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(Advisor); Zubelli, Jorge Passamani (Co-advisor). Risk Analysis in a 
Portfolio of Commodities: A Case Study. Rio de Janeiro, 2014. 86p. 
MSc Dissertation – Departamento de Engenharia Elétrica, Pontifícia 
Universidade Católica do Rio de Janeiro. 

 

 
 

One of the main challenges in the  financial market is to simulate prices 

keeping the correlation structure among numerous  assets. Principal Component 

Analysis emerges as solution to the latter problem. Also, given the uncertainty 

present in commodities markets, an investor wants to protect his/her assets from 

potential losses, so as an alternative, the optimization of various risk measures, 

such as Value-at-risk, Conditional Value-at-risk and Omega Ratio, are important 

financial tools. Additionally, the backtest is widely used to validate and analyze 

the performance of the proposed methodology. In this dissertation, we will work 

with a portfolio of oil commodities. We will  put  together different  techniques 

and propose  a new methodology that consists in the (potentially)  decrease the 

dimension of the proposed portfolio. The following step is to simulate the prices 

of the assets in the portfolio and then optimize the allocation of the portfolio of oil 

commodities. Finally, we will use backtest techniques in order to validate our 

method. 
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Um dos principais desafios no mercado financeiro é simular preços 

mantendo a estrutura de correlação entre os inúmeros ativos de um portfólio. 

Análise de Componentes Principais emerge como uma solução para este último 

problema. Além disso, dada a incerteza presente nos mercados de commodities de 

derivados de petróleo, o investidor quer proteger seus ativos de perdas potenciais. 

Como uma alternativa a esse problema, a otimização de várias medidas de risco, 

como Value-at-risk, Conditional Value-at-risk e medida Ômega, são ferramentas 

financeiras importantes. Além disso, o backtest é amplamente utilizado para 

validar e analisar o desempenho do método proposto. Nesta dissertação, 

trabalharemos com um portfólio de commodities de petróleo. Vamos unir 

diferentes técnicas e propor uma nova metodologia que consiste na diminuição da 

dimensão do portfólio proposto. O passo seguinte é simular os preços dos ativos 

na carteira e, em seguida, otimizar a alocação do portfólio de commodities de 

derivados do petróleo. Finalmente, vamos usar técnicas de backtest, a fim de 

validar nosso método. 
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1
Introduction

Investment is usually defined as the commitment of wealth in order to achieve
the investor’s objective. Therefore, investment science is the application of scientific
tools to investments. These scientific tools used are primarily mathematical and
statistical and are required in the risk analysis study.

Risk, in Finance, by definition, is the probability of losing something. In Fi-
nance, the investor wishes to mitigate or take certain controlled risks. Risk analysis
has a wide range of applications, such as: the uncertainty of the portfolio/stock
returns, statistical analysis to determine the probability of a given scenario, and
possible future economic states.

Investment analysis is the process of examining outcomes on investment and
deciding which one is most adequate for the investor, according to his profile.
Markowitz [20] was the pioneer in demonstrating the problem of the portfolio se-
lection and the risk mitigation. Besides structuring the mathematical portfolio prob-
lem, [20] showed that each investor has a risk profile and tolerates a certain amount
of risk in their investments.

A typical approach to measure these risks are the so-called risk measures:
Value-at-Risk and the Conditional Value-at-Risk, being some of the available mea-
sures. The first one is defined as a certain quantile (usually 95%) of the returns
or prices distribution. The probability level is chosen deep enough in the left tail
of the loss distribution to be relevant for the risk decision, but not so deep as to
be difficult to estimate with accuracy. This probability level represents the worst-
case scenario at the chosen quantile. The problem is that it still remains 5% (if the
probability level chosen is 95%) of the possible losses. In face of this problem, the
Conditional Value-at-Risk emerged as an alternative to the use of the Value-at-Risk.
By definition, the Conditional Value-at-Risk is the average of (1 − α) worst-case
scenarios.

In order to conciliate risk and optimization, [24] emerged as solution. The
authors show the Linear Programming of the Conditional Value-at-Risk. In [17],
the authors apply the theory of [24] to the benchmark S&P using some financial
objectives and constrains. In our work, we will present the application of [24] in a
very specific portfolio of commodities adding useful financial constrains.

And finally, one should quote Performance Measures that are used as com-
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1. INTRODUCTION 13

plementary to Risk Measures. The Sharpe ratio, for example, was the pioneer and
is capable to calculate whether a portfolio’s returns are due to smart investment de-
cisions or due to a result of excess risk. This kind of measurement is useful because
although the portfolio can present higher returns, it is important to analyze if those
higher returns do not represent too much risk.

Another valuable and more recent Performance Measure is the Omega Ratio.
The difference between the Sharpe Ratio and the Omega Ratio, is that the latter
contains much more information about the return distribution, including the mean,
variance, skew and kurtosis and is especially valuable for investments that have
non-normal distribution.

The Omega Ratio has several important characteristics that can be valued
when comparing portfolios with the same predicted return. Investors should fa-
vor the portfolio with the highest Omega Ratio, because this decision maximizes
the potential for making the desired level of return, and minimizes the probability
of extreme losses. Besides this fact, the entire return distribution, including higher
moments, is intrinsic in the Omega ratio. Finally, one can say that the Omega Ratio
does not minimize volatility, but it sure reduces the probability of extreme losses.
In [13], the authors show the optimization of the Omega measure. In our work,
we will present the Linear Programming of the Omega measure adding some fi-
nancial constraints and also, we will demonstrate case studies using a portfolio of
commodities.

If the objective is to mitigate risk, one of the manager’s strategies is to provide
portfolio diversification. But, by providing the diversification, the number of assets
in the portfolio increases. In spite of this fact, the risk analysis and estimation of the
portfolio becomes a very complex problem. This discussion can be found in [9].

In order to handle this difficulty, various methods were proposed in the finan-
cial literature, such as the Principal Component Analysis (PCA) [8], which will be
presented in the following chapters of this dissertation. The PCA transforms the
series into a different coordinate system, extracting the correlation among the assets
of the portfolio. Also, the result of PCA presents the most relevant components that
explain the most part of the portfolio. In this way, PCA can (potentially) decrease
the portfolio dimensionality. [26] applies this methodology for a specific Market
and Shipping. In our work, PCA will be applied to a portfolio of commodities in
order to potentially decrease its dimension.

Another instrument that is commonly used in the financial analysis is the out-
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1. INTRODUCTION 14

of-sample test, which provides the behavior of the portfolio when compared to a risk
measure, such as Value-at-Risk, Conditional Value-at-Risk or Omega Ratio. The use
of the out-of-sample inspires more confidence in the model chosen. In the recent
literature, [2] applies this technique in only two assets. In our work, we will apply
this technique in a portfolio of 12 assets.

In this work, we will put together these techniques described above. Initially,
we will work with a portfolio of 12 assets and we will apply the Principal Com-

ponent Analysis to (potentially) decrease its dimension. Once decided the most
relevant components, we will model the scores individually and simulate the prices
by keeping the correlation among the assets. The next step is to optimize the Value-

at-Risk, the Conditional Value-at-Risk and the Omega Ratio in order to obtain the
optimal allocations of the assets that compose our portfolio. Finally, we will vali-
date our methodology by applying a Backtesting technique.

1.1 Objectives and Contributions

Presently, one of main challenges of a portfolio manager is how to handle the
risk of a portfolio with a wide range of assets. The objective of this dissertation is
to construct a risk analysis of a portfolio of various assets, including equities and
commodities.

Our aim with this dissertation is to:

• Implement a calibration for a multidimensional model taking into account the
presence of commodities;

• Perform a dimension reduction of the uncertainty factors associated with the
model;

• Implement a portfolio optimization based on the chosen risk measures and
the corresponding backtesting.

