynamic programming algorithm to be

prohibitive.

5.6.3
Other Results

Table 5.3 shows the results for the CVRP using three different elementary

route pricing. Columns RS, ALG4, ALG5 and ALG6 present, respectively, the

results of the Algorithms of Righini and Salani (implemented as described in

Section 5.5.1), 5.4, 5.5 and 5.6. Algorithm 5.4 was chosen because it differs from

the Righini and Salani’s Algorithm only in the way it increases the state-space

along the DSSR iterations and Algorithms 5.5 and 5.6 because they presented

the best results for large ng-set sizes. For each pricing algorithm, columns T

and Ite show, respectively, the total time of the column generation algorithm

and the number of calls to the exact pricing. At the end of each exact pricing,

the average size of the final subsets Γki ⊆ V+ were calculated, as well as the size

of the largest subset. Columns Avg and Max show for each pricing algorithm

the global average and largest size in the column generation, i.e., calculated

considering all iterations of the exact pricing.

As shown in Table 5.3, the algorithm proprosed by Righini and Salani

(54) is not able to solve the ESPPRC for instances with more than 100

customers within a reasonable amount of time. In fact, their algorithm has poor

performance also for instances of moderate size, such as the instances A-n63-
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k10, B-n68-k9 e E-n76-k7. Even without using completion bounds, Algorithm

5.4 drastically outperforms the algorithm in (54) because the Avg and Max

values it obtains are usually smaller than 10% of the corresponding values

obtained in (54).

Finally, Table 5.4 presents the results of the column generation for the

CVRP considering the separation of capacity and strengthened comb cuts.

These results were obtained using Algorithm 5.6. As performed previously,

the results are shown for different values of ∆(NG(i)). Results for the ele-

mentary routes are also presented (column Elem). Note that, considering the

randomness factor included on the heuristic cut separation algorithms, larger

∆(NG(i)) do not necessarily implies in larger lower bounds, as one can check

for example on instance E-n76-k8.

5.7
Conclusions

The strength of the ng-route pricing is the ability of adjusting the size

of the ng-sets in order to calculate a lower bound in a reasonable time,

which is close as much as possible to the elementary route bound, and this

property justifies an efficient implementation of the method. In this chapter,

we presented an efficient ng-route pricing algorithm for ng-set sizes up to sixty-

four, a number at least two times greater than we know so far. Furthermore,

we showed how our restricted non-elementary route pricing algorithm can be

easily extended in order to price only elementary routes. We highlighted the two

elements that allowed us to price elementary routes even for CVRP instances

with 199 customers, a result which doubled the size of the ESPPRC instances

solved so far. The first element is the way we adapt the Decremental State-

Space Relaxation (DSSR) technique of (54) for the ng-routes context, thus

improving their way of increasing the state-space along the DSSR iterations.

The second is the combination of the DSSR technique with completion

bounds, which are calculated in each iteration of the DSSR for the purpose of

accelerating the next iteration.
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6
A Branch-Cut-and-Price Algorithm

The most recent works proposing exact algorithms for the CVRP are

based on the combination of column and cut generation. They are Baldacci,

Christofides and Mingozzi (3), Pessoa et al. (47), Baldacci, Mingozzi and

Roberti (4), Contardo (12) and Røpke (56) (see Section 1.1). The Branch-

Cut-and-Price (BCP) algorithm proposed in this chapter contains elements

from all those previous algorithms, usually enhanced and combined with new

elements.

– Even if Ω only contains elementary routes and robust Rounded Capacity

Cuts and Strengthened Combs are separated, the resulting bounds (like

those showed in Table 5.4) still leave significant integrality gaps on many

instances. In order to reduce those gaps, the algorithms in (3), (4) and

(12) also use non-robust cuts, even if they increase the pricing complexity.

The most important original contribution of this work is the introduction

of the limited memory Subset Row Cuts (lm-SRCs). While the traditional

SRCs are known to be effective, the number of separated cuts had to be

very restricted in (4) and (12), due to their large impact on the pricing.

The lm-SRCs are a weakening of the SRCs. This weakening can be

controlled and dynamically adjusted, making the lm-SRCs as effective

in improving the lower bounds as the traditional SRCs, but still much

less costly in the pricing. In fact, in many instances from the literature,

including quite large ones, it is possible to separate lm-SRCs to obtain

bounds as good as those that would be obtained by separating all SRCs

with cardinality up to 5.

– The underlying formulation used in the BCP has extended arc-load

variables. This allows a particularly effective fixing of variables by

reduced costs (superior to fixing in the work of Irnich et al. (31)), with

direct benefits on the pricing. The formulation also allows the separation

of Extended Capacity Cuts (47).

– The columns in the BCP are associated to ng-routes. The correspond-

ing pricing subproblem is solved by a labeling algorithm that must also
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consider the dual variables of the lm-SRCs. Its implementation is quite

critical for the overall BCP performance. After experiments with a num-

ber of alternatives, the best performance was obtained by a bidirectional

search that differs a little from the proposed by Righini and Salani (53)

because the concatenation of the labels is not necessarily performed at

the half of the capacity. Completion bounds are also used for eliminating

labels. Anyway, the exact pricing algorithm is called just a few times

per BCP node, most of the iterations use effective heuristics. A column

generation stabilization by dual smoothing (48) may be also employed.

– Like in (47), the BCP hybridizes branching with route enumeration.

Actually, it performs an aggressive hierarchical strong branching, with

up to n candidates (partially) evaluated in the root node. The strong

branching effort in each node depends on an estimate of the size of the

subtree rooted in that node. The branching mechanism also keeps the

history of candidate evaluations for helping on future decisions.

– As soon as the gap of a BCP node is sufficiently small, the elementary

routes that can be part of the optimal solution are enumerated into a

pool. From that point, since the pricing will be performed by inspection,

all lm-SRCs may be immediately lifted to SRCs and additional non-

robust cuts, including cliques, may be separated. On larger instances this

may not be enough to reduce the number of routes to a size tractable by

a MIP solver. In those cases, the standard strong branching continues to

be done over the enumerated node.

– The lm-SRCs are still non-robust. There are cases where several hundreds

such cuts are being normally handled by the pricing algorithm, and then,

the separation of a few dozen additional lm-SRCs makes this algorithm

100 times slower. In this situation the BCP performs a rollback, the

offending cuts are removed even if it decreases the lower bound of the

node.

This chapter is organized as follows. Section 6.1 presents the new for-

mulation. Section 6.2 shows how the reduced cost of an arc-load is defined.

Section 6.3 reviews the non-robust cuts that have been used in the literature

and describes the Limited-memory SRCs. Finally, Section 6.4 presents other

important elements of our BCP, such as the variable fixing, non-robustness

control, route enumeration end strong branching. All labeling algorithms for

pricing, variable fixing and route enumeration are presented in Chapter 7.

DBD
PUC-Rio - Certificação Digital Nº 1012686/CA



Chapter 6. A Branch-Cut-and-Price Algorithm 67

6.1
Formulation

The Arc-Load indexed Formulation (ALF) presented in Section 3.3 can

be naturally rewritten in terms of q-routes. Let Ω be the set of all q-routes.

For each r ∈ Ω define a non-negative variable λr and binary coefficients aijrq,

for each (i, j)q ∈ AQ, indicating whether (i, j) is traversed with load q in route

r. Equations (3.22) in ALF can be replaced by:

∑
r∈Ω

aijrqλr = xqij, ∀(i, j)q ∈ AQ. (6.1)

Substituting the x variables and relaxing the integrality, the Dantzig-Wolfe

Master LP is written as:

(DWM) min
∑
r∈Ω

 ∑
(i,j)q∈AQ

aijrqcij

λr (6.2)

subject to

∑
r∈Ω

 ∑
(i,j)q∈δ+(i)

aijrq

λr = 1, ∀i ∈ V+, (6.3)

∑
r∈Ω

 ∑
(i,j)q∈δ+(0)

aijrq

λr = K, (6.4)

λr ≥ 0 ∀r ∈ Ω. (6.5)

6.2
Column Generation

A generic constraint l of format
∑

(i,j)q∈AQ
αlqijx

q
ij ≥ bl can also be

included in the DWM, using the variable substitution (6.1), as
∑

r∈Ω

(
∑

(i,j)q∈AQ
αlqija

rq
ij )λr ≥ bl. Suppose that, at a given instant, there are nR con-

straints over the x variables in the DWM, including equalities (6.4) and (6.3).

Constraint (6.4) has the dual variable π0, the constraint in (6.3) corresponding

to i ∈ V+ has the dual variable πi, and each additional constraint l, n < l < nR,

has the dual variable πl. The reduced cost of an arc (i, j)q is defined as:

c̄qij = cij −
nR−1∑
l=0

αlqijπl. (6.6)
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The pricing subproblem for solving the DWM consists in finding a shortest

path in N (defined in Section 3.3) from node (0, 0) to nodes (0, q), 1 ≤ q ≤ Q,

with respect to the current arc reduced costs c̄qij. This can be done in O(n2Q)

time.

Instead of using q-routes, Ω is redefined to be a set of ng-routes. Section

7.1 describes in detail our pricing algorithms for the BCP.

6.3
Cut Generation

Our BCP includes cuts defined over the three formulations described

in Chapter 3. Cuts for the TIF can be included in the DWM by using the

transformation xij =
∑

(i,j)q∈AQ
xqij +

∑
(j,i)q∈AQ

xqji. In this work, Rounded

Capacity Cuts and Strengthened Combs are separated by the CVRPSEP

package (37). The Extended Capacity Cuts (47), defined directly over the

arc-load variables are also used. All those cuts are robust, the effect of their

dual variables is captured in the arc-load reduced costs (6.6).

In addition, the BCP also separates non-robust limited-memory SRCs.

Before presenting these new cuts, Section 6.3.1 reviews some important non-

robust cuts that have been used in recent works, including the traditional

SRCs.

6.3.1
Non-Robust Cuts Review

Strengthened Capacity Cuts

Baldacci et al. (3) introduced a family of cuts defined over the variables

of the SPF. For each S ⊆ V+ and for each r ∈ Ω (possibly containing non-

elementary routes), define binary coefficient ζrS as 1 iff the route r visits at

least one vertex in S. The Strengthened Capacity Cuts (SCCs) are:

∑
r∈Ω

ζrSλr ≥ k(S) ∀S ⊆ V+. (6.7)

Remark that an RCC over S corresponds to
∑

r∈Ω a
r
Sλr ≥ k(S), where

arS counts how many times the route r enters (or leaves) S. Inequalities

(6.7) are stronger because they are not “fooled” by routes that enter and

leave S more than once. On the other hand, SCCs are non-robust, since

they change the pricing subproblem for the SPF linear relaxation. In order

to continue solving it by dynamic programming, it is necessary include an

additional binary dimension in each label indicating whether a partial route
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have already visited S or not. Notwithstanding this fact, the algorithms in

(3, 4, 12) have successfully used (in a controlled way, limiting the number of

separated cuts) SCCs. It can also be observed that if there exists a set S ′ ⊂ S

where k(S ′) = k(S), then the SCC corresponding to S ′ dominates the SCC

corresponding to S. This means that only the cuts corresponding to minimal

sets (with respect to the function k(·)) need to be separated.

Strong Degree Cuts

Contardo et al. (13) introduced a family of cuts that correspond to SCCs

over sets S of cardinality 1. Given a vertex i ∈ V+ and for r ∈ Ω, define binary

coefficient ζri as 1 iff route r visits i. The Strong Degree Cut (SDC) is:

∑
r∈Ω

ζri λr ≥ 1. (6.8)

An SDC can only be non-redundant if the definition of set Ω allows non-

elementary routes. In this case, the effect of SDCs is forbidding routes with

cycles at certain vertices. Therefore, they are alternative ways of enforcing

partial route elementarity. As happens with the more general SCCs, each SDC

requires one additional binary dimension in the dynamic programming labels.