1.2 Organization

This dissertation is organized as follows: Chapter 2 presents some aspects of
the Oil Market, such as: forward oil markets, options, swaps and some Commodi-

ties estimation models. Chapter 3 presents the most common risk and performance
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measures and, their linear programming as well. Chapter 4 illustrates the theory of
the Principal Component Analysis. Chapter 5 presents the backtest theory concern-
ing the violation series. Chapter 6 explains the method used in this work. Chapter 7
presents some case studies to illustrate the accuracy of the proposed methodology.
Chapter 8 concludes this dissertation and discusses extensions and future research.
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2
Oil as a Commodity and its Particularities

In this chapter, we will present the history and the structure of the oil market

and the different kinds of financial instruments that can be utilized in this specific
market. We will also briefly look at the most popular models to forecast the oil spot
prices: the Gibson- Schwartz model [23] and the Schwartz-Smith model [25].

The specificity of the oil market leads to a multitude of contracts related to
uncertainties in delivery times, places and types of the commodity. Due to this fact,
it is relevant to understand the whole context of commodity trading.

Crude oil is a key natural resource which operates as the underlying asset to
many financial instruments, such as futures and options. Physical oil trade can be
done in two different ways, by term supply contracts or spot supply contracts. The
first one can be defined as a contract for which the seller of oil agrees supplying the
buyer a specific quantity of oil at a specific date in the future. It is noteworthy that
the majority of oil traded physically is done by term supply contracts. The second
type of contract can be defined as a contract for delivery of a specific quantity of
oil at a specific location as soon as it is operationally possible. In general, it is done
within a day or two. It is relevant to say that the prices at which the spot supply
transactions arise will impact to the minute oil market news and any short term
changes to supply and demand. This happens because the barrels are sold to the
highest bidder.

According to [10], until the 1980s, oil prices in term supply contracts were
fixed by the largest oil companies unilaterally or in direct negotiations. Although,
fixed contract pricing is still used in some parts of the oil industry, almost all pricing
for term supply contracts have changed to benchmark pricing. The latter refers to
the spot supply prices. At the end of the day, a snapshot is taken of the supply
trading in oil prices of several benchmark grades of oil. The daily prices of oil can
be obtained from two sources: future exchanges and trade journals.

There are two main future exchanges where oil is traded: the New York Mer-
cantile Exchange (NYMEX) and the InterContinental Exchange (ICE), the latter
based in London. The trading of oil is also done in cities such as Tokyo, Shanghai
and Dubai.

In the trade journal, oil is traded in the Over-The-Counter (OTC) market,
which is not physically based anywhere. The most used trade journal for OTC
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2. OIL AS A COMMODITY AND ITS PARTICULARITIES 17

benchmark in oil markets is the so-called Platts Oilgram. Platts is a platform that
publishes the high and low prices for various grades of oil at the end of every busi-
ness day. Traders, in general, use the MOP (Mean of Platts) prices as their bench-
marks.

Some NYMEX and ICE futures and OTC trade journal grades of oil have
become spot market benchmarks. Non-benchmarks grades of oil, such as the price
in a specific local area and country are set at a premium or a discount to these
benchmark grades. The premium or discount is determined by transportation costs,
taxes and quality differences between the grade of oil in a particular area and the
benchmark grade.

2.1 Benchmark in Oil pricing

It is well-known that oil is traded globally in US dollars, since it is the most
freely convertible and liquid currency with the lowest transaction cost. Besides
those advantages, trading oil in a single currency makes it easier to compare oil
prices internationally.

One or several benchmarks can be referenced in the calculation of supply
contracts, this fact is known as oil formula pricing. Besides the benchmark, the
premium or discount of the Official Selling Price (OSP) to the benchmark(s) will
evaluate the quality difference between the benchmark crude and the crude grade
being priced. The relative demand for the crude being priced has to be considered
in the process.

There is a method to determine prices in obscure locations where little trading
in physical oil is done. This is the so-called freight netback pricing. It is a variation
of benchmark formula pricing, in which the price for a grade of oil at one location
is linked to a benchmark oil price at another location. It is adjusted for a benchmark
freight cost published by the Baltic Exchange, Platts at some trade journal.

In the US, some crude oil types are traded based on posted prices. Posted
prices can be defined as bid prices from refineries and others interested in buy-
ing crude oil. In this way, posted prices can be understood as a starting point for
negotiating a market price. Often premia are paid above posted prices, known as
posting-plus prices, but most posted prices are correlated to benchmark pricing. It
is relevant to say that posted prices themselves are not used as benchmark prices.

When physical oil prices are quoted, they are related to a certain point in the
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2. OIL AS A COMMODITY AND ITS PARTICULARITIES 18

delivery chain. The cost of the oil is basically built by crude oil accounts. However,
refining and transportation chain add a cost to the oil. In many places, the retail oil
prices are different due to the government taxation.

2.2 Foward Oil Markets: Futures and Swaps

A forward contract is defined as the price of oil delivered at a specified date
in the future. Usually this trade is done using exchange traded future contracts
and Over-The-Counter (OTC) swap contracts. An interesting feature of futures and
swaps is that one does not have to be involved in the delivery of the physical oil.
Those contracts are the so-called paper barrels, which are known as derivative in-
struments in financial mathematics.

In order to handle the implicit uncertainty present in the commodities prices,
there were created two types of forward curves: Contango and Backwardation. The
difference between them is that a forward curve in contango implies that oil as an
asset that has a negative yield for those owning oil (owner of oil has to pay storage
costs to continually own the oil) and the futures price is above the expected future
spot price, see Figure 2.1.

The most common forward curve is the backwardation, which implies that oil
has a positive yield (owner of oil can collect money by selling oil today and buying
it back cheaper in the future) and the futures price is below the expected future spot
price, as we can see in Figure 2.1.

Presently, changes in spreads due to seasonal differences and economic have
not been relevant in absolute prices of crude oil. This can be explained by the spare
capacity globally in oil storage, refining and transportation. One can conclude that
oil spot prices and forward curves are highly positively correlated. It is well ac-
cepted that forward curves do not provide reliable predictions of future spot prices.

It is relevant to remark that a spread position is the exposure of different prices
between, for example, two grades of oil, or the same grade of oil over different time
periods, or either the same grade of oil in two locations. There are four common oil
market spreads: crack, arbitrage, relative value and time spreads.
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Fig. 2.1: Contango and Backwardation curves

2.3 Forward Oil Markets: Options

Options can be understood as a hedge against the erratic movements of oil
prices. The formal definition of option is the right but not the obligation to buy or
sell oil (or any asset) at a set price in the future (maturity). The main difference
between options and swaps or exchange traded futures is that in swaps contracts,
there is the obligation of buying or selling oil at a set price at an certain time in the
future, whereas, for options there is no obligation.

A buyer of an option can lose only the premium paid to the option’s seller.
On the other hand, the seller keeps the premium but has unlimited losses. Normally,
there are two options depending on market direction: call options (profit from rising
prices), and put options (profit from falling prices). Its payoff are presented in
Figures 2.2 and 2.3.

DBD
PUC-Rio - Certificação Digital Nº 1212899/CA



2. OIL AS A COMMODITY AND ITS PARTICULARITIES 20

Premium Increasing underlying stock price 

Unlimited Profit 

Limited 
Loss 

Profit 

Loss 

Fig. 2.2: Example of a Call option
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Fig. 2.3: Example of a Put option

Straightforward put and call options, such as those described in Figures 2.2
and 2.3, are known as plain vanilla option since they are the most common and
simple structures.

The value of an option changes if the underlying market price moves, or if
the option gets closer to the expiration day, if interest rates change, or if market
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volatility change.
Most of options expire in one of the following four ways: American, Euro-

pean, Asian and Bermudan style. It is noteworthy that those names carry no geo-
graphical significance and are simply market shorthand for the expiry type. Amer-
ican options are those that can be exercised at any time from the option purchase
date up and including its expiry date. Such options are the most expensive ones
between these four styles presented.

On the other hand, the Asian options are those, by definition, that can be
exercised only at expiry against the arithmetic average price over a period of time,
such as a month, a quarter or a year. In European expiry (bullet expiry), the buyer
can only exercise against a single price at the end of a period of time. The latter are
rarely used in the oil market because they are more expensive than Asian options.
Finally, Bermudan expiry can be described as the option that can only be exercised
during a defined time window.