Contardo (12) also use weakened versions of the strong degree cuts. For

an integer k, i ∈ V+ and for r ∈ Ω, define νrki as the number of times that

route r visits i with at least k vertices between two consecutive visits. The

corresponding k-Cycle Elimination Cut (k-CEC) is:

∑
r∈Ω

νrki λr ≥ 1. (6.9)

The effect of this cut is forbidding routes that have cycles over i of length k or

less. The k-CECs have less impact in the dynamic programming pricing than

the SDCs. The information that a vertex i was already visited is “forgot” after

k visits to other vertices.

Subset Row Inequalities

Jepsen et al. (33) introduced the following family of cuts defined over the

variables of the SPF. Given a base set C ⊆ V+ and a multiplier p, 0 < p < 1,

the following (C, p)-Subset Row Cut (SRC)

∑
r∈Ω

⌊
p
∑
i∈C

ari

⌋
λr ≤ bp|C|c (6.10)
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is valid, since it can be obtained by a Chvátal-Gomory rounding of the

corresponding constraints in (3.8).

Note that any SRC is a Chvátal-Gomory Rank-1 cut, since they are

obtained by multiplying the rows of set C by p followed by a Chvátal-Gomory

rounding. The cuts where |C| = 3 and p = 1/2 are called 3-Subset Row Cuts

(3SRCs). The earlier algorithm by Baldacci et al. (3) used clique cuts, that

are more general than 3SRCs. However, 3SRCs are favored in more recent

works (4, 12), since they seem to be more suited to a column generation

context, having less impact in the pricing subproblem. Each 3SRC requires an

additional binary dimension in each dynamic programming label to indicate

the parity of the number of visits made by a route to a vertex in a triplet C.

The successful use of those cuts depends on a carefully controlled separation,

in order to avoid pricing intractability.

Baldacci et al. (4) have also used a weakened variant of the 3SRCs for

the case where Ω only contains elementary routes. Define a binary coefficient

ξrC as 1 iff the route r visits at least one edge with both endpoints in C. The

corresponding weakened 3SRC is:

∑
r∈Ω

ξrCλr ≤ 1. (6.11)

Since an elementary route can only visit two such edges if they are consecutive,

it is easy to include the effect of the dual variables of weakened 3SRCs in

a dynamic programming pricing. Therefore, there are no restrictions to its

separation. A variant of this cut suitable to the case where Ω contains non-

elementary routes would define ξrC as the number of times that a route r visits

non-consecutive edges with both endpoints in C.

6.3.2
limited-memory SRCs

The definition of the limited memory (C,M, p)-Subset Row Cut (lm-

SRC) requires an additional set M , C ⊆M ⊆ V+. It can be written as:

∑
r∈Ω

α(C,M, p, r)λr ≤ bp|C|c , (6.12)

where the coefficients α are a function of C, M , p and r computed by the

Algorithm 6.1.

When M = V+, the Function α will return bp
∑

i∈C a
r
i c and the lm-SRC

will be identical to an SRC. On the other hand, when M is not equal to V+, the

lm-SRC may be a weakening of its corresponding SRC. This happens because
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Algorithm 6.1 Procedure that calculates the coefficient of a route r in a
lm-SRC
1: function α(C, M , p, r)
2: coeff ← 0, state← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈M then
5: state← 0
6: else if i ∈ C then
7: state← state+ p
8: if state ≥ 1 then
9: coeff ← coeff + 1, state← state− 1

10: return coeff

every time the route r leaves M , the variable state in the function is set to zero,

potentially decreasing the returned coefficient. Function α indicates how the

lm-SRCs should be taken into account in the labeling algorithms used in the

pricing. In fact, that procedural function is executed along the algorithm. Each

label should have an additional dimension for each lm-SRC, storing their states

in the corresponding partial paths. However, the coefficients do not need to be

stored in the labels. Instead, whenever a label extension causes the increment

of the coefficient of an lm-SRC, according to Function α, the value of its dual

variable is immediately subtracted from the reduced cost of the new label. We

remark that the number of possible states of an lm-SRC depends on its p. For

example, for the frequent case where p = 1/2, the state can be only 0 or 1/2.

Therefore, it can be represented by a single bit.

The potential advantage of the lm-SRCs over classical SRCs is their

much reduced impact on the labeling algorithm used in the pricing, when

|M | << |V+|. The reasons for that reduction will be explained in Section 7.1.1.

In order to obtain small memory sets, we propose the following separation

strategy for the lm-SRCs. First, it identifies a violated (C, p)-SRC. Then, it

determines a minimal set M such that the lm-(C,M, p)-SRC has the same

violation. In practice, even on instances with hundreds of customers, those

minimal sets seldom have cardinality larger than 15. For example, suppose

that, in a given fractional solution, the paths that visit C = {1, 2, 3} at least

twice are: r1 = (0 − 1 − 4 − 5 − 3 − 6 − 2 − 7 − 1 − 0) with λr1 = 0.2,

r2 = (0−7−2−8−3−0) with λr2 = 0.3, and r3 = (0−5−3−4−1−7−9−2−0)

with value λr3 = 0.4. The (C,1/2)-SRC 2λr1 + λr2 + λr3 ≤ 1 has a violation of

0.1. A minimal set M that yields a lm-(C,M ,1/2)-SRC with the same violation

can be M = C ∪ {4, 5, 7} ∪ {8} ∪ {4}.
Given a base set C ⊆ V+, for each integer d, 1 ≤ d ≤ n, define a

non-negative integer variable ydC as the sum of all variables λr such that
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∑
i∈C a

r
i = d. Variables with d > |C| can only be non-zero if Ω contains

non-elementary routes. The interesting SRCs, for sets C with cardinality up

to 5, are the following:

– 3-Subset Row Cuts (3SRCs) which can be expressed as y2
C + y3

C + 2y4
C +

2y5
C + . . . ≤ 1. Although they are very effective in improving the lower

bounds, only a relatively small number of those cuts could be separated

in (4, 12), in order to keep the pricing tractable. The Weak 3SRCs of

(4) are equivalent (when all routes are elementary) to lm-3SRCs with

M = C. Since p = 1/2, the additional dimension required by lm-3SRCs

(and 3SRCs) in the labeling algorithm is a bit that can be interpreted as

follows: 0 means that an even (perhaps zero) number of visits to vertices

in C is remembered, 1 means an odd number of visits. The value of the

dual variable corresponding to such cut is subtracted from a label ending

in a vertex in C when the bit goes from 1 to 0.

– Taking |C| = 1 and p = 1/2, the 1-Subset Row Cuts (1SRCs) y2
C + y3

C +

2y4
C+. . . ≤ 0 are obtained. They are equivalent to the Strong Degree Cuts

y1
C ≥ 1 introduced in (12), in the sense that both families forbid cycles

over a vertex i (C = {i}). Contardo also defined the weaker k-Cycle

Elimination Cut that only forbid cycles over i of size k or less. A lm-

1SRC is a different kind of weakening, it forbids cycles over i contained

in the set M . Of course, all these cuts can only be useful when the Ω set

contains non-elementary routes.

– The cuts where |C| = 4 and p = 2/3 are 4SRCs, expressed as y2
C + 2y3

C +

2y4
C + 3y5

C + 4y6
C + ... . . . ≤ 2. This value of p may only produce states

0, 2/3, and 1/3 in Function α. Therefore, the state of a 4-SRC can be

represented by a ternary digit.

– There are two interesting families of cuts with |C| = 5. Those with p =

1/3 will be called 5,1SRCs, y3
C+y4

C+y5
C+2y6

C . . . ≤ 1; whereas those with

p = 1/2 are 5,2SRCs, having the format y2
C+y3

C+2y4
C+2y5

C+3y6
C . . . ≤ 2.

The latter family was already used in (12).
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6.4
Other Elements

6.4.1
Variable Fixing by Reduced Costs

The variable fixing procedure aims to eliminate xdij variables by proving

that they cannot assume positive values in any integral solution that improves

upon the current best known integral solution. Consider an optimal solution

of DWM and let zLB be the value of this solution. Let C̄q
ij be the minimum

reduced cost route passing by arc (i, j)q ∈ AQ. Let zUP be a valid upper bound

for the problem. Variable xdij can be fixed to zero if the following condition

holds:

zLB + C̄q
ij ≥ zUB. (6.13)

For instances with integer costs, we can strengthen 6.13 using the stronger

quantity zUB − 1 + ε (where ε > 0 is a small tolerance) instead of zUB. In

other words, if C̄q
ij is larger than the integrality gap, given by zUB − zLB (or

zUB − 1 + ε− zLB, for integer costs) then xdij can be fixed to zero.

A similar procedure was also proposed by Irnich et al. (31), but it

is weaker because it only removes an arc (i, j) ∈ A, if a single particular

solution allows removing (i, j)q for all values of q. On the other hand, as our

BCP already works on the arc-load formulation, individual arcs (i, j)q can be

naturally removed. For instance, it is quite typical that, at a certain point of

the BCP, 95% of the arc-load variables were already fixed to zero, while the

fixing on arcs would not achieve 80%.

Variable fixing have a great potential to reduce the number of labels

to be treated by the exact pricing (which is the most critical element of the

BCP) at subsequent iterations. This happens because many fruitless labels

(i.e., those that would only lead to routes that can not belong to an optimal

solution) are not created during the pricing due to the fact that some arcs are

fixed. As expected, deeper nodes of the BCP will have smaller gaps, then the

fixing will be more effective on these nodes. Since half of the nodes in a search

tree are leaves, the overall gain can be substantial. As pointed in (49), there

are other potential benefits for the BCP. For instance, the column generation

convergence can be improved because the number of routes (columns) is

reduced. Furthermore, as some of the routes discarded could be part of the

optimal solution of the linear relaxation, the desirable effect of an improved

lower bound can be observed.
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Section 7.2 shows how our pricing algorithms are used to fix variables by

reduced costs.

6.4.2
Route Enumeration

Baldacci et al. (3) introduced a route enumeration based approach in

order to close the duality gap after the root node. An elementary route can

only be part of a solution that improves the best known upper bound if its

reduced cost is smaller than the gap. The enumeration of elementary routes

may be performed by a label setting algorithm, producing a set partitioning

problem that is given to a general MIP solver. This may work very well if the

size of the set R of enumerated routes is not too large. If |R| < 20, 000 the set

partitioning is usually solved in less than 1 minute in a modern machine. Larger

values of |R| may cause the MIP solver to take too much time, |R| > 100, 000

is often unpractical.

Contardo (12) proposed another strategy in order to better profit from

the route enumeration. The enumeration is performed even if the resulting

R has a few million routes, which are stored in a pool. The column and cut

generation proceeds. However, instead of using a labeling algorithm, the pricing

starts to be performed by inspection in the pool. Now, the non-robust cuts have

little impact in the pricing complexity. Therefore, they may be separated in

a very aggressive way. This usually increases substantially the lower bounds,

allowing reductions in the pool size by fixing variables (that now are routes) by

reduced costs. For example, he reported that the enumeration of instance M-

n151-k12 with gap of 5 units produced a pool with 4M routes. The separation

of non-robust cuts then reduced the gap to 1.5 and the final pool only had 13K

routes. The resulting set partitioning was easily solved, finishing the instance.

In this work we used Contardo-style enumeration, allowing pools with

up to 50M routes. After enumeration, SRCs and also clique cuts (separated

using the routines from (57)) are added. Anyway, since the enumeration of so

many routes may be very time-consuming, the implementation of the labeling

algorithms used for that purpose becomes critical. Section 7.3 presents our

algorithms for elementary route enumeration.

6.4.3
Non-Robustness Control

Even with all the previously described enhancements, the addition of

too many lm-SRCs will still cause an exponential explosion of the number of

labels in the pricing algorithms. Worse, it is not possible to predict when the

DBD
PUC-Rio - Certificação Digital Nº 1012686/CA



Chapter 6. A Branch-Cut-and-Price Algorithm 75

explosion will occur. We have seen examples of runs where several hundreds

such cuts are being normally handled by the pricing algorithm and then, at

some node deep in the tree, the separation of a few dozen additional lm-SRCs

makes this algorithm 100 times or even 1000 times slower. In some cases the

BCP crashed due to memory overflow.

The first strategy tried for avoiding such failures was setting a conser-

vative limit on nS and stopping the separation of lm-SRCs after it is reached.