It is interesting to say that the Asian style options are more common than
American ones in the OTC markets, since oil consumers and producers usually
consume and produce oil every day, during a period of time. Also the use of options
which match this constant every day consumption and production pattern is more
appropriate than American options which expire against a single day’s price. An-
other reason is that by using an average of number of prices for different days (Asian
options), the volatility which is used to price the options is lower and consequently,
Asian options are cheaper than American ones.

2.4 Managing Oil Price Risk

It is well-known that commodities are one of the most volatile asset class
when compared to equities, currencies and bonds. This happens due to fact that
commodities are expensive to store. Commodity shortages take months or years to
alleviate, whereas equities, currencies, and bonds shortages can quickly be erased
by companies issuing more shares, governments printing more currency, and debt
issuers borrowing more.

According to Figure 2.4, one can see that hedging involves entering into a
transaction to smooth the short term impact of volatile oil price movements. If
one looks at the cash flow resulting from hedging over the long term hedging will
likely lose a small amount of money as the hedger has to cross a market bid/offer
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spread. However, the two main reasons to hedge are to reduce short-term cash flow
volatility and to maximize return on capital for a target level of risk.
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Fig. 2.4: Example of Hedging

First, reducing the volatility of cash flows has many benefits. One of the main
ones is the reduction of the risk of bankruptcy, which improves the ability to borrow
money and reduces the cost of such borrowing. The second reason for hedging is
based on portfolio theory, which is often used to optimize an investment portfolio
containing equities, commodities, bonds, cash and other assets, so that the portfolio
generates the highest return for the level of risk an investor is comfortable with. As
part of its portfolio of costs and revenue, an organization’s management can raise
or lower the impact of oil price volatility by hedging.

In the next section, we will present the pioneer methodology of forecasting
spot price of a certain commodity: The Gibson- Schwartz Model.

2.5 The Gibson- Schwartz Model

Gibson and Schwartz in [23] make three assumptions on their commodity
price model. The first one is that its price depends only upon the spot price at time
t, St, where t ∈ R, t ≥ 0, the second, the instantaneous net convenience yield of
oil, δ, and the third, time to maturity, τ . Also, in [23] they assumes that the spot
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price of oil and the net convenience yield follow a joint diffusion process:

dS/St = (µ− δ) · dt+ σ1 · dW1, (2-1)

dδ = κ(µ− δ) · dt+ σ2 · dW2, (2-2)

where dW1 and dW2 are correlated increments to standard Brownian processes and
dW1 · dW2 = ρ · dt, where ρ denotes the correlation coefficient between the two
Brownian motions and κ is the mean reversion ratio, σ1, σ2 ∈ R, ρ ∈ [−1, 1] and
µ ∈ R.

The instantaneous net convenience yield of oil, δ, follows a Ornstein-Uhlenbeck
process. If the instantaneous net convenience yield of oil, δ, were deterministic and
defined as δ(S) = κ lnS, this model would be classified as a one-factor model.
If one defines that Xt = lnSt and applies Ito’s Lemma, Equation (2-1) would be
reduced to:

dXt = (µ− δ − σ2
1/2) · dt+ σ1 · dW1. (2-3)

This model can be written in the risk-neutral version. The main difference
between the original model and the risk-neutral one is the parameter λ that is un-
derstood as the convenience yield risk premium. Also, λ is assumed as a constant.

dS/St = (µ− δ) · dt+ σ1 · dW ∗
1 , (2-4)

dδ = (κ(µ− δ)− λ) · dt+ σ2 · dW ∗
2 . (2-5)

where dW ∗
1 and dW ∗

2 are correlated increments to standard Brownian processes in
the risk-neutral version and dW ∗

1 · dW ∗
2 = ρ · dt.

If one assumes the absence of arbitrage in the market, the future price has to
obey to a differential equation:

σ2
1S

2

2

∂2F

dS2
+ σ1σ2ρS

∂2F

∂S∂δ
+
σ2
2

2

∂2

∂δ2
+ (r − δ)S∂F

∂S
+ (κ(α− δ)− λ)

∂F

∂δ
=
∂F

∂T
,

(2-6)
subject to the final condition:

F (S, δ, 0) = 0. (2-7)
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It can be shown that the solution to this Equation is given by:

F (S, δ,T) = S exp

(
− δ · (1− e−κT)

κ
+ A(T)

)
, (2-8)

where,

A(T) =

(
r−α̂+

σ2
2

2κ2
−σ1σ2ρ

κ

)
T+

σ2
2(1− e−2κT)

4κ3
+

(
α̂κ+σ1σ2ρ−

σ2
2

κ

)
(1− e−κT)

κ2
,

and
α̂ = α− λ

κ
.

This is one of the most well-accepted models used to evaluate short term
financial instruments, such as future contracts, when one might update the estimated
value of the market price of risk λ.

In the next section, we will present another popular methodology to forecast
spot price of a certain commodity: The Schwartz-Smith Model.

2.6 The Schwartz-Smith Model

Presently, commodity-related securities and projects are evaluated using stochas-
tic models of commodities prices. In [25], a simple two-factor model of commodity
prices is presented in order to capture both effects: the short-term deviations and
the long-term deviations. It is interesting to say that neither of these two factor is
directly observable, but they can be estimated from the spot and future prices using
a state space framework and the Kalman filtering.

2.6.1 The Short-Term/Long-Term Model

Let St be the spot price of a certain commodity at time t. The spot price will be
described by two stochastic variables: ln(St) = χt + ξt. The equilibrium price level
(ξt) represents fundamental changes that are expected to persist and the short-term
deviations (χt) are defined as the difference between spot prices and equilibrium
prices and represent temporary changes in prices. Also, the short-term deviations
are expected to revert toward zero following a Ornstein-Uhlenbeck process:

dχt = −κ · χt · dt+ σχ · dWχ, (2-9)
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where κ is the mean-reversion coefficient that represents the rate at which the short-
term deviations are expected to disappear and the time in which a deviation χt is
expected to halve.

The equilibrium price level (ξt) follows a Brownian motion process given by:

dξt = −µξ · dt+ σξ · dWξ, (2-10)

where dWξ and dWχ are correlated increments of standard Brownian motion pro-
cesses with dWξ · dWχ = ρχξdt.

In [25], one can say that ξ and χ are jointly normally distributed with mean
and covariance matrix:

[
χt

ξt

]
∼ N

([
e−κt · χ0

ξ0 + µξ · t

]
,

[
(1− e−2·κt) · σ

2
χ

2·κ (1− e−κt) · ρξχ·σξ·σχ
κ

(1− e−κt) · ρξχ·σξ·σχ
κ

σ2
ξ · t

])
.

2.6.2 Risk-Neutral Processes and Valuation

In [25], the risk-neutral version of the model presented above is rewritten.
The risk-neutral valuation is of utmost importance because discounts all cash flows
at the risk-free rate and describes the dynamics of the underlying state variables.
The risk-neutral stochastic processes are defined as

dχt = (−κ · χt − λχ) · dt+ σχ · dW ∗
χ (2-11)

And the equilibrium level (ξt):

dξt = (−µξ − λχ) · dt+ σξ · dW ∗
ξ , (2-12)

where λξ and λχ are new parameters added in the equations in order to represent
constant reductions in the drift for each process. Also, dW ∗

ξ and dW ∗
χ are correlated

increments of standard Brownian motion processes with dW ∗
ξ · dW ∗

χ = ρχξdt.
In the risk-neutral version, ξt and χt are also jointly normally distributed with

mean and covariance matrix:[
χt

ξt

]
∼ N

([
e−κt · χ0 − (1−eκt)·λχ

κ

ξ0 + µ∗ξ · t

]
,

[
(1− e−2·κt) · σ

2
χ

2·κ (1− e−κt) · ρξχ·σξ·σχ
κ

(1− e−κt) · ρξχ·σξ·σχ
κ

σ2
ξ · t

])
,
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where µ∗ξ is understood as the drift of the Geometric Brownian motion that the
equilibrium prices follow and can be written as µ∗ξ = µξ − λξ.

In order to value future contracts, let FT denote the market price for futures
contracts with time T until maturity. Also, it is known that future prices are equal
to the expected future spot price under the risk-neutral process and interest rates are
supposed deterministic. The future prices can be written as Equation 2-15:

ln(FT) = ln(E∗[ST]) (2-13)

= E∗[ln(ST)] +
1

2
· V ar∗[ln(ST)] (2-14)

= e−κt · χ0 + ξ0 + A(T), (2-15)

where,

A(T) = µ∗ξ ·T−(1−e−κt)·λχ
κ

+
1

2

(
(1−e−2·κt)·

σ2
χ

2 · κ
+σ2

ξ ·T+2·(1−e−κt)·ρξχ · σξ · σχ
κ

)
.

The authors show the mathematical equivalence between their model and
Gibson-Schwartz using new variables: χt = 1

κ
· (δt − α). In this way, it is pos-

sible to transform the Gibson-Schwartz model into the Schwartz-Smith model. One
of the differences between these two models is that the Gibson- Schwartz model re-
quires one more parameter (interest rate), but the authors of Schwartz-Smith model
discuss and conclude that the interest rate is redundant.

If one replace the risk-free, r, for r+ ∆, the convenience yield δt, for δt + ∆,
the average convenience yield α, for α + ∆ and the spot price drift µ, for µ + ∆,
one will find the same result of Xt and the new δt and both follow the same true
and risk-neutral processes and lead to the same estimates of the state variables in
the short- and long-term model. So, the risk-free rate is not required for specifying
the spot price dynamics or valuing future or forward contracts.
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3
Risk Measures

In this chapter, we will present some well-known risk measures and perfor-

mance measures and its properties. We chose to describe the Omega Ratio, the
Value-at-Risk and the Conditional Value-at-Risk due to the fact that those are the
most popular and common measures in a risk analysis of a portfolio. These risk

measures and performance measures will be implemented in Chapter 7, where we
will optimize the proposed portfolio using these three risk measures and its linear
programs.

Investors face the dilemma of how to earn the highest possible future return
with minimal risk, by arranging their current wealth over a set of available assets in
a portfolio. Markowitz [20] was the pioneer in formulating a mathematical model to
solve this allocation problem. He also noticed that a prudent investor aims at max-
imizing the expected return of an investment, with a lower risk. In the Markowitz
model, the risk of a portfolio is measured by the variance of the portfolio return
(mean-variance framework).

It is known, in general, that the mean-variance model of Markowitz is not able
to capture all of the features of a financial return distribution, given their observed
non normality. Instead of mean-variance model, we are going to consider other risk
measures for the portfolio solution, such as the Omega Ratio, the Value-at-Risk and
the Conditional Value-at-Risk, that will be presented in this chapter.

The choice of a risk measure is an important step towards building a realistic
picture of portfolio risk. It is important to conciliate the investor’s objectives and
the risk in the chosen portfolio.

In the next section we will present the recently proposed performance measure
Omega Ratio. Also, we will present its equivalent Linear Programming formulation.

3.1 The Omega Ratio

In order to compare the returns of different portfolio strategies, performance

measures, are used because they capture the downside and upside potential of the
constructed portfolio, while remaining consistent with utility maximization.

One of the most well-know performance measures is the Sharpe Ratio, devel-
oped in 1966 by William Sharpe. Due to its simplicity, this measure is very popular
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and can be pointed out as one of the most referenced risk/return measures used in
finance. By definition, for a given set A of assets, the Sharpe Ratio is presented as:

SRi =
E[ri − rf ]√
V [ri − rf ]

, (3-1)

where ri is the return of an asset i ∈ A, rf is the return of a benchmark (usually
risk free rate), V [ri− rf ] is the variance of the excess return and

√
V [ri − rf ] is the

standard deviation of the excess return.
The Sharpe Ratio, in general, is used to compare assets or funds. In this way,

the higher the Sharpe Ratio, the better the asset/fund is.
As one can see in Equation (3-1), the Sharpe Ratio uses only the first- and

second-order moments of the portfolio return and ignores other higher order mo-
ments. As a consequence, when the portfolio return is skewed or exhibits fat tails,
the Sharpe Ratio may present misleading results in performance evaluations and
rankings.

The Omega ratio [14] has several important characteristics which can be in-
tuitive and easily understood by the financial market. As an example, this measure
is robust to uncertainties in the sample series (unlike the estimators standards), be-
cause it is calculated by the observed distribution. Furthermore, it is a proxy of the
return’s distribution. Basically, it involves the ratio of the returns of the asset gains
and losses above or below a threshold and is well known as a measure of finan-
cial performance. Usually, the Omega Ratio is used to evaluate and compare fixed
portfolio strategies.

Let R̃ be the return of a portfolio modeled as a random variable and is assumed
to have a cumulative distribution function FR. The mathematical definition of the
Omega ratio is described as the probability of having a weighted gain divided by
the weighted probability of having a loss on the returns above a threshold τ :

Ωτ (R̃) =

∫∞
τ

(1− FR(ω)) dω∫ τ
−∞ FR(ω) dω

, (3-2)

where τ is a threshold defined by the investor and FR is the cumulative distribution
function of R̃.

The Omega Ratio defines a threshold value τ to distinguish the upside from
the downside, i.e, returns above τ are considered profits and returns below τ are
considered losses. Usually, the threshold τ is used as the risk-free rate.

The Omega Ratio is a non-convex measure. In [13], it is shown that the
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Omega Ratio maximization problem can be reformulated equivalently as a quasi-
convex optimization problem. Quasi-convex optimization problems are solved to
global optimality in polynomial time. Once reduced to a Linear Program, the portfo-
lio return distribution is approximated by discrete samples. In that way, the Omega
Ratio maximization can be used for large-scale portfolios.

In the next subsection, we will deduce the transformation of the Omega Ratio
as a non-convex measure to a Linear Program.

3.1.1 Omega Ratio maximization as a Linear Program

Let FR and fR describe the cumulative Probability function and the probabil-
ity density function of the portfolio return random variable R̃. In order to rewrite
the Omega Ratio [13] as a Linear Programming maximization we need to develop
a more suitable equation for Ωτ (R̃):

Ωτ (R̃) =

∫∞
τ

(1− FR(ω)) dω∫ τ
−∞ FR(ω) dω

. (3-3)

First, we will use integration by parts in Equation (3-3). We will start by the
numerator: ∫ ∞

τ

(1− FR(ω)) dω =

∫ ∞
τ

u(ω) · dυ(ω),

where,

u(ω) = (1− FR(ω))

υ(ω) = ω

Now, we can rewrite this integral assuming that
∫
|ω| · fR(ω) · dω <∞:
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∫ ∞
τ

(1− FR(ω)) dω =

∫ ∞
τ

u(ω) · dυ(ω)

= ((1− FR(ω)) · ω)
∣∣∞
τ

+

∫ ∞
τ

ω · fR(ω) · dω,

=

∫ ∞
τ

ω · fR(ω) · dω − (1− FR(τ)) · τ

= ER[R̃]−
∫ τ

−∞
ω · fR(ω) · dω − (1− FR(τ)) · τ

= ER[R̃]−
∫ τ

−∞
ω · fR(ω) · dω − τ

∫ ∞
τ

fR(ω) · dω

= ER[R̃]− τ + ER[(τ − R̃)+] (3-4)

This result was obtained using some algebraic transformations in the Equation
(3-4). The integral can be rewritten as:∫ τ

−∞
(τ − ω) · fR(ω) · dω =

∫ ∞
−∞

(τ − ω) · u≤τ · fR(ω) · dω, (3-5)

where the function u≤τ is a step function, given by:

u≤τ =

1 if ω ≤ τ

0 if ω > τ.

So the final result of the integral is:∫ τ

−∞
(τ − ω) · fR(ω) · dω =

∫ ∞
−∞

(τ − ω)+ · fR(ω) · dω

= ER[(τ − R̃)+]. (3-6)

Using the same logic of the numerator, the denominator of the Equation (3-3)
can be presented in a different way. First, we will integrate by parts the denominator
of Equation (3-3): ∫ τ

−∞
FR(ω) dω =

∫ ∞
τ

u(ω) · dυ(ω),
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where,

u(ω) = FR(ω)

υ(ω) = ω

Now, we can solve this integral:∫ τ

−∞
FR(ω) dω =

∫ τ

−∞
u(ω) · dυ(ω)

= (FR(ω) · ω)
∣∣τ
−∞ −

∫ τ

−∞
ω · fR(ω) · dω

= FR(τ) · τ −
∫ τ

−∞
ω · fR(ω) · dω

=

∫ τ

−∞
(τ − ω) · fR(ω) · dω

= ER[(τ − R̃)+]. (3-7)

The result presented in Equation (3-7) is only obtained using the algebraic
transformations presented in Equations (3-5) and (3-6).