A much better strategy is to handle the lm-SRCs dynamically. In the begin-

ning of the root node, when no lm-SRCs were added, the pricing still has a

pseudo-polynomial complexity (assuming that the size of the ng-sets is fixed).

Those robust runs of the pricing are used to establish a baseline BL on the

number of labels. The algorithm proceeds by separating rounds of lm-SRCs.

The number of labels in the pricing is likely to increase, values up to 5BL are

always acceptable, larger values may be tolerated if the rate of lower bound

improvement is still good. This mechanism determines, for each node, when

separation will stop and enumeration/branching will be called. However, if the

number of labels in a call of the pricing exceeds 50BL, the BCP concludes that

an exponential explosion is occurring. The pricing is aborted and the node is

rolled back to its previous state before the last round of cuts. This means that

the lm-SRCs added in that round, even if they are active, are removed.

6.4.4
Strong Branching

It is clear that route enumeration is an important element in some

of the best performing algorithms for the CVRP, being able of drastically

reducing the running times of some instances. Nevertheless, it is disturbing to

consider that route enumeration, no matter how cleverly done, is an inherently

exponential space procedure (it would remain exponential even if P=NP) that

is bound to fail on larger/harder instances. However, one does not need to

take a radical stance on completely avoiding branching. The hybrid strategy

used in (47) and (50) performs route enumeration after solving each node. If

a limit on the number of routes is reached, the enumeration is aborted and

the BCP proceeds by traditional branching. Of course, since deeper nodes will

have smaller gaps, at some point the enumeration will work.

The branching in our BCP is performed over sets S ⊆ V+, imposing the

disjunction (
∑

a∈δ−(S) xa = 1)∨(
∑

a∈δ−(S) xa ≥ 2). Those branching constraints

are robust and can translated into arc reduced cuts for the pricing in both child

nodes. The BCP proposed by Fukasawa et al. (24) adopted a similar branching

over sets (already used in (38)). In order to better choose the branching set,
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that BCP used strong branching. Each set in a collection containing from 5

to 10 candidate sets was heuristically evaluated by applying a small number

of column generation iterations in its children nodes. Remark that the exact

evaluation of each candidate, performing full column generation (perhaps also

cut generation) in both children nodes, would be too expensive.

The recent work by Røpke (56) showed that is possible to obtain major

improvements in a BCP performance by performing a more sophisticated and

aggressive strong branching:

– The simpler branching over individual arcs was used.

– The procedure starts by performing a quick evaluation of 30 candidate

arcs, producing a ranking. The best ranked candidate is then fully

evaluated and becomes the incumbent winner. Then, other candidates

with good ranking are better evaluated, but only while they have a

reasonable chance of beating the incumbent winner.

– It is possible to collect statistics along the enumeration tree to help on

choosing the candidates. The previous evaluations of an arc are good

predictors of future evaluations.

His extensive experiments were performed both on CVRP and VRPTW

instances. This strong branching was the key algorithmic element that allowed

his BCP to solve the hard instance M-n151-k12, with optimum 1015, starting

from the rather modest root lower bound of 1001.5. This BCP was the first

algorithm to solve all the 56 VRPTW Solomon instances with 100 customers.

Inspired by those good results, we devised a hierarchical strong branching

procedure for our BCP:

– The Phase Zero performs the first selection of candidate sets. In the root

node, this is a collection of min{n, 300} sets, chosen by the proximity

of
∑

a∈δ−(S) x̄a to 1.5 in the current fractional solution. For a non-root

node v, the collection has cardinality between 50 and 10, depending on

TS(v), the estimative of the size of the subtree rooted in v. Half of the

candidates are chosen based on the history of previous calls to the strong

branching procedure. In contrast, the choice of the remaining candidates

favors fresh sets, that were never evaluated before.

– The Phase One performs a rough evaluation of each candidate by

solving the current restricted Master LP twice, adding the constraint

corresponding to each child node. Column and cut generation are not

performed. The resulting improvements in the lower bounds are usually

overvaluations of the true improvements if that candidate is selected. The
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candidates are ranked by the product rule (1) and the best candidates

(between 20 and 3) candidates go to Phase Two. If TS(v) is very small,

Phase Two is skipped and the branching is performed with the best

candidate of Phase One.

– Phase Two performs quite precise evaluations. Column and cut gener-

ation are performed, the only difference to the standard solving is that

only heuristic pricing is used. Actually, if TS(v) large, even the exact

pricing may be called. The results of Phase Two are not only used to

select the candidate to perform the current branching, they are stored in

tables (the branching history) for subsequent use in the Phase Zero.

The whole procedure is guided by the principle that the strong branching effort

in a node should depend on the expected subtree size. The logic behind this is

the following. If TS(v) is large, even a small improvement in that branching

will pay the computational cost of the precise evaluation of several candidates.

On the other hand, if TS(v) is small, the branching should be fast, relying on

the historical data and on the rough evaluations of Phase One. The estimation

TS(v) is calculated from the node gap (the upper bound minus the lower

bound of v) and from the values of ∆l and ∆r, the average historical lower

bound improvement in a left child (corresponding to a constraint = 1) and in

a right child (constraint ≥ 2). It is typical that ∆l is larger than ∆r, reflecting

a quite unbalanced tree. In the first nodes, the evaluations of the candidates

performed by strong branching itself are used as proxies for ∆l and ∆r.

Combining Strong Branching and Route Enumeration

As mentioned before, our BCP uses a hybrid strategy. Enumeration

is tried after solving each node. However, the strong branching can still be

performed after a successful enumeration. This happens when the final set of

routes R is too large (we use 20,000 as the limit) for the MIP solver.
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7
Labeling Algorithms

This chapter presents the algorithms used by our BCP for pricing ng-

routes, for fixing arc-load variables by reduced costs, and for enumerating

elementary routes. Those algorithms should take into account the following

points:

1. the reduced cost of an arc, defined as (6.6), depends on its load q;

2. some variables xqa may be already fixed to zero; and

3. non-robust lm-SRCs may be present.

7.1
Pricing Algorithms

7.1.1
Forward Labeling

The forward dynamic programming labeling algorithm for the pricing

problem represents an ng-feasible partial forward path P = (0, . . . , i), i ∈ V , as

a label L(P ) = (c̄(P ), v(P ) = i, q(P ),Π(P ), S(P ), pred(P )) storing its reduced

cost, end vertex, load, set of vertices forbidden as immediate extensions due to

ng-sets, vector of states corresponding to the nS lm-SRCs with non-zero dual

variables in the current Master LP solution, and a pointer to its predecessor

label. Each (i, q) ∈ VQ defines a bucket F (i, q). A label L(P ) is stored in

bucket F (v(P ), q(P )). A label L(P1) dominates a label L(P2) if every feasible

completion of P2 yields a route with reduced cost not smaller than the feasible

route obtained by applying the same completion into P1. Sufficient conditions

for that are:

(i) v(P1) = v(P2), (ii) q(P1) = q(P2), (iii) Π(P1) ⊆ Π(P2), and

(iv) c̄(P1) ≤ c̄(P2) +
∑

1≤s≤nS:S(P1)[s]>S(P2)[s]

σs,

where σs < 0 is the dual variable associated to lm-SRC s. Remark that

the reduced costs depending on q or the fixing of some xqa variables to zero

DBD
PUC-Rio - Certificação Digital Nº 1012686/CA



Chapter 7. Labeling Algorithms 79

prevent (ii) to be strengthened to q(P1) ≤ q(P2). This happens because,

if q(P1) 6= q(P2), the reduced cost of a completion for P2 may differ from

the reduced cost of the same completion for P1. In fact, due to the fixing,

a feasible completion for P2 may be infeasible for P1. Note also that the

second term in the right-hand side of (iv) is an upper bound on what a

completion of P2 can gain over the same completion of P1, by avoiding the

penalizations of revisiting the lm-SRCs s in which S(P1)[s] > S(P2)[s]. Only

non-dominated labels are kept in the buckets. To accelerate the checking for

dominated labels, it is convenient to keep labels of the same bucket ordered by

reduced cost, since L(P1) dominates L(P2) only if c̄(P1) ≤ c̄(P2). The base set,

multiplier and memory set of a lm-SRC s are denoted by C(s), p(s), and M(s),

respectively. Consider NG(0) as {0}. Algorithm 7.1 presents the pseudocode

of the Forward Labeling procedure. In the end of the algorithm, each non-

Algorithm 7.1 Forward Dynamic Programming Labeling

1: procedure Forward Labeling
2: F (i, q)← ∅,∀(i, q) ∈ VQ
3: F (0, 0)← {(0, 0, 0, ∅,0, nil)}, nFL← 1
4: for q = 1 to Q do
5: for all i such that (i, q) ∈ VQ do . Process buckets F with load q
6: for all j such that (i, j)q ∈ AQ and xqij is not fixed to 0 do
7: for all L1 = (c̄1, i, q,Π1, S1, ) ∈ F (i, q) do
8: if j /∈ Π1 then
9: c̄2 ← c̄1 + c̄qij , S2 ← S1

10: for s = 1 to nS do
11: if j /∈M(s) then S2[s]← 0
12: else if j ∈ C(s) then
13: S2[s]← S2[s] + p(s)
14: if S2[s] ≥ 1 then c̄2 ← c̄2 − σs , S2[s]← S2[s]− 1

15: L2 ← (c̄2, j, q + dj , (Π1 ∩NG(j)) ∪ {j}, S2,pointer to L1)
16: insert← true
17: for all L ∈ F (j, q + dj) do
18: if L2 dominates L then delete L, nFL← nFL− 1
19: else if L dominates L2 then insert← false, break

20: if insert then
21: F (j, q + dj)← F (j, q + dj) ∪ {L2}, nFL← nFL+ 1

empty bucket F (0, q), 1 ≤ q ≤ Q, will contain only one label, representing the

minimum reduced cost route with load q.

Algorithm 7.1 assumes that the dominance between labels is transitive,

i.e., given labels L1, L2 and L3, if L1 dominates L2 and L2 dominates L3, then

L1 dominates L3. Transitivity is not obvious due to condition (iv). We prove

this property because the algorithm removes (in line 18) a label L dominated

by a label L2, without knowing whether L2 will not be latter removed by being

dominated by another label L3.
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Proposition 2 If L(P1) dominates L(P2) and L(P2) dominates L(P3), then

L(P1) dominates L(P3).

Proof 2 Conditions (i), (ii) and (iii) are obviously transitive. Consider condi-

tion (iv), if L(P1) dominates L(P2) and L(P2) dominates L(P3), then c̄(P1) ≤
c̄(P2) +

∑
s∈D1,2

σs, where D1,2 = {s | 1 ≤ s ≤ nS, S(P1)[s] > S(P2)[s]},
and c̄(P2) ≤ c̄(P3) +

∑
s∈D2,3

σs, where D2,3 = {s | 1 ≤ s ≤ nS, S(P2)[s] >

S(P3)[s]}. Therefore, c̄(P1) ≤ (c̄(P3) +
∑

s∈D2,3
σs) +

∑
s∈D1,2

σs ≤ c̄(P3) +∑
s∈(D1,2∪D2,3) σs.

If s ∈ D1,3 = {s | 1 ≤ s ≤ nS, S(P1)[s] > S(P3)[s]} then S(P3)[s] <

S(P1)[s], which implies that S(P2)[s] < S(P1)[s] or S(P2)[s] > S(P3)[s]. In

other words, if s ∈ D1,3 then s ∈ (D1,2∪D2,3). Therefore, D1,3 ⊆ (D1,2∪D2,3).

Since the dual variables σs are negative, we can state that c̄(P1) ≤ (c̄(P3) +∑
s∈D2,3

σs)+
∑

s∈D1,2
σs ≤ c̄(P3)+

∑
s∈(D1,2∪D2,3) σs ≤ c̄(P3)+

∑
s∈D1,3

σs, which

proofs that L(P1) dominates L(P3).

Now, it is possible to explain why the lm-SRCs have a reduced impact

in the pricing when their memory sets are small. There are O(nQ) buckets

in the labeling algorithm. In a rough analysis, the time spent processing each

bucket grows quadratically with the average number of non-dominated labels

in it and linearly with nS.