Finally, the expression of Ωτ (R̃), Equation (3-3), can be rewritten using the
new expressions of the numerator, given by Equation (3-4) and the denominator,
Equation (3-7), resulting in :

Ωτ (R̃) =
ER[R̃]− τ + ER[(τ − R̃)+]

ER[(τ − R̃)+]
,

=
ER[R̃]− τ

ER[(τ − R̃)+]
+ 1. (3-8)

In general, investors aim to find an optimal portfolio allocation that maximizes
their wealth respecting their risk profile. Considering that the random portfolio
return is defined as:

R̃(Q) =
∑
i∈A

(P̃i
F − P I

i ) ·Qi, (3-9)

where

• P̃i
F

is the future price of the asset i ∈ A modeled as a random variable;

• P I
i is the market price of the asset i ∈ A;
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• Qi is the allocation of asset i ∈ A.

Using Equations (3-8) and (3-9), we can define the portfolio maximization
problem as follows:

max
Q∈Q

{
Ωτ

(∑
i∈A

(P̃ F
i − P I

i ) ·Qi

) ∣∣∣∣ ER
[∑
i∈A

(P̃i
F − P I

i ) ·Qi

]
≥ Rmin

}
,

(3-10)
where Q = [Q1, ..., Q|A|]

T is a vector of allocations of each asset i ∈ A, Q repre-
sents the set of feasible decisions and Rmin is the minimum expected return defined
by the investor.

Following the classical stochastic programming approach, the continuous ran-
dom variables P̃ F

i can be characterized by a set S of possible realizations (scenar-
ios) and its respectively probabilities {P F

i,s, ps}s∈S , where ps is the probability of the
scenario s and P F

i,s is the asset realization in the scenario s. Hence, as shown in [3],
the mathematical programming problem as specified through Equation (3-10) can
be rewritten as:

max
Qi

[ ∑
i∈A
(∑

s∈S ps · P F
i,s − P I

i

)
·Qi − τ∑

s∈S ps
(
τ −

∑
i∈A
(
P F
i,s − P I

i

)
·Qi

)+
]

(3-11)

s.t.

Qi ≤ Qi, ∀i ∈ A; (3-12)

Qi ≥ Q
i
, ∀i ∈ A; (3-13)∑

s∈S

ps ·

(∑
i∈A

(P F
i,s − P I

i ) ·Qi

)
≥ Rmin, (3-14)

where the set of feasible decisions is defined as: Q = {Q ∈ R|A| | Q
i
≤ Qi ≤

Qi, ∀ i ∈ A}, with Qi and Q
i
, respectively, the maximum and minimum allocation

in each asset i ∈ A.
Using an auxiliary variable δs to recover the convex function in the objec-

tive function denominator,
(
τ −

∑
i∈A(P F

i,s − P I
i ) ·Qi

)+, the mathematical prob-
lem can be restated as
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max
Qi,δs

[∑
i∈A
(∑

s∈S ps · P F
i,s − P I

i

)
·Qi − τ∑

s∈S psδs

]
(3-15)

s.t.

δs ≥

(
τ −

∑
i∈A

(P F
i,s − P I

i ) ·Qi

)
, ∀s ∈ S (3-16)

δs ≥ 0, ∀s ∈ S (3-17)

Qi ≤ Qi, ∀i ∈ A; (3-18)

Qi ≥ Q
i
, ∀i ∈ A; (3-19)∑

s∈S

ps ·

(∑
i∈A

(P F
i,s − P I

i ) ·Qi

)
≥ Rmin (3-20)

Finally, following [4], the mathematical problem presented above is a linear-
fractional problem, since it is a maximization of a ratio of affine functions over a
polyhedron [13]. Hence, we can state that the Omega Ratio maximization problem
as a linear programming as follows:

max
θi,ηs,κ

∑
i∈A

∑
s∈S

[
(ps · P F

i,s)− P I
i

]
· θi − τ · κ (3-21)

s.t.∑
i∈A

(P F
i,s − P I

i ) · θi + ηs ≥ τ · κ, ∀s ∈ S (3-22)

ηs ≥ 0 ∀s ∈ S (3-23)

θi ≤ Qi · κ ∀i ∈ A (3-24)

θi ≥ Q
i
· κ ∀i ∈ A (3-25)∑

i∈A

[(∑
s∈S

ps · P F
i,s

)
− P I

i

]
· θi ≥ Rmin · κ (3-26)∑

s∈S

ps · ηs = 1 (3-27)

κ ≥ 0. (3-28)
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Once solved the Linear Programming presented in Equations (3-21), (3-22),
(3-23), (3-24), (3-25), (3-26) and (3-27), we obtain the optimal allocation by the
ratio of θi/κ, i.e., Qi = θi/κ, ∀ i ∈ A.

In the next section, we will present the Value-at-Risk and its Linear Program-
ming formulation.

3.2 Value-at-Risk (VaR)

In financial risk management, Value-at-Risk (VaR) can be thought of as an
index of satisfaction. Its main utility is to measure the risk of loss in a specific
portfolio, given a probability and time horizon. Using the same notation of the
previous section, we can mathematically define the Value-at-Risk as:

V aRα = F−1R (α) = inf{r ∈ R | FR(r) ≥ α}, (3-29)

where α is a fixed level.
The Value-at-Risk is the α-quantile of the cumulative probability distribution

FR.
In the subsequent subsection, we will present the VaR maximization as a lin-

ear programming.

3.2.1 VaR Maximization as a Linear Programming with integer
variables

Although, Value-at-Risk plays a important role in risk management in fi-
nancial markets, this risk measure has some disadvantages, such as being a non-
coherent risk measure [1]. In addition, the optimal portfolio problem involving the
VaR maximization is a mixed-integer Linear Programming, which, algorithmically,
has several complications (such as NP-Hardness).

Once again, we will follow the classical stochastic approach used in the previ-
ous section, we define a set S of possible realizations for the portfolio return and its
respectively probabilities, ps. Hence, the mathematical programming of the maxi-
mization of the VaR is given by:
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max
δ,ys,Rs,Qi

δ (3-30)

s.t.

δ ≤ Rs − ys · M, ∀s ∈ S (3-31)∑
s∈S

ys ≤ (1− α) · |S| − 1 (3-32)

ys ∈ {0, 1} ∀s ∈ S (3-33)∑
s∈S

ps ·Rs ≥ Rmin (3-34)

Qi ≤ Qi, ∀i ∈ A (3-35)

Qi ≥ Qi, ∀i ∈ A (3-36)

Rs =
∑
i∈A

(P F
i,s − P I

i ) ·Qi ∀s ∈ S, (3-37)

where Rs, Qi, Qi, P
F
i,s, P

I
i are the same as described in the previous section. ys and

δ are auxiliary variables created in order to compute the linear programming and
M is a very large number.

The Linear Program described in Equations (3-30), (3-31), (3-32), (3-33), (3-
34), (3-35) , (3-36) and (3-37) return an optimal allocation of the maximization of
the VaR.

In the following section, we will present the last risk measure that will be
used in this dissertation: Conditional Value-at-Risk and its linear programing for-
mulation.

3.3 Conditional Value-at-Risk (CVaR)

The Conditional Value-at-Risk (CVaR) has been a distinguished risk measure
in recent years. The CVaR risk metric has been widely used in portfolio problems
due to its intuitive structure and its ability to capture the presence of events of high
depth (catastrophic) in income distribution.