– A first observation is that the state of an lm-SRC s needs only to be

explicitly present in labels corresponding to partial paths ending in M(s).

For the remaining labels, this state is zero by definition, which means

that σs will not play any role in the processing of their buckets. In other

words, only the vertices in M(s) need to know about the existence of

that cut. This allows the acceleration of the algorithm by a factor of

θ(n/Mavg), where Mavg is the average size of the memory sets.

– However, the crucial point for the improved algorithm efficiency is related

to the dominance. If there are no SRCs, the maximum number of non-

dominated labels in a bucket F (i, q) is bounded by 2|NG(i)|−1, as follows

from dominance conditions (iii) and (iv). If the cardinality of the ng-

sets is small (we used 8 in this work), the pricing is guaranteed to be

reasonably fast (unless Q is very large). However, if a traditional SRC is

added, its dual variable may make condition (iv) weaker in all buckets.

As other SRCs are separated, this may quickly result in an exponential

proliferation of non-dominated labels. In practice, this severely limits

the number of SRCs that can be used. In contrast, a lm-SRC s with

a small memory has much less impact because it can only weaken the
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dominance in the buckets of M(s). In practice, many more lm-SRCs can

be separated before the exponential proliferation of labels is observed.

This is exemplified in Figure 7.1. Let P1 be the solid path and P2 the

dashed one, both paths ending in vertex i and having load q. A 3SRC

with base set C = {1, 2, 3} may prevent L(P1) from dominating L(P2),

even though no good completion of P2 visits C. On the other hand, a

lm-3SRC over the same C, having the memory set represented in the

figure by filled circles, would not interfere with that dominance.

�

�

�

�

�

Figure 7.1: Example illustrating the performance gain in the pricing when
using lm-SRCs.

7.1.2
Bidirectional Labeling

The labeling algorithm for the pricing can also be performed backwards.

In that case, the labels represent ng-feasible partial backward paths P =

(i, . . . , 0), i ∈ V+. The initializing labels are put in buckets B(0, q), 1 ≤ q ≤ Q,

and the algorithm proceeds in a reversed way, until the label corresponding to

the route with minimum reduced cost is found in bucket B(0, 0), as shown in

Algorithm 7.2:

The forward and backward variants of the labeling are equivalent in

terms of computational cost. However, as pointed by Righini and Salani (53),

when forward labeling is used, most of the computational effort is spent in

buckets with larger values of q, close to Q. This happens by combinatorial

reasons, there are many more possible paths converging into a bucket F (i, q)

if q is larger. In a similar way, when backward labeling is used, most of the

computational effort is spent in buckets with small values of q. Therefore, it is

often advantageous to perform bidirectional search: use the forward labeling

for filling the buckets F (i, q) with q ≤ Q/2 and backward labeling for filling the

buckets B(i, q) with q > Q/2. The minimum reduced cost paths can obtained

by an additional concatenation step. After implementing this bidirectional
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Algorithm 7.2 Backward Dynamic Programming Labeling

1: procedure Backward Labeling
2: B(i, q)← ∅,∀(i, q) ∈ VQ, nBL← 0
3: for q = Q to 1 do
4: B(0, q)← {(0, 0, q, ∅,0, nil)}, nBL← nBL+ 1
5: for all j such that (j, q) ∈ VQ do . Process buckets B with load q

6: for all i such that (i, j)q−dj ∈ AQ and x
q−dj
ij is not fixed to 0 do

7: for all L1 = (c̄1, j, q,Π1, S1, ) ∈ B(j, q) do
8: if i /∈ Π1 then
9: c̄2 ← c̄1 + c̄

q−dj
ij , S2 ← S1

10: for s = 1 to nS do
11: if i /∈M(s) then S2[s]← 0
12: else if i ∈ C(s) then
13: S2[s]← S2[s] + p(s)
14: if S2[s] ≥ 1 then c̄2 ← c̄2 − σs , S2[s]← S2[s]− 1

15: L2 ← (c̄2, i, q − dj , (Π1 ∩NG(i)) ∪ {i}, S2, pointer to L1)
16: insert← true
17: for all L ∈ B(i, q − dj) do
18: if L2 dominates L then delete L, nBL← nBL− 1
19: else if L dominates L2 then insert← false, break

20: if insert then
21: B(i, q − dj)← B(i, q − dj) ∪ {L2}, nBL← nBL+ 1

algorithm, we realized that the number of labels in the backward part was

consistently larger (3 to 10 times more is typical) than in the forward part. This

happens because the backward labeling has more starting labels. Therefore, the

algorithm performance can be improved by better balancing both parts. This

means that the concatenation will occur at a value (dynamically determined)

larger than Q/2.

Algorithm 7.3 presents the pseudocode of the Bidirectional Labeling pro-

cedure. The algorithm starts by running the Forward Labeling and Backward

Labeling in an alternated way. If the current number of forward labels is smal-

ler than the current number of backward labels, then the buckets F with load

qf are processed and qf is incremented. Otherwise, the buckets B with load

qb are processed and qb is decremented. The process ends when qf = qb − 1.

The minimum reduced cost route with load 1 ≤ q ≤ qf is obtained from

bucket F (0, q), which contains at most one label. However, routes with load

q > qf must be obtained from the concatenation of forward and backward

labels, which is a potentially costly operation. We use the fact that the labels

are sorted in increasing reduced cost order (IRCO) inside the buckets. There-

fore, many concatenations that would not yield negative reduced cost routes

are quickly discarded. This is possible because the lm-SRCs only penalize the

concatenation of labels, since their duals are negative. Procedure Save saves
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pointers to pairs of labels corresponding to the routes with negative reduced

cost, for subsequent use in the column generation. Note that the backward la-

beling procedure must be explicitly performed by the bidirectional algorithm

because the backward paths can not be derived from the forward paths, as in

Section 5.4.2. This happens because the inclusion of extended cuts or the fixing

of arc-load variables may cause an asymmetry on the graph where pricing is

performed.

Algorithm 7.3 Bidirectional Dynamic Programming Labeling

1: procedure Bidirectional Labeling
2: F (i, q)← ∅,∀(i, q) ∈ VQ
3: F (0, 0)← {(0, 0, 0, ∅,0, nil)}, nFL← 1
4: B(i, q)← ∅,∀(i, q) ∈ VQ, nBL← 0
5: qf ← 1, qb← Q
6: while qb− qf > 1 do
7: if nFL < nBL then
8: Process buckets F with load qf , qf ← qf + 1
9: else

10: Process buckets B with load qb, qb← qb− 1

11: for all (i, j)q ∈ AQ such that xqij is not fixed to 0, q ≤ qf , q + dj ≥ qb do
12: for all L1 = (c̄1, i, q,Π1, S1, ) ∈ F (i, q) in IRCO do
13: for all L2 = (c̄2, j, q + di,Π2, S2, ) ∈ B(j, q + di) in IRCO do
14: cr ← c1 + c̄qij + c2

15: if cr ≥ 0 then break

16: if Π1 ∩Π2 = ∅ then
17: for s := 1, . . . , nS do
18: if S1[s] + S2[s] ≥ 1 then
19: cr ← cr − σs
20: if cr ≤ 0 then
21: Save(pointer to L1,pointer to L2)

7.1.3
Completion Bounds

Completion bounds can be obtained by runs of the labeling algorithms

that only consider the dimensions of nS ′ out of the nS the active lm-SRCs.

Since the effect of a lm-SRC in the pricing is penalizing the reduced cost of

some routes, this corresponds to a relaxation of the original problem. However,

as proposed by Contardo (12), better completion bounds can be obtained by

incorporating part of the effect of the remaining nS−nS ′ SRCs into the reduced

costs:

– For a 3-SRC or a 5,2SRC s, the value σs/2 can be subtracted from the

reduced cost of the arcs inside C(s).
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– For a 4-SRC s, the value 2σs/3 can be subtracted from the reduced cost

of the arcs inside C(s).

However, it is not possible to transfer part of the dual variables corresponding

to 1-SRCs or to 5,1SRCs into arc reduced costs.

The completion bounds for the forward labeling are obtained by first

running the relaxation defined above of the backward labeling. Let F̂ (i, q) be

the minimum reduced cost of a label in a bucket B′(i, q), (i, q) ∈ VQ, filled by

that relaxation. Then, the extension of label L(P ) = (c̄(P ), i, q(P ), , , ) to a

customer j in Algorithm 7.1 is avoided if the following condition holds:

c̄(P ) + c̄qij + F̂ (j, q(P ) + dj) ≥ 0. (7.1)

Analogously, the backward labeling uses completion bounds obtained by

running the relaxation of the forward labeling. The extension of label L(P ) =

(c̄(P ), j, q(P ), , , ) to a customer i in Algorithm 7.2 is avoided if:

c̄(P ) + c̄
q−dj
ij + B̂(i, q(P )− dj) ≥ 0, (7.2)

where B̂(i, q) is the minimum reduced cost of a label in a bucket F ′(i, q),

(i, q) ∈ VQ, filled by the relaxation. Therefore, Algorithm 7.3 uses both forward

and backward completion bounds.

Algorithm 7.3 can use completions bounds obtained in a way that re-

sembles the Decremental State-Space Relaxation (DSSR) strategy (54). Since

the forward labeling usually runs faster than the backward, the first iteration

starts by running the forward labeling without any lm-SRCs. Next, the back-

ward labeling can be performed considering, for example, only the lm-SRCs

with the nS ′ most negative dual variable. This last round is accelerated with

the backward completions bounds obtained from the first forward running. The

second iteration starts by running the forward labeling over the 2nS ′ lm-SRCs

with most negative dual variables. Analogously, this round is accelerated by

the forward completions bounds obtained from the previous running of the

backward labeling and so on. The remaining lm-SRCs not considered in the

computation may have their dual variables underestimated as described above.

When computing completions bounds, a possible acceleration is not filling

buckets with high capacity in the forward labeling, say buckets F (i, q) in which

q > 0.85Q, or buckets with low capacity in the backward labeling, say buckets

B(i, q) in which q < 0.15Q. The reason is that for the forward (resp., backward)

labeling the major computational effort is spent filling buckets with high (resp.,

low) capacity. Furthermore, it is reasonable to expect that these bounds will not

be effective, since “short paths” are rarely eliminated by completions bounds.
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7.1.4
Heuristic Pricing

Even with the use of the accelerating techniques mentioned in this sec-

tion, the exact pricing algorithm can still be quite time-consuming. Therefore,

the column generation can be accelerated by also using faster pricing heurist-

ics. In fact, the exact pricing may be only called when the pricing heuristics

can not find routes with negative reduced cost. Effective and simple such heur-

istics can be obtained by modifying the label setting algorithms. The heuristic

used in this work is quite similar to the heuristic described in Section 5.4.6.

The only difference is that the dual variables of the lm-SRCs must be taken

into account in the calculation of the reduced cost of the paths.

7.2
Variable Fixing

The labeling algorithms are also employed in a key part of the BCP: the

elimination of variables by Lagrangean bounds. A full separated run of both

forward and backward labeling should be performed. The minimum reduced

cost of a route passing by an arc (i, j)q ∈ AQ can be obtained by concatenating

the labels in F (i, q) from the forward run with the labels in B(j, q + dj)

from the backward run. As mentioned in Section 6.4.1, if C̄q
ij is larger than

the integrality gap then xdij can be fixed to zero. Algorithm 7.4 shows the

pseudocode for variable fixing. It is quite similar to that shown in Algorithm

7.3, the Bidirectional Labeling procedure. Note that the concatenation here

also relies on the fact that labels are ordered by reduced cost inside buckets.

Algorithm 7.4 Procedure Variable Fixing

1: Run Forward Labeling
2: Run Backward Labeling
3: for all (i, j)q ∈ AQ such that xqij is not fixed to 0 do
4: Fix← true
5: for all L1 = (c̄1, i, q,Π1, S1, ) ∈ F (i, q) in RC order do
6: for all L2 = (c̄2, j, q + dj ,Π2, S2, ) ∈ B(j, q + dj) in RC order do
7: c̄r ← c̄1 + c̄qij + c̄2

8: if c̄r > gap then break

9: if Π1 ∩Π2 = ∅ then
10: for s = 1, . . . , nS do
11: if S1[s] + S2[s] ≥ 1 then
12: c̄r ← c̄r − σs
13: if c̄r ≤ gap then Fix← false, break

14: if not Fix then break
15: if Fix then Fix variable xqij to 0
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7.3
Route Enumeration

The forward route enumeration algorithm represents a feasible (element-

ary) path P = (0, . . . , i), i ∈ V , as a label L(P ) = (c(P ), c̄(P ), v(P ) =

i, q(P ), V (P ), S(P ), h(P ), pred(P )) storing its original edge costs, reduced

cost, end vertex, load, set of visited vertices, vector of states corresponding

to the nS lm-SRCs with non-zero dual variables in the current Master LP

solution, a hash value depending on V (P ), and a pointer to its predecessor

label. A label L(P1) dominates a label L(P2) if:

(i) v(P1) = v(P2), (ii) V (P1) = V (P2)

(iii) c(P1) ≤ c(P2).

It is very important to also use completion bounds to eliminate labels that can

not be extended to routes with reduced cost smaller than the gap. Let gap be

the current gap and let F̂ be the forward completion bounds obtained running

the Backward Labeling procedure with respect to the current values of c̄ and

S̄. The forward route enumeration extends a label L(P ) with v(P ) = i to a

customer j if j /∈ V (P ) if:

c̄(P ) + c̄qij + F̂ (j, q(P ) + di) < gap.

Remark that all the nS lm-SRCs are taken into account in the calculation

of F̂ , the relaxation is allowing ng-routes instead of only elementary routes.

To accelerate the label dominance checking, the labels are stored in a hash

table H having |H| buckets, where |H| is a power of 2. Each vertex i in V

receives two random numbers between 0 and |H| − 1, r1(i) and r2(i). A label

L(P ) is stored in bucket calculated by taking the bitwise exclusive or of the

numbers r1(i), i ∈ V (P ), and r2(v(P )). This ensures that labels that may

have a dominance relationship will be in the same bucket. The pseudocode of

the Forward Enumeration procedure is shown in Algorithm 7.5. The algorithm

also keeps a list Q of unprocessed labels, initially containing only the starting

label. In the end of the algorithm, the labels L(P ) with v(P ) = 0 represent all

elementary routes with reduced costs not greater than the duality gap.

A similar enumeration procedure can also be built by extending labels

backwards. For this purpose, the list Q is initialized with starting labels at

the depot carrying all possible loads 1 ≤ q ≤ Q. The backward enumeration

in itself has no advantage. However, as happens with the pricing, it can be

used as a component of a significantly faster bidirectional enumerator. In this
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Algorithm 7.5 Forward Route Enumeration Algorithm

1: procedure Forward Enumeration
2: Run Backward Labeling for computing F̂ completion bounds
3: H(0)← {L0 = (0, 0, 0, 0, ∅,0, 0, nil)}
4: Insert(Q, L0)
5: while Q is not empty do
6: L1 = (c1, c̄1, i, q, V1, S1, h1, )← Remove(Q)
7: for all (i, j)q ∈ AQ such that xqij is not fixed to 0 do
8: if j /∈ V1 then
9: if c̄1 + c̄qij + F̂ (j, q + dj) ≤ gap then

10: c2 ← c1 + cij , c̄2 ← c̄1 + c̄qij , S2 ← S1, h2 ← h1 ⊕ r1(j)
11: for s := 1, . . . , nS do
12: if j ∈ C(s) then
13: S2[s]← S2[s] + p(s)
14: if S2[s] ≥ 1 then
15: c̄2 ← c̄2 − σs , S2[s]← S2[s]− 1

16: L2 = (c2, c̄2, j, q + dj , V1 ∪ {j}, S2, h2,pointer to L1)
17: insertLabel← true
18: index ← h2 ⊕ r2(j)
19: for all L ∈ H(index) do
20: if L2 dominates L then
21: Remove(Q,L), H(index)← H(index) \ {L}, break
22: else if L dominates L2 then insertLabel← false, break

23: if insertLabel then
24: H(index)← H(index) ∪ {L2}
25: Insert(Q, L2)

case, the forward and backward enumeration algorithms are run up to a point

around Q/2 and a concatenation phase is used for retrieving the elementary

paths with reduced cost smaller than the gap.

Algorithm 7.6 shows the pseudocode of the Backward Enumeration

procedure and Algorithm 7.7 shows the pseudocode of the Bidirectional

Enumeration. The latter algorithm enumerates all forward labels with load

q ≤ Q/2. All these labels are then put in buckets F (i, q). Next, it enumerates all

backward labels with load q > Q/2. These labels are put in buckets B(i, q). The

elementary routes are then obtained by concatenating forward and backward

labels. This concatenation is accelerated because the labels inside the buckets

are ordered by reduced cost. Procedure newLabel(L1, L2) creates a new label

that represents the route that is obtained by concatenating the labels L1 and

L2.
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Algorithm 7.6 Backward Route Enumeration Algorithm

1: procedure Backward Enumeration
2: Run Forward Labeling for computing B̂ completion bounds
3: for q := 1, . . . , Q do
4: H(0)← {Lq = (0, 0, 0, q, ∅,0, 0, nil)}
5: Insert(Q, Lq)
6: while Q is not empty do
7: L1 = (c1, c̄1, j, q, V1, S1, h1, )← Remove(Q)

8: for all (i, j)q−dj ∈ AQ such that x
q−dj
ij is not fixed to 0 do

9: if i /∈ V1 then
10: if c̄1 + c̄

q−dj
ij + B̂(i, q − dj) ≤ gap then

11: c2 ← c1 + cij , c̄2 ← c̄1 + c̄
q−dj
ij , S2 ← S1, h2 ← h1 ⊕ r1(i)

12: for s := 1, . . . , nS do
13: if i ∈ C(s) then
14: S2[s]← S2[s] + p(s)
15: if S2[s] ≥ 1 then
16: c̄2 ← c̄2 − σs , S2[s]← S2[s]− 1

17: L2 = (c2, c̄2, j, q − dj , V1 ∪ {i}, S2, h2, pointer to L1)
18: insertLabel← true
19: index ← h2 ⊕ r2(i)
20: for all L ∈ H(index) do
21: if L2 dominates L then Remove(Q,L), delete L, break
22: else if L dominates L2 then insertLabel← false, break

23: if insertLabel then
24: H(index)← H(index) ∪ {L2}
25: Insert(Q, L2)
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Algorithm 7.7 Bidirectional Route Enumeration Algorithm

1: procedure Bidirectional Enumeration
2: Run Forward Labeling for computing B̂ completion bounds
3: Run Backward Labeling for computing F̂ completion bounds
4: clear(F ), clear(B)
5: Run Forward Enumeration until all labels with load q ≤ Q/2 are processed
6: for k := 0, . . . , |H| − 1 do
7: for all L = ( , , i, q, , , , ) ∈ H(k) do
8: F (i, q)← F (i, q) ∪ L
9: clear(H)

10: Run Backward Enumeration until all labels with load q > Q/2 are processed
11: for k := 0, . . . , |H| − 1 do
12: for all L = ( , , i, q, , , , ) ∈ H(k) do
13: B(i, q)← B(i, q) ∪ L
14: clear(H)
15: for all (i, j)q ∈ AQ such that xqij is not fixed to 0, q ≤ Q/2, q+dj > Q/2 do
16: for all L1 = (c1, c̄1, i, q, V1, S1, h1, ) ∈ F (i, q) in IRCO do
17: for all L2 = (c2, c̄2, j, q + di, V2, S2, h2, ) ∈ B(j, q + di) in IRCO do
18: c̄r ← c̄1 + c̄qij + c̄2

19: if c̄r > 0 then break

20: if V1 ∩ V2 = ∅ then
21: for s := 1, . . . , nS do
22: if S1[s] + S2[s] ≥ 1 then
23: c̄r ← c̄r − σs
24: if c̄r ≤ 0 then
25: L3 ← newLabel(L1, L2)
26: insert← true
27: index← (h1 ⊕ h2) mod |H|
28: for all L ∈ H(index) do
29: if L3 dominates L then delete L, break
30: else if L dominates L3 then insert← false, break

31: if insert then
32: H(index)← H(index) ∪ {L3}
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8
Computational Results

In this chapter, we report detailed computational results for a large set of

CVRP instances, comparing the proposed BCP with some of the recent exact

methods described in Section 1.1. Additional computational results include a

comparison of five variants of the pricing presented in Section 7.1. Moreover,

some techniques used in the BCP to better handle special instances with a

high degree of symmetry are presented.

Our BCP was coded in C++ using Microsoft Visual C++ 2010 Express.

IBM ILOG CPLEX Optimizer 12.5 was used as the LP solver and MIP solver

in the exact method. The experiments were conducted on an Intel Core i7-

3960X 3.30GHz with 64GB RAM running Linux Ubuntu Server 12.04 LTS.

8.1
Problem Instances

The BCP was run over the standard classes of instances (A, B, E, F, M,

and P, available at www.branchandcut.org) used for testing exact methods for

the CVRP. The name of an instance from this benchmark follows the general

format X-nY -kZ, where X denotes the class it belongs, Y corresponds to the

number of vertices and Z refers to the fixed number of routes (K) required

for any feasible solution. As usual in the literature of exact methods, the cost

matrix for these instances is calculated from depot and customers coordinates,

following the TSPLIB convention of rounding the euclidean distances to the

nearest integer. Moreover, in order to better compare our results with those

presented in (4), our BCP uses for each of these instances the same initial

upper bound they used.

We also report results over instances traditionally used in the literature

on heuristic methods, proposed by (9), (10) (instances with initial letter “C”)

and (28) (instances with initial letter “G”). In those cases, we follow the

convention of not rounding the Euclidean distances and not fixing the number

of routes. The initial upper bound used for each of these instances corresponds

to the best solution value available in the literature.
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8.2
Summary Results for the CVRP

Table 8.1 summarizes the performance of the new BCP over the classical

benchmark, comparing with the recent exact algorithms for the CVRP. As

usual in the literature where similar tables appear, classes E and M are grouped

together. Columns Opt indicate the number of instances solved to optimality.

Columns Gap and Time are the average gap in the root node and average

times in seconds (over the indicated machines), computed only over the solved

instances. The labels FLL+06, BCM08, BMR11, Con12 and Rop12 refer

to the algorithms proposed in (38), (24), (3), (4), (12) and (56), respectively.

Label This BCP refers to the proposed BCP.

The newly proposed method has a good performance and could solve all

of those instances to optimality. In particular, the hard instances M-n200-k17

and M-n200-k16 were solved for the first time. On the latter it showed that

the previous best known solution of value 1278 was not optimal.

We should remark that instances F-n72-k4 (n/K = 17.75), P-n101-k4

(n/K = 25), and F-n135-k7 (n/K ≈ 19.14) are still better solved by a

pure branch-and-cut algorithm, like (38). In fact column generation is still

problematic for these instances. The number of variables in the SPF is roughly

proportional to
(

n
n/K

)
, it is quite expected that the number of pricing iterations

until convergence depends significantly on the average number of customers

per route (see, for example, the number of exact pricing iterations in the

tables shown in Section 5.6). Furthermore, as also shown in Section 5.6 for

the instance M-n121-k7 (n/K ≈ 17.14), the exact pricing tends to be slower

for large n/K, specially with elementary or near-elementary routes. Anyway,

faster pricing heuristics can be used to accelerate the column generation. The

relatively expensive exact pricing is only called when the heuristics is not able

to find routes with negative reduced cost. Unfortunately, our pricing heuristics

are based on the bucket pruning technique (24). Such heuristics are not good

for large vehicle capacity, since their resulting complexity is O(n2Q) (instance

F-n135-k7 has Q = 2210 and instance F-n72-k4 has Q = 30000, whereas

the capacity of most instances of the standard dataset ranges from 100 to

200). Faster heuristics can be obtained using the scaling and/or sparsification

techniques (24). The exact pricing can also be improved to better handle

instances with large capacity, as discussed in Section 9.1. However, even with

such improvements, it is still possible that branch-and-cut remains as the best

approach for these instances, at least for F-n135-k7 and F-n72-k4.