The CVaR can be defined as the conditional expectation of the revenue left-
side distribution scenarios, below a given (1 − α) quantile - typically 1-10% (or α
from 0.99 to 0.95). The risk level is generally set in order to provide a pessimistic
perspective of the results. The mathematical expression is given by:
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CV aRα(R̃) = E[R̃|R̃ ≤ V aRα(R̃)] (3-38)

=

∫
{r∈R|r≤V aRα(R̃)}

r

P{R̃ ≤ V aRα(R̃)}
dFR(r) (3-39)

where α ∈ [0, 1] is the confidence level.
By definition, the CVaR is the average of the (1 − α) worst scenarios of the

probability distribution of a given random variable.
With respect to its mathematical properties, CVaR is considered a coherent

risk measure in the sense of [1]. The proof of the VaR and CVaR properties are
demonstrated in [22].

The subsequent section presents the maximization of the CVaR.

3.3.1 CVaR Maximization as a Linear Program

The CVaR emerged among other risk measures because of its mathematical
and financial properties. Mathematically, it has a number of desirable features, such
as being a convex risk measure. Financially, it encourages diversification. Initially,
it was calculated as a conditional expected value.

However, after [24], CVaR started to be computed as an optimization problem
of expected value, subject to linear constraints. This new perspective, enabled its
implementation and the popularization of its use in linear optimization problems.

In this sense, [24] proposes an equivalent approach for Equation (3-39) based
on the solution of the optimization problem presented in Equation (3-40):

CVaRα(R̃) := supz

{
z − E[(z − R̃)+]

(1− α)

∣∣∣∣ z ∈ R
}
, (3-40)

where (x)+ = max{x, 0}.
The optimality proof as well as several properties of Equation (3-40) can be

found in [24]. The optimization problem can take advantage of some convergence
results that are provided for finitely sampled scenarios, such as the convergence
of the expectation operator

(
limn→∞

(
n−1

∑n
i=1 xi

)
→ E[X̃], where {xi}ni=1 is a

sample series of the random variable X̃
)

[5].
Therefore, Equation (3-40) can be computed by sampling the exogenous vari-

ables. Since the Equation (3-40) is a convex maximization problem. In this sense,
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for a set S of sampled scenarios with the pair {(Rs, ps)}s∈S , the CVaR of a continu-
ous random variable R̃ can be approximated by the following linear programming:

CVaRα(R̃) ≈ max
z,δs

z −
∑
s∈S

psδs
(1− α)

(3-41)

subject to:

δs ≥ z −Rs, ∀ s ∈ S; (3-42)

δs ≥ 0, ∀ s ∈ S; (3-43)∑
s∈S

ps ·Rs ≥ Rmin; (3-44)

Qi ≤ Qi, ∀i ∈ A; (3-45)

Qi ≥ Qi, ∀i ∈ A; (3-46)

Rs =
∑
i∈A

(P F
i,s − P I

i ) ·Qi ∀s ∈ S. (3-47)

The optimal allocation according to the CVaR optimization is obtained by
solving the Equations (3-41), (3-42), (3-43), (3-44), (3-45), (3-46) and (3-47).

Finally, the next subsection shows the differences between the most popular
risk measures: VaR and CVaR.

3.3.2 Differences between VaR and CVaR

One criticism made to VaR is that it does not differentiate distributions with
different expected losses. Generally, both VaR and CVaR are applied to measure
the actual loss of a portfolio. For this reason, they are commonly used for negative
financial results. In this context, both are defined as the upper limit for maximum
losses allowed. Figure 3.1 illustrates the difference between VaR and CVaR:
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Revenue 
CVaRα (B) 

CVaRα (A) 

VaRα (A) = VaRα (B) 

 

p(R) 

(1 – α) α 

A 

B 

Fig. 3.1: Comparison of CVaR and VaR of two generic probability distributions

Figure 3.1 exemplifies two distributions: A has depth in the lower tail and
B with possibilities of events rather negatives. In this example, both distributions
show the same Value-at-Risk of α%, i.e., in both cases with a probability of α%

the result will be higher than the V aRα(A) and V aRα(B) value. However, the
distribution B has a higher expected value than A. Thus, a model with objective
of maximizing the expected return subject to a risk constraint limiting the CVaR,
would suggest as optimal solution option A.
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4
Principal Component Analysis

In this chapter, we will present the theory of Principal Component Analysis.
In our work, Principal Component Analysis will play an important role by (poten-
tially) decreasing the dimension of the portfolio problem to be defined in Chapter 7.
Since all optimization models presented in Chapter 3 depend on a set of simulated
scenarios of future prices, it is of utmost importance to develop a method able to
generate reliable simulated scenarios. Therefore, the method used in this disser-
tation is based on the dimensionality reduction of the uncertainties, extracting the
correlation structure among the assets in the portfolio.

Principal Component Analysis (PCA) is an important tool for the treatment
and analysis of multivariate data. It is a very useful statistical method for studying
the covariance structure of a vector of time series, due to the fact that it provides
simplification of the original data set, by changing to convenient coordinate frame,
potentially decreasing their dimensions and preserving the correlations among ran-
dom variables.

According to [27], let r̃ = (r̃1, ..., r̃k)
T be a k-dimensional random variable

representing the daily log returns of assets i, i = 1, .., k with covariance matrix σr̃,
given by:

σr̃ =


V [r̃1] Cov(r̃1, r̃2) · · · Cov(r̃1, r̃k)

Cov(r̃2, r̃1) V [r̃2] · · · Cov(r̃2, r̃k)
...

... . . . ...
Cov(r̃k, r̃1) Cov(r̃k, r̃2) · · · V [r̃k]

 ,

where Cov(r̃i, r̃j) = E[(r̃i − µi)(r̃j − µj)], V [r̃i] = E[(r̃i − µi)2] and µi = E[r̃i],
i = 1, .., k.

Principal Component Analysis (PCA) aims at using as little as possible linear
combinations of {r̃i}ki=1 to explain the structure of σr̃. If {r̃i}ki=1 denotes the daily
log returns of k assets, then the PCA is recommended to be applied to this series in
order to study the sources of changes on these k asset returns.

PCA can either be applied in the covariance matrix σr̃ or to the correlation
matrix ρr̃ of r̃. The latter can be defined as ρr̃ = D−1 · σr̃ ·D−1. The relation-
ship between σr̃ and ρr̃ is that the correlation matrix is the covariance matrix of
the standardized random vector r̃∗ = D−1 · r̃, where D is the diagonal matrix of
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standard deviations of the components of r̃, that isD = diag{S1, S2, .., Sk}, where
Si =

√
E[(r̃i − µi)2], i = 1, .., k.

Let ei = (ei1, ..., eik)
T ∈ Rk for i = 1, ..., k, and r̃ ∈ Rk be a k-dimensional

random variable representing the daily log returns of assets i, i = 1, .., k. Then we
can form the linear combination:

β̃i = eTi · r̃ =
k∑
j=1

eij · r̃j, (4-1)

where β̃i is the i-th principal component also known as scores and eTi are the coor-
dinates of the linear combination also known as the loadings.

Hence, the main idea of PCA is to preserve as much as possible of the varia-
tion of the original random variables r̃ in a lower dimension random vector, so that
we simplify our problem by reducing its dimension. In this sense, following [12],
PCA can be accomplished by maximizing the variance of the principal components
sequentially, i.e., maxe1 {V [β̃1]}, then maxe2 {V [β̃2]}, . . . , then maxek {V [β̃k]},
keeping them uncorrelated, i.e. Cov(β̃i, β̃j) = 0, ∀ i, j = 1, . . . k, i 6= j. In prac-
tice, only a few principal components will have relevant variance, thus we can work
only with these components.