As in (24), we have built a hybrid method that is able to automatically

switch to a branch-and-cut after severe problems with column generation
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Table 8.1: Summary results for the CVRP.
FLL+06 (24) BCM08 (3) BMR11 (4)

Class NP Opt Gap Time Opt Gap Time Opt Gap Time
A 22 22 0.81 1961 22 0.2 118 22 0.13 30
B 20 20 0.47 4763 20 0.16 417 20 0.06 67
E-M 12 9 1.19 126987 8 0.69 1025 9 0.49 303
F 3 3 0.14 2398 2 0.11 164
P 24 24 0.76 2892 22 0.28 187 24 0.23 85

Total 81 78 72 77

Processor Pentium 4 2.4GHz Pentium 4 2.6GHz X7350 2.93GHz

Con12 (12) Rop12 (56) This BCP
Class NP Opt Gap Time Opt Gap Time Opt Gap Time
A 22 22 0.07 59 22 0.57 53 22 0.03 5.6
B 20 20 0.05 89 20 0.25 208 20 0.04 6.2
E-M 12 10 0.3 2807 10 0.96 44295 12 0.19 3669
F 3 2 0.06 3 3 0.25 2163 3 0.00 3679
P 24 24 0.13 43 24 0.69 280 24 0.07 32.7

Total 81 78 79 81

Processor E5462 2.8GHz i7-2620M 2.7GHz i7-3960X 3.3GHz

convergence are found. However, in order to stick to the BCP paradigm, we

prefer to report the results of a version where convergence problems triggers

a dual stabilization strategy, similar to the one described in (48). In fact,

without dual stabilization F-n135-k7 can not be solved in reasonable time. It

is noteworthy to mention that the algorithms in (4) and (12) use a fast pre-

processing stage based on cut generation which gives an initial lower bound

close to the optimum value for instances F-n45-K4 and F-n72-k4. The robust

BCP in (56) uses ng-sets of cardinality 10 for all instances, except for instance

M-n151-k12 (ng-sets have cardinality 15) and instances F-n72-k4 and F-n135-

k7 (uses the less computational expensive q-routes without 2-cycles).

Table 8.2 presents detailed information on the resolution of a selected

set of larger instances. Besides M-n151-k12, M-n200-k16, and M-n200-k17, it

includes results on 2 instances from (10) and 7 instances from (28). In those

cases, the number of costumers and the number of routes in the optimal solu-

tion (if it is found) are displayed in parenthesis. For each instance and method,

column IUB present the initial upper bound used by the method. Columns

RLB1, ER1, RLB2, ER2, RT(s) are root node information. They are the

lower bound obtained before enumeration (RLB1), the number of routes enu-

merated (if the method performs it and if the enumeration succeeds), (ER1),

the improved root node lower bound after route enumeration, obtained by

adding additional non-robust cuts (if Contardo style enumeration is performed)

(RLB2), the number of remaining enumerated routes after that (ER2) and

the total root node computing time (RT(s)). The final lower bound given

by FLB, which is in bold when optimal, the number of nodes in the search

tree denoted by Nodes and the total computational time in seconds TT(s)

complete the table columns.
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Table 8.2: Comparison of algorithms over hard instances.

Ins Q Alg IUB RLB1 ER1 RLB2 ER2 RT(s) FLB Nodes TT(s)

M-n151-k12 200 BMR11 1015 1004.3 - 380 1004.3 1 380

Con12 1015 1008.9 4.0M 1012.5 13K 19041 1015 1 19699

Rop12 1015 1001.5 1015 5268 417146

BCP 1015 1011.7 59K 1012.8 8K 178 1015 1 212

B-BCP 1015 1001.5 109 1015 2537 7958

M-n200-k16 200 BMR11 1256.6 - 319 1256.6 1 319

Con12 1278 1263.0 - - - 265589 1263.0 1 265589

Rop12 1278 1253.0 1258.2 106 7200

BCP 1278 1266.5 - - - 956 1274 97 39869

M-n200-k17 200 BMR11 1275 1258.7 - 436 1258.7 1 436

Con12 1275 1265.1 - - - 34351 1265.1 1 34351

Rop12 1276 1255.3 1261.4 144 7200

BCP 1275 1268.7 - - - 537 1275 15 3581

C4 (150,12) 200 BCP 1028.42 1025.1 500k 1026.25 62k 430 1028.42 3 783

C5 (199,16) 200 BCP 1291.29 1284.14 - - - 595 1291.29 59 18690

G17 (240, 22) 20 BCP 707.76 705.54 - - - 1010 707.76 13 25203

G13 (252,-) 1000 BCP 857.19 851.97 - - - 21749 851.97 1 21749

G9 (255,-) 1000 BCP 579.71 576.88 - - - 9363 576.88 1 9363

G18 (300,27) 20 BCP 995.13 993.42 - - - 1030 995.13 15 25690

G14 (320,30) 1000 BCP 1080.55 1076.03 - - - 6330 1080.55 ≈ 3K ≈ 36 days

G10 (323,-) 1000 BCP 736.26 731.13 - - - 16021 731.13 1 16021

G19 (360, 33) 20 BCP 1365.60 1363.10 - - - 1264 1365.60 239 260345

On instance M-n151-k12, Table 8.2 also includes results of Basic BCP

(B-BCP), a stripped-down version of the BCP, without SRCs and route

enumeration. In order to allow a direct comparison with the robust BCP in

(56), Basic BCP only separates cuts from the edge formulation and the ng-

sets have cardinality 15. The algorithm still has a relatively good performance.

This shows the importance of some “minor elements”, like strong branching

or the fixing of variables, in the BCP implementation. Nevertheless, the Basic

BCP can not solve the instances with 199 customers in reasonable time. The

SRCs are essential for that. The performance of the full BCP over the larger

instances shows the power of carefully aggregating the elements described in

this work. This allowed more than doubling the size of the largest instance

proved optimal to date.

8.3
Detailed Computational Results

Tables 8.3, 8.4, 8.5, 8.6 and 8.7 present detailed results for all instances

from the datasets A, B, E-M, F and P, respectively. For each instance, column

Ins gives the name of the instance, UB presents the initial upper bound used

and OPT shows the value of the optimal solution found (values in bold indicate

proven optimality for the first time). The following 10 columns are root node

information. The first of these columns indicates the lower bound obtained

using only robust cuts (RLB) and the next four columns report information

immediately before enumeration: the improved lower bound due the addition
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of non-robust lm-SRCs (NRLB), the number of active lm-SRCs (i.e., those

with non-zero dual variables) in the Master LP (nS), the percentage of arcs

(i, j)q ∈ AQ fixed to zero (Fix) and the accumulated time up to this point (T1).

Then, the number of routes enumerated (the word “limit” indicates that the

enumeration was unsuccessful), (|R|i), the improved root node lower bound

after route enumeration, obtained by adding additional non-robust SRCs and

clique cuts (NLB), the number of remaining enumerated routes after that

(|R|f), the time spent with route enumeration plus the time to go from lower

bound NRLB to lower bound NLB (or only the time spent with enumeration,

if it is aborted) (T2) and, finally, the time spent solving the resulting MIP

(TMIP) complete the information of the root. Column Nds gives the number

of nodes in the branch-and-bound tree and TT gives the total time in seconds.

Additionally, there are other three columns: BMR11, Con12 and Rop12. They

are, respectively, the time in seconds reported by (4), (12) (rounded to the

nearest integer) and (56). The average gaps for the lower bounds RLB, NRLB

and NLB are also presented.

Table 8.8 shows detailed results for selected instances proposed by (9)

and (10) and Table 8.9 presents detailed results for instances with up to 360

customers proposed by (28). For each instance, two new columns indicate the

number of customers and the number of routes in the optimal solution found.

These tables do not include columns of competing exact methods because for

most of these instances there is no such results reported in the literature.

Figures 8.1, 8.2 and 8.3 illustrate the optimal solution found for instances

M-n200-k16, G14 and G19.
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Table 8.3: Detailed results on CVRP instances of classes A.

Ins UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT BMR11 Con12 Rop12

A-n37-k5 669 669 667.50 669 12 100 0.70 1 0.70 6 8 3
A-n37-k6 949 949 937.06 946.02 64 98.1 2.77 182 946.25 138 0.31 0.02 1 3.10 8 21 17
A-n38-k5 730 730 723.40 730 52 100 1.76 1 1.76 7 13 4
A-n39-k5 822 822 817.83 822 53 100 1.34 1 1.34 7 19 5
A-n39-k6 831 831 824.51 831 56 100 1.29 1 1.29 7 13 6
A-n44-k6 937 937 934.90 937 8 100 0.72 1 0.72 5 11 3
A-n45-k6 944 944 941.26 944 39 100 1.19 1 1.19 12 30 11
A-n45-k7 1146 1146 1140.53 1146 59 100 1.50 1 1.50 11 28 10
A-n46-k7 914 914 914 914 0 100 0.56 1 0.56 8 7 1
A-n48-k7 1073 1073 1071.61 1073 74 100 1.28 1 1.28 15 24 7
A-n53-k7 1010 1010 1003.75 1010 61 100 3.01 1 3.01 24 30 29
A-n54-k7 1167 1167 1155.80 1167 140 100 8.22 1 8.22 35 95 30
A-n55-k9 1073 1073 1068.55 1073 49 100 2.04 1 2.04 19 18 6
A-n60-k9 1354 1354 1344.95 1354 153 100 9.45 1 9.45 46 59 84
A-n61-k9 1034 1034 1023.60 1034 103 100 5.30 1 5.30 37 61 69
A-n62-k8 1290 1288 1280.79 1287.15 121 97.3 18.89 1330 1287.27 950 1.4 0.39 1 20.68 96 105 80
A-n63-k9 1616 1616 1608.60 1616 58 100 4.12 1 4.12 40 78 40
A-n63-k10 1315 1314 1302.42 1310.61 137 97 11.56 1262 1310.75 978 1.17 0.34 1 13.07 51 74 42
A-n64-k9 1402 1401 1387.78 1394.55 100 94.6 11.28 7572 1398.83 667 7.79 0.30 1 19.37 63 224 379
A-n65-k9 1174 1174 1168.63 1174 55 100 3.16 1 3.16 32 47 21
A-n69-k9 1159 1159 1143.81 1159 126 100 7.58 1 7.58 55 90 135
A-n80-k10 1763 1763 1756.46 1763 127 100 13.98 1 13.98 82 248 186

Avg 0.61 0.05 0.03 5.6 30 59 53
Solved 22 22 22 22
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Table 8.4: Detailed results on CVRP instances of classes B.

Ins UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT BMR11 Con12 Rop12

B-n38-k6 805 805 805 805 0 100 0.36 1 0.36 4 4 2
B-n39-k5 549 549 549 549 0 100 0.72 1 0.72 6 0 13
B-n41-k6 829 829 829 829 0 100 0.48 1 0.48 4 5 4
B-n43-k6 742 742 737.21 742 127 100 6.10 1 6.1 23 25 9
B-n44-k7 909 909 909 909 0 100 0.48 1 0.48 3 6 2
B-n45-k5 751 751 751 751 0 100 1.23 1 1.23 9 21 19
B-n45-k6 678 678 678 678 0 100 0.77 1 0.77 10 21 11
B-n50-k7 741 741 741 741 0 100 0.98 1 0.98 4 3 2
B-n50-k8 1312 1312 1303.48 1309.68 81 95 10.09 1534 1309.73 1232 0.67 0.65 1 11.41 147 144 51
B-n51-k7 1032 1032 1026.83 1032 114 99 5.43 1 5.43 34 30 42
B-n52-k7 747 747 747 747 0 100 1.31 1 1.31 8 3 12
B-n56-k7 707 707 705 705 0 97.7 1.26 308 705 118 0.08 0.01 1 1.35 11 27 22
B-n57-k7 1153 1153 1153 1153 0 100 2.03 1 2.03 25 123 32
B-n57-k9 1598 1598 1596 1598 26 100 1.78 1 1.78 19 37 14
B-n63-k10 1496 1496 1487.15 1496 49 100 3.24 1 3.24 55 90 27
B-n64-k9 861 861 861 861 0 100 1.96 1 1.96 15 44 26
B-n66-k9 1316 1316 1308.93 1316 136 100 8.81 1 8.81 292 203 43
B-n67-k10 1032 1032 1027.60 1032 118 100 8.08 1 8.08 43 61 49
B-n68-k9 1275 1272 1263.74 1267.45 98 83.2 23.48 233945 1268.77 52517 22.92 3 62.14 526 763 3671
B-n78-k10 1221 1221 1217.20 1221 83 96.1 5.59 1 5.59 97 170 107

Avg 0.25 0.04 0.04 6.2 67 89 208

Solved 20 20 20 20
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Table 8.5: Detailed results on CVRP instances of classes E and M.

Ins UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT BMR11 Con12 Rop12

E-n51-k5 521 521 519.28 521 78 100 2.99 1 2.99 8 14 9
E-n76-k7 682 682 671.10 682 230 100 60.76 1 60.76 152 379 1819
E-n76-k8 735 735 726.97 735 183 100 20.54 1 20.54 82 172 767
E-n76-k10 830 830 817.34 828.20 208 99.1 21.50 582 828.41 406 2.84 0.13 1 24.47 114 184 1666
E-n76-k14 1021 1021 1006.94 1016.24 158 97.3 9.28 2038 1016.27 1870 0.72 0.64 1 10.64 52 141 1429
E-n101-k8 815 815 804.38 815 213 100 97.10 1 97.10 579 1092 6611
E-n101-k14 1071 1067 1053.69 1063.91 265 92.8 53.41 176295 1063.97 150216 11.55 3 95.61 453 662 4325
M-n101-k10 820 820 820 820 0 100 4.24 1 4.24 35 13 34
M-n121-k7 1034 1034 1032.48 1034 62 100 47.43 1 47.43 1249 5713 11140
M-n151-k12 1015 1015 1000.43 1011.74 232 98.1 178.38 58944 1012.81 8312 24.77 8.88 1 212.03 - 19699 417146
M-n200-k16 1278 1274 1252.54 1266.53 397 86.6 948.64 limit 1266.53 7.85 97 39868.87 - - -
M-n200-k17 1275 1275 1255.04 1268.71 395 94.0 527.36 limit 1268.71 9.45 5 3580.51 - - -

Avg 1.11 0.20 0.19 3669 303 2807 44295
Solved 12 9 10 10
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Table 8.6: Detailed results on CVRP instances of classes F.

Ins UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT BMR11 Con12 Rop12

F-n45-k4 724 724 724 724 0 100 41.83 1 41.83 23 1 13
F-n72-k4 237 237 235.58 235.58 0 100 3581.36 525 237 0 2009.52 1 5590.88 304 4 3349
F-n135-k7 1162 1162 1160.46 1162 79 97.1 5405.40 1 5405.38 - - 3126

Avg 0.24 0.20 0 3679 164 3 2163

Solved 3 2 2 3
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Table 8.7: Detailed results on CVRP instances of classes P.

Ins UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT BMR11 Con12 Rop12

P-n16-k8 450 450 448 448 0 93.5 0.01 23 450 0 0.05 1 0.06 1 0
P-n19-k2 212 212 212 212 0 100 0.19 1 0.19 1 1
P-n20-k2 216 216 213 216 5 100 0.19 1 0.19 1 1
P-n21-k2 211 211 211 211 0 100 0.21 1 0.21 1 1
P-n22-k2 216 216 216 216 0 100 0.26 1 0.26 1 2
P-n22-k8 603 603 603 603 0 100 0.06 1 0.06 1 0
P-n23-k8 529 529 529 529 0 100 0.06 1 0.06 1 0
P-n40-k5 458 458 458 458 0 100 0.68 1 0.68 2 4 3
P-n45-k5 510 510 506.96 510 49 100 1.60 1 1.60 6 12 13
P-n50-k7 554 554 551.59 554 72 100 1.72 1 1.72 9 19 6
P-n50-k8 631 631 617.15 628.65 172 98.6 12.29 347 628.71 323 0.65 0.06 1 13.00 68 41 127
P-n50-k10 696 696 689.36 696 50 100 1.01 1 1.01 9 19 6
P-n51-k10 741 741 736.19 741 35 100 0.70 1 0.70 11 20 6
P-n55-k7 568 568 559.20 566.02 122 99.1 10.48 375 566.91 106 3.29 0.01 1 13.78 17 48 98
P-n55-k8 588 588 580.62 586.76 140 99.6 10.92 134 587.41 0 0.11 1 11.03 18 17 36
P-n55-k10 699 694 681.79 690.19 128 91.5 9.34 8361 690.23 7455 0.82 0.92 1 11.08 29 39 110
P-n55-k15 993 989 972.54 987.02 66 97.5 3.52 355 987.11 343 0.32 0.03 1 3.87 27 86 16
P-n60-k10 756 744 738.90 743.68 84 87.3 5.70 31448 744 25537 2.08 1.11 1 8.89 30 28 15
P-n60-k15 1033 968 963.47 963.47 0 15.2 0.67 1172814 968 0 7.71 1 8.38 73 30 4
P-n65-k10 792 792 787.09 792 65 100 1.72 1 1.72 14 42 14
P-n70-k10 834 827 814.33 823.89 171 89.6 21.70 64906 824.64 43486 7.65 3 44.81 166 133 534
P-n76-k4 593 593 589.22 593 133 100 65.71 1 65.71 118 363 497
P-n76-k5 627 627 617.74 627 193 100 169.14 1 169.14 282 1331 3888
P-n101-k4 681 681 678.57 681 113 100 402.25 1 402.25 1155 5793 1343

Avg 0.78 0.13 0.07 32.7 85 43 280
Solved 24 24 24 24
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Table 8.8: Detailed results on instances from (9) and (10).

Ins n Ksol UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT

C1 50 5 524.61 524.61 522.98 524.61 77 100 3.72 1 3.72
C2 75 10 835.26 835.26 822.40 833.26 222 98.2 35.27 2055 833.37 1657 2.26 1.00 1 38.53
C3 100 8 826.14 826.14 815.02 824.02 163 96.6 137.60 63051 826.14 427 17.63 0.09 1 155.32
C12 100 10 819.56 819.56 819.56 819.56 0 100 4.07 1 4.07
C11 120 7 1042.12 1042.12 1041.97 1042.12 73 100 41.07 1 41.07
C4 150 12 1028.42 1028.42 1013.35 1025.10 277 96.6 330.56 500642 1026.25 62317 99.43 3 782.61
C5 199 16 1291.29 1291.29 1270.09 1284.14 364 91.5 586.01 limit 9.40 59 18690.20

Avg 0.90 0.20 0.14 2816
Solved 7
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Table 8.9: Detailed results on instances from (28).

Ins n Ksol UB OPT RLB NRLB nS Fix T1 |R|i NLB |R|f T2 TMIP Nds TT

G17 240 22 707.76 707.76 700.91 705.54 833 92.2 993.44 limit 16.96 13 25202.88
G13 252 857.19 845.80 851.97 705 94.6 21564.95 limit 184.41 1 21749.36
G9 255 579.71 575.67 576.88 408 94.3 9276.06 limit 87.06 1 9363.12
G18 300 27 995.13 995.13 988.36 993.42 1031 96.1 1012.44 limit 17.76 15 25690.27
G14 320 30 1080.55 1080.55 1070.53 1076.03 702 96.1 6210.38 limit 120.09 ≈ 3K ≈ 36 days
G10 323 736.26 729.86 731.13 469 87.8 15942.88 limit 78.31 1 16021.19
G19 360 33 1365.60 1365.60 1356.18 1363.10 930 95.1 1248.40 limit 15.20 239 260344.52
Avg 0.64 0.17 ≈ 9.9 days

Solved 4
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Figure 8.1: Optimal solution of M-n200-k16, value 1274.

8.3.1
Results for the Pricing

Table 8.10 shows detailed results over a number of selected instances

of five variants of the pricing: 1 - Forward Labeling (Algorithm 7.1); 2 -

Bidirectional Labeling with concatenation at Q/2; 3 - Bidirectional Labeling

with dynamic determination of the concatenation point (Algorithm 7.3); 4 -

The later algorithm with mild use of completion bounds (n′S is small); 5 - The

same algorithm with aggressive use of completion bounds (n′S is larger). For

each instance, there are five rows, each giving the results for a pricing variant.

The name of the columns are: Ins - The name of the instance; UB - The initial

upper bound; LB - The root lower bound obtained; Fix - the percentage of arcs

(i, j)q ∈ AQ fixed at the end of the root node; Alg - The pricing variant; nS

- the number of lm-SRCs with non-zero duals; nFL - the number of forward

labels; FT - the time to run the Forward Labeling; nBL - the number of

backward labels; BT - the time to run the Backward Labeling; CT - the time
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Figure 8.2: Optimal solution of G14, value 1080.55.

to run the concatenation; CBT - the time to calculate completion bounds; TT

- the total time of the pricing; and qf - the concatenation point. The number of

customers is indicated in parentheses for the instances proposed in (28). Note

that for variant 1, qf = Q.

The results (columns from nS to qf) are an average of the rounds of the

exact pricing performed in the end of the root node, after the last separation of

lm-SRCs. In order to ensure a fair comparison, in this particular experiment,

all the pricing variants are run “in parallel” with exactly the same input, the

reduced costs. We only use columns found by Variant 5, the columns from the

other variants are discarded.

Table 8.10: Results for 5 variants of the pricing.
Ins UB LB Fix Alg nS nFL FT nBL BT CT CBT TT qf

B-n68-k9 1272 1268.43 93.0 1 206 681,215 162.13 162.13 100

2 29,305 1.10 123,533 9.36 0.76 11.21 50

3 56,400 3.10 69,091 3.60 0.77 7.46 57

4 56,886 3.40 66,073 3.53 0.81 0.06 7.80 57

5 55,000 3.13 64,386 3.54 0.81 4.83 12.31 57

E-n101-k8 815 814.39 98.3 1 190 81,238 0.33 0.33 200

2 11,539 0.03 54,223 0.19 0.03 0.25 100

3 24,802 0.08 30,123 0.08 0.03 0.19 123

4 24,165 0.08 29,837 0.08 0.03 0.04 0.23 123

5 24,577 0.08 28,792 0.08 0.03 0.14 0.33 123
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M-n151-k12 1015 1012.54 98.7 1 349 300,434 3.12 3.12 200

2 53,043 0.28 213,691 1.95 0.14 2.37 100

3 110,990 0.79 111,542 0.79 0.16 1.73 122

4 111,731 0.78 107,555 0.77 0.16 0.11 1.83 123

5 107,585 0.72 104,803 0.71 0.16 0.63 2.23 122

M-n200-k16 1278 1266.13 86.0 1 362 824,411 30.13 30.13 200

2 205,676 4.31 445,318 10.60 0.20 15.10 100

3 290,721 7.10 322,890 6.98 0.21 14.29 113

4 282,208 2.86 264,891 2.86 0.21 1.00 6.92 118

5 164,252 1.63 293,159 1.63 0.17 2.85 6.28 96

M-n200-k17 1275 1268.53 93.9 1 362 713,344 15.80 15.80 200

2 182,203 2.24 442,487 7.16 0.16 9.56 100

3 275,242 4.15 296,893 4.15 0.17 8.46 116

4 265,776 2.12 240,002 2.15 0.17 0.64 5.08 121

5 183,267 1.38 239,635 1.36 0.15 2.26 5.16 104

G17 (240) 707.76 705.7 92.3 1 1015 574,434 52.56 52.56 20

2 142,898 8.41 184,784 12.47 1.61 22.48 10

3 142,898 8.58 184,784 12.75 1.59 22.93 10

4 175,048 7.27 137,401 6.60 1.73 0.14 15.74 11

5 136,400 5.41 127,199 3.96 1.60 2.52 13.48 10

G13 (242) 857.19 851.74 94.1 1 598 8,945,606 711.68 711.68 1000

2 691,079 24.46 5,939,668 397.29 1.52 423.26 500

3 2,063,475 105.74 2,378,698 106.14 1.32 213.20 635

4 2,018,630 60.62 1,974,895 61.01 1.22 3.69 126.54 651

5 1,009,351 26.79 1,648,510 26.84 1.56 21.63 76.83 548

G9 (255) 579.71 576.84 94.2 1 371 4,721,819 185.30 185.30 1000

2 1,868,427 58.49 3,812,497 142.65 1.10 202.24 500

3 2,589,046 90.78 2,644,367 90.84 0.86 182.48 568

4 2,556,700 51.12 2,172,705 51.30 0.63 5.10 108.14 589

5 818,102 14.46 1,629,212 14.40 0.11 24.64 53.60 579

G14 (320) 1080.55 1076.12 96.1 1 712 6,856,892 338.01 338.01 1000

2 1,062,545 28.18 5,346,066 234.80 0.41 263.39 500

3 2,393,118 87.77 2,601,846 87.88 0.34 175.99 624

4 2,397,374 39.57 1,948,837 39.74 0.31 5.06 84.67 652

5 1,181,803 17.68 1,863,797 17.74 0.41 20.05 55.88 523

The results in Table 8.10 show that Variant 5 is the best pricing

algorithm, at least for very hard instances, those with more than 199 customers.