The main difficulty in this approach is to find the vector eTi that maximizes the
variance of the i-th principal component. Next we show a procedure that optimally
find these vectors, for each i = 1, . . . , k. Starting with the first component, the
mathematical problem can be stated as:

max
e1
{V [β̃1]} = max

e1
{V [eT1 · r̃]} = max

e1
{eT1 · σr̃ · e1}. (4-2)

Performing the maximization problem (4-2), the optimal solution will not be
achieved for finite e1. Therefore, it is common to introduced some normalization
constraint, such that eT1 e1 = 1 or maxj {|e1,j|} = 1. The choice of the constraint is
dependent on the circumstances. For our purposes, we choose to use eT1 e1 = 1 for
a specific reason discussed later. So, the maximization problem (4-2) becomes:

max
e1
{eT1 · σr̃ · e1 | eT1 e1 = 1}. (4-3)

In order to solve (4-3), we can use the first-order condition for the Lagrangian
function, i.e. maximize {eT1 · σr̃ · e1 − λ · (eT1 e1 − 1)}, where λ is the Lagrange
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multiplier. Differentiating with respect to e1 gives

(σr̃ − λ · Ik) · e1 = 0⇒ σr̃ · e1 = λ · e1, (4-4)

where Ik is a k × k identity matrix. Thus, λ is an eigenvalue of σr̃ and e1 its
corresponding eigenvector.

To define which eigenvalue (eigenvector) should be chosen, note that the orig-
inal objective function in Equation (4-3) is eT1 · σr̃ · e1. Therefore, we have that

eT1 · σr̃ · e1 = eT1 λe1 = λ · (eT1 e1) = λ (4-5)

Thus, λ must be as large as possible to maximize (4-3). So, we choose the
largest eigenvalue and e1 is the eigenvector associated with the largest eigenvalue
of σr̃. It is important to justify why we choose eT1 e1 = 1 as the normalization con-
straint. The reason is described in (4-5). The conclusion that the optimal Lagrange
multiplier is equal to the largest eigenvalue of σr̃ is only valid if this constraint
is chosen. Otherwise, the result is not valid and another procedure must be done.
Since evaluating the eigenvalues of a semi-definite matrix is not computationally
burden, it seems to be a good choice to use eT1 e1 = 1.

After finding the coordinates of the first principal component (e1), we can
implement the same procedure to find the coordinates for the remaining principal
components. However, we need to guarantee that the principal components are
uncorrelated, i.e. Cov(β̃i, β̃j) = 0, ∀ i, j = 1, . . . , k, i 6= j. In this sense, for the
second component, the mathematical problem can be stated as:

max
e2
{eT2 · σr̃ · e2 | eT2 e2 = 1, Cov(β̃1, β̃2) = 0} (4-6)

However, note that

Cov(β̃1, β̃2) = eT2 · σr̃ · e1 = eT2 · λ1 · e1 = λ1e
T
2 · e1 = 0 (4-7)

Assuming that λ1 > 0, since it is the largest eigenvalue of σr̃, we can sub-
stitute the constraint Cov(β̃1, β̃2) = 0 in (4-6) by eT2 · e1 = 0. Using, again, the
first-order condition of the Lagrange function, we can maximize {eT2 ·σr̃ · e1 − λ ·
(eT2 e2 − 1) − ϕ · (eT2 · e1)}, where λ and ϕ are the Lagrange multipliers of (4-6).
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Differentiating with respect to e2 gives

σr̃ · e2 − λ · e2 − ϕ · e1 = 0⇒ eT1σr̃ · e2 − λ · eT1 · e2 − ϕ · eT1 · e1 = 0 (4-8)

Since eT1σr̃ ·e2 = 0, eT1 ·e2 = 0 and eT1 ·e1 = 1, we have that ϕ = 0. Hence,

σr̃ · e2 − λ · e2 = 0⇒ (σr̃ − λ · Ik) · e2 = 0 (4-9)

Again, λ is an eigenvalue of σr̃ and e2 is its correspondent eigenvector. Per-
forming the same analysis of the first component, we have that e2 is the eigenvector
associated with the second largest eigenvalue of σr̃.

Repeating with this procedure, we can find all the coordinates of the linear
combination that defines each principal component, concluding that each ei is the
eigenvector associate with the i-th largest eigenvalue of σr̃ (we refer to [12] for the
complete proof and a wider discussion of this procedure). In order to complete this
transformation, the principal components relates to the original random vector by
the following equation:

β̃ = ET · r̃. (4-10)

whereET = [e1, e2, . . . , ek]
T is the matrix with the eigenvectors on its columns and

ordered by the highest to the smaller eigenvalue, (also known as matrix of loadings).
In addition, we have that

k∑
i=1

V [r̃i] = tr(σr̃)

=
k∑

i=1

λi

=
k∑

i=1

V [β̃i]. (4-11)

Thus, rewriting (4-11):

V [β̃i]∑k
i=1V [r̃i]

=
λi

λ1 + ...+ λk
i = 1, 2, ..., k. (4-12)
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Consequently, the proportion of total variance in r̃ explained by the i-th prin-
cipal component is simply the ratio between the i-th eigenvalue and the sum of all
eigenvalues of σr̃. One can also compute the cumulative proportion of total vari-
ance explained by the first i principal components, i.e.,

∑i
j=1 λj/

∑k
j=1 λj .

In practice, one selects a small i such that the prior cumulative proportion is
large. Since tr(ρr̃) = k, the proportion of variance explained by the i-th principal
component becomes λi/k when the correlation matrix is used to perform the PCA.

A by-product of PCA is that a zero eigenvalue of σr̃, or ρr̃, indicates the
existence of an exact linear relationship between the components of r̃. For instance,
if the smallest eigenvalue is λk = 0, then V [β̃k] = 0. Therefore, β̃k =

∑k
i=1ekj r̃j

is a constant random variable and there are only k − 1 random quantities in r̃. In
this case, the dimension of r̃ can be reduced. For this reason, PCA has been used in
the literature as a tool for dimension reduction. One only must define an acceptance
level. Thus, all principal components which the variance ratio (4-12) is lower that
this level is assumed to be constant and then disregarded of the analysis, reducing
the dimension of the problem.
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5
Backtesting Techniques

This chapter outlines the theory of the Backtesting and its importance in the
validation of a portfolio. In Chapter 7, we will implement the backtesting tech-
niques in our portfolio in order to validate our proposed method.

Risk models are used as an important instrument in decision making by in-
vestment managers that intend to adjust the relationship between the portfolio re-
turn and the risk incurred. It is also relevant for authorities regulators, who must
observe whether financial institutions are taking more risks than its assets can sup-
port. Therefore, loss estimates provided by risk models must be constantly evalu-
ated through backtesting, which compares the estimated risk with losses incurred in
fact.

The most popular methods for backtesting, as proposed in [6], [7] and [18],
analyze the number of violations of the VaR. A violation takes places when a return
value surpasses the lower limit of the VaR estimated by the risk model. As the
probability of violation of the VaR level α equals α, then one can say that the risk
model is adequate. The number of violations is modeled by a sequence of i.i.d.
random variables of Bernoulli type with parameter α. The works cited above use
likelihood ratio tests to test the adopted coverage, 1− α.

By disregarding the magnitude of losses, the above mentioned backtesting

methods based on violations series cannot be applied to the Expected Shortfall.
There are few studies in the literature backtesting on this risk measure. Kerkhof and
Melenberg developed a framework for backtesting any risk measure [15], which
consists on a hypothesis test. The statistic of this test is the difference between
the measure of the risk from the model and the measure applied to the historical
distribution of losses.

One of the problems of backtesting methods that will be discussed is the low
rate of rejection of the models that are poorly specified. As we will see below, the
power of the tests can be undesirably low when the sample size used in the backtest
is small.

In order to simplify the presentation of the methods, we will take the time
horizon to be one day.
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5.1 Backtest based on violations

Let {Rt(Q)}Tt=1 be the series of observed portfolio returns for a given allo-
cation (Q) and {V aRt}Tt=1 be the series of estimatives of VaR with level α. A
violation happens when the portfolio loss in a time t is larger than the loss estimated
by the VaR at the same time t. So, the sequence of violations {Rt(Q)}Tt=1 is given
by:

It =

{
1, if Rt(Q) < −V aRt

0, otherwise
(5-1)

If the VaR model was correctly specified, the probability of loss Rt(Q) be
larger than {V aR}t is equal to α. Thus, it is expected that the time series of It be
i.i.d. with Bernoulli distribution with parameter α.

The Kupiec test is classified as a test of unconditional coverage, and the tests
proposed by Christoffersen, [7] and [18], are independence and conditional cover-
age tests.