Therefore, it was the variant chosen for the proposed BCP.

8.3.2
Handling Symmetrical Instances

A high level of symmetry is observed in most instances from (28). This

impacts negatively the BCP performance, making the cutting and branching

operations less efficient than usual. In fact, whenever a fractional solution is

cut, it is likely that a symmetric solution with the same cost will appear in its

place. The lower bounds can only move after all symmetric solutions are cut.

We implemented some special techniques in our BCP in order to mitigate this

negative impact.

The proposed BCP has a procedure that automatically detects, for in-

stances that use non-rounded euclidean distances calculated from the customer
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Figure 8.3: Optimal solution of G19, value 1365.60.

and depot coordinates, angles of rotation and reflection with respect to the

depot that result in equivalent instances. For example, the instance G14 (see

Figure 8.2) remains the same if it is rotated around the depot in an angle of

90 degrees or reflected over a horizontal line passing through the depot. As a

result, for every feasible solution for this instance (fractional or integral), there

are 8 symmetric solutions with the same cost. For the instance G19, shown in

Figure 8.3, the number of symmetric solutions is 12 because the rotation angle

is 60 degrees. More precisely, the procedure uses the rotation and reflection

operations mentioned before to partition the set of arcs into symmetry groups.

In instances G9-G12, each group has 2 members, in instances G13-G19, each

group has 8 members, in instances G17-G20, the groups have size 12. Instances

G1-G8 are also very symmetric, but they are not considered in this CVRP work

because they have additional distance constraints.

The BCP benefits from the symmetry detection in two ways.

1. For every variable xqa fixed to zero by reduced cost, all variables xqa′ where
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a′ ∈ Sym(a), the symmetry group of a, can also be fixed to zero. This is

valid because the same argument that was used to fix a can be turned

into an argument to fix a′, by only switching indices.

2. Consider the simple disjunction (xa = 1) ∨ (xa = 0) on the branching.

The stronger disjunction (xa = 1)∨(
∑

a∈Sym(a) xa = 0) is also valid. This

can be explained as follows: if all optimal solutions use at least one arc

in Sym(a), there is an optimal solution that uses a. It is important to

remark that the left node (corresponding to xa = 1) from this branching

is not completely symmetrical anymore. This is good, but also means that

the symmetry related tricks can not be used in the corresponding subtree.

On the other hand, the right node (corresponding to
∑

a∈Sym(a) xa = 0)

is still symmetrical.

Now, consider a disjunction (
∑

a∈δ−(S) xa = 1)∨(
∑

a∈δ−(S) xa ≥ 2) on the

branching. Let X be a non-empty proper subset of the arcs in A. We say

that the subset X ′ ⊂ A, |X ′| = |X|, belongs to Sym(X) if every arc in X

can be mapped into an arc in X ′ by the same combination of rotation and

reflection operations. It can be seen that all possible sets Sym(X) have

the same cardinality |Sym|, which is also the cardinality of the groups

of symmetrical arcs. We claim that the right side of disjunction can be

strengthened to (∧X′∈Sym(δ−(S))

∑
a∈X′ xa ≥ 2). In other words, |Sym|

inequalities can be imposed on the right node. This is valid because

if in all optimal solutions there is a set X ′ ∈ Sym(δ−(S)) such that∑
a∈X′ xa = 1, there is an optimal solution where

∑
a∈δ−(S) xa = 1. Using

this improved disjunction, the symmetry is partially broken in the left

child. But is maintained in the right child, and thus can be exploited

again.

The use of those techniques makes a lot a difference in the BCP performance

on highly symmetrical instances. For example, instance G17 takes more than

3 days to be solved without them.
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Conclusions

This thesis addressed the Capacitated Vehicle Routing Problem (CVRP),

the problem of designing optimal vehicle routes to serve a set of customers

using a fleet of homogeneous vehicles stationed at a central depot. The CVRP

is one of the most studied generalizations of the Traveling Salesman Problem.

The idea is that state-of-the-art exact algorithms for it can be adapted to to

successfully solve other VRP variants.

Although the focus of this thesis is the CVRP, the first contribution

presented is related to Shortest Path Problem with Resource Constraint (SP-

PRC) and the Elementary SPPRC. These interesting problems are useful to

solve the VRPs via column generation and branch-and-price. Efficient exact

algorithms for the (E)SPPRC were proposed. Some of them combine the most

recent techniques for these problems, such as Decremental State-Space Re-

laxation (DSSR) (54), ng-routes (3), bidirectional search (53) and completion

bounds. These algorithms were embedded in a column and cut generation al-

gorithm to compute lower bounds for the CVRP. Extensive computational

results are reported showing that the best performing algorithms are capable

of pricing ng-routes with ng-set sizes up to sixty-four for hard CVRP instances.

Moreover, it is shown that the pricing algorithms are superior than the best

algorithm proposed in (54) for the ESPPRC. Our algorithm starts with empty

ng-sets. At each DSSR iteration, it identifies one or more cycles on the best

solutions and include the repeated vertex in the ng-sets of all vertices which

compose the cycle. This approach performs better than the regular DSSR for

elementary routes because it does not add the vertex restrictions globally, thus

keeping the dominance rule easier to be evaluated.

Moreover, important contributions are presented for the exact solution

of the CVRP. The newly Branch-Cut-and-Price was the result of a deliberate

effort of testing, improving and combining ideas proposed by several authors,

such as: extended formulation, ng-routes, strong branching, robust and non-

robust cuts (including Subset Row Cuts), bidirectional pricing, variable fixing

and route enumeration. A new form of SRC is presented, the limited memory

SRCs (lm-SRCs). These cuts represent a weaker version of SRCs carefully
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designed to be efficiently used in the context of a column generation algorithm.

These new cuts were decisive on the exact resolution of the last two open

instances from the standard benchmark dataset, instances M-n200-k17 and

M-n200-k16. Moreover, very hard instances with up to 360 customers, never

tackled before by exact methods, could be solved to optimality. Detailed

and extensive computational results on a large set of instances are reported,

including experiments with a number of pricing variants.

We conclude by stating more personal views on what general BCP

algorithm construction can learn from that CVRP experience:

– The separation of non-robust cuts should be as much integrated with the

pricing as possible. More precisely, besides taking classical polyhedral

considerations into account, the non-robust cuts should be designed in

order to minimize their impact on the specific kind of algorithm used

in the pricing. In the BCP presented in this paper, the limited memory

SRCs has a quite odd algorithmic definition that only makes sense in the

context of the labeling algorithm. For example, suppose an alternative

BCP for the CVRP where a MIP model is used to price elementary

routes. The limited memory SRCs would not fit in that algorithm, they

would probably cause more negative impact in the pricing than ordinary

SRCs.

– When designing non-robust cuts, it is desirable to have a parameter that

allows a smooth control on cut strength vs impact in the pricing. In the

case of limited memory SRCs, the parameter M has that role.

– Even if designed and separated in a careful way, at some point the non-

robust cuts can indeed make the pricing intractable, halting the BCP

algorithm. Therefore, it is advisable to have suitable escape mechanisms,

like the rollback introduced in this work.

– Fixing variables from the original formulation by reduced costs can help

a lot. But this fixing can be more effective if the original formulation is

chosen in order to match the algorithm using in the pricing. In fact, in the

arc-load formulation, the vertices in VQ have a one-to-one correspondence

with the buckets in the labeling algorithm.

– The idea of finishing a BCP by enumerating all columns that may be part

of the optimal solution into a pool and perform pricing by inspection after

that and eventually sending a much reduced problem to a MIP solver can

be quite effective in some instances. However, for consistency reasons, it

should be hybridized with traditional branching.
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– Strong branching is now a standard technique for improving branch-

and-bound or branch-and-cut performance. Our experience confirms the

statement by (56) that it can also improve a lot the performance of BCP

algorithms.

9.1
Future Work and Extensions

The results over F instances from the standard benchmark showed that

the performance of the BCP is greatly affected by the vehicle capacity. On

those kind of instances, it is possible that the Two-Index Formulation (TIF)

may be a better underlying formulation than the Arc-Load Formulation (ALF).

The fixing by reduced costs or cuts over the xdij variables have at least two

drawbacks:

– the symmetry of the CVRP can not be exploited by the bidirectional

labeling algorithm for exact pricing, route enumeration and the algorithm

for variable fixing, a backward labeling procedure must be explicitly

performed due the asymmetry of ALF; and

– the dominance rule in the labeling algorithm for the exact pricing is

weakened, it can only be checked for labels within the same bucket;

For instances with large Q, this weakened dominance may be more evident,

paths using (a bit) less load are more likely to dominate others using higher

load when Q is large. Therefore, it may be the case that the improved fixing

(or cuts) over the variable from ALF does not compensate these drawbacks.

As for future work, we suggest: (i) an improved BCP capable to dynam-

ically choose the most appropriate underlying formulation for the instance;

(ii) implement fast pricing heuristics less sensitive to the value of the vehicle

capacity; and, more importantly (iii) extend the BCP to other VRP variants

that may include time windows and/or other likely additional constraints.

Remark that most of the techniques implemented by the BCP are

potentially adaptable to other VRP variants. For instance, the lm-SRCs are

cuts for the SPF, which is a general formulation for VRPs. The strong

branching is also quite generic. It is worth mentioning that, even some

CVRP instances can take advantage of the symmetry, the work done on

the extended formulation has great potential benefits. Because most of the

VRPs are asymmetric, this means that the code is much more generic, the

labeling algorithms for pricing, fixing and route enumeration perform backward

labeling procedures. We believe that with minor changes our BCP would run

for the Asymmetric CVRP, the Time Dependent Traveling Salesman Problem
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(TDTSP), the Time Dependent Vehicle Routing Problem (TDVRP) and the

“green” VRP, where the cost of an arc (CO2 emission) depends on the load.

Moreover, there are other important variants such as the HFVRP and parallel

machine scheduling where we already know that extended cuts works well.

Anyway, each variant has its own particularities, which means that the

task of extending the BCP for some of them may be far from trivial, as we

aspect for the VRPTW.
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[36] LÜBBECKE, M.; DESROSIERS, J. Operations Research. Selected

topics in column generation, journal, v.53, p. 1007–1023, 2004.

[37] LYSGAARD, J. CVRPSEP: A package of separation routines

for the capacitated vehicle routing problem, 2003. Available at

www.asb.dk/∼lys.

[38] LYSGAARD, J.; LETCHFORD, A. N. ; EGLESE, R. W. Mathematical

Programming. A new branch-and-cut algorithm for the capacitated vehicle

routing problem, journal, v.100, n.2, p. 423–445, June 2004.

[39] MARTINELLI, R. Exact Algorithms for Arc and Node Routing

Problems. 2012. PhD thesis - Pontif́ıcia Universidade Católica do Rio de
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