5.1.1 Kupiec’s Test

Kupiec’s test [18] consists of a hypotesis test whether the observed frequency
of exceptions is consistent with the frequency of expected exceptions according to
the VaR model and a chosen confidence interval, on coverage, 1− α.{

H0 : θ = α

H1 : θ 6= α
. (5-2)

Under the null hypothesis that the model is correct, It follows a Bernoulli
distribution with parameter α. Therefore, the total violations V has a binomial
distribution:

V =
T∑
t=1

It ∼ Binomial(T, α) (5-3)

The author proposes the use of the likehood ratio test in order to test the null
hypothesis. The statistics is given by:

DBD
PUC-Rio - Certificação Digital Nº 1212899/CA



5. BACKTESTING TECHNIQUES 46

Λ(V ) = −2 · ln
(

L(α|V )

supθ{L(θ|V ) : θ ∈ [0, 1]}

)

=

−2 · ln
(
αV · (1− α)(T−V )

α̂V · (1− α̂)(T−V )

)
, if V > 0,

−2 · ln((1− α)T) , if V = 0,

where L is the likelihood function, α̂ = V/T is the maximum likelihood estimator
of α and Λ(V ) ∼ χ2(1).

In a likelihood ratio test, the test statistic is asymptotically distributed as the
chi-squared. The number of degree of freedom is given by the difference between
the number of free parameters in the model associated with the null and alternative
hypothesis. The model of the null hypothesis has no free parameters, because it is
assumed that θ = α. In the alternative hypothesis, the parameter θ is free.

5.2 Christoffersen’s Test

According to [19], large changes tend to be followed by large changes -of
either sign- and small changes tend to be followed by small changes. Thus, it is
desirable that the VaR model would be able to capture this stylized fact. If the
model considers the volatility as a constant it is likely that the violations would
occur with a higher frequency than expected in periods of higher volatility and with
lower frequency in the other periods of time.

Christoffersen proposes in [6] and [7] a statistical test in order to verify if
the violation series is temporarily independent. The test indicates whether the risk
model was able to capture the variation of the volatility of the series.

In [6], the author makes a simplification of the given problem and tests the
independence between two dates in a row in the series of violations. If this in-
dependence exists, and if the non-consecutive dates are independent as well, the
series can be understood as a first-order Markov Chain. The matrix of transition
probabilities is given by:

Π =

[
(1− α01) (1− α11)

(α01) (α11)

]
, (5-4)
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where αij = P (It = j|It−1 = i). This means that α11 is the probability of happen-
ing a violation given that one has already happened and α01 is the probability of a
violation given that no violation has occurred in the day before t− 1.

The independence test aims verifying if the probability of having a violation
at the date t does not depend of having had a violation at t− 1. The hypothesis can
be written as shown in: {

H0 : α01 = α11,

H1 : α01 6= α11.
(5-5)

Alternatively, it is possible to perform a conditional coverage test using a
similar hypothesis test: {

H0 : α01 = α11 = α,

H1 : α01 6= α11.
(5-6)

So, let:

T0 =
T−1∑
t=1

(1− It), T01 =
T−1∑
t=1

It+1 · (1− It),

T1 =
T−1∑
t=1

It, T11 =
T−1∑
t=1

It+1 · It,

where:

• T0 is the number of non-violations and T1 is the number of violations, both of
them disregarding the last element of the series It;

• T01 is the number of violations that happened after a non-violation;

• T11 is the number of violations that happened after a violation;

It is interesting to say that T01 and T11 have a binomial distribution.
In order to test the independence hypothesis in Equation (5-5), the likelihood

ratio test can be presented as:
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ΛIND(V ) = −2 · ln
(sup(α01,α11)

L(α01, α11|I) : α01 = α11

sup(α01,α11)
L(α01, α11|I)

)
, (5-7)

where I represents the observation of T0, T1, T01 and T11. Λ(V ) has asymptotic
distribution χ2(1). In this way, we have that:

• α̂ = (T0 + T11)/(T0 + T1) is the maximum likelihood estimator of α̂ in the
null hypothesis.

• α̂01 = T01/T0 and α̂11 = T11/T1 are the maximum likelihood estimators of
α̂01 and α̂11, respectively.

The test statics is given by:

ΛIND(V ) =



−2 · ln
(

α̂(T01+T11) · (1− α̂)(T0+T1−T01−T11)

α̂01
T01 · (1− α̂01)(T0−T01) · (1− α̂11)(T1−T11)

)
, if T01 + T11 > 0

−2 · ln
(
α̂T01 · (1− α̂)(T0+T1−T01)

α̂01
T01 · (1− α̂01)(T0−T01)

)
, if T11 = 0

−2 · ln
(
α̂T11 · (1− α̂)(T0+T1−T11)

α̂11
T1 · (1− α̂11)(T1−T11)

)
, if T01 = 0

This test is only valid when there is at least one violation in the observed
series.

If one wishes to test the null hypothesis α01 = α11 = α, one should replace
L(α̂|I) for L(α|I). The statistics has distribution χ2(2).
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6
Method for constructing and optimizing com-
modities portfolio

In this chapter, we will outline the method used in this work. We will explain
the criteria used to calculate the daily log returns and their distribution, the dimen-
sion reduction and the reconstruction of the prices of the equities used in the case
studies. The data was obtained from sources such as Bloomberg, Platts and Reuters

from September 14th, 2011 until December 27th, 2013. The data manipulation was
done using the free software R.

In order to illustrate our methodology, we present a diagram of the methodol-
ogy in Figure 6.1:

Original returns

PCA

Choice of relevant
components in scores

Simulation of
asset prices

Optimization of
the allocations

Risk Analysis
and backtest

Fig. 6.1: Diagram of the method

Figure 6.1 presents the method that will be implement in Chapter 7. In pos-
session of daily log returns of each asset ri, i ∈ A, we will apply the PCA in
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these returns in order to decrease its dimensionality. Once chosen the most relevant
principal components, we will model individually each principal component cho-
sen and we will simulate the returns and, consequently the prices. Subsequently,
we will optimize the allocations of the portfolio using the risk measures presented
in Chapter 3 and its linear programs. Finally, we will test the performance of the
optimal allocations.

In the next sections, each of the steps illustrated in Figure 6.1 will be ex-
plained.

6.1 Original Returns

Let us assume Pt to be the price of an asset at a generic time t, and Pt−τ , the
price of an asset at an earlier time t− τ . The log return at time t for a horizon time
τ is defined as:

rt,τ ≡ ln

(
Pt
Pt−τ

)
, (6-1)

where, in general, τ = 1, because we are using daily prices of commodities.
Following [21], we remark that:

1. The distribution of the log returns can be projected to any horizon and then
transformed back into the distribution of market prices at the specified hori-
zon.

2. Log returns have an approximately symmetrical distribution, unlike the dis-
tribution of linear returns or total returns. This is an advantage when it comes
to model the distribution of the log returns.

In the next section, we will present PCA applied to the portfolio problem and
the choice of the most relevant components in the scores.

6.2 PCA and Most Relevant Components

When a portfolio has a long number of assets, it is wise to provide dimen-
sionality reduction before modeling the return series and optimizing the portfolio.
This can be done by applying Principal Component Analysis in the returns of each
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asset of the portfolio, as presented in Chapter 4. This will be performed in our
Case Study of Chapter 7. We applied Principal Component Analysis in order to
(potentially) reduce the dimension of our problem.

Let r = (r1, . . . , rk) be the observed daily log returns of k assets and p periods
of time, so r is p × k matrix. The Principal Components Analysis decomposition
of r can therefore be given as

β = r ·E, (6-2)

where E is the so-called matrix of loadings and a k × k matrix whose columns are
the eigenvectors of the sample covariance matrix of r, β is a p × k matrix, also
known as scores as presented in Chapter 4.

The results of PCA can be summarized in two elements: scores and loadings.
As explained in Chapter 4, the loadings are the weights, the scores are the original
series translated to another coordinate system.

As discussed in Chapter 4, by defining a confidence level, we will apply the
Equation (4-12) in order to decide the most relevant components in the scores, those
whose variance are relevant. Most of times, few principal components can explain
almost the whole time series.

Therefore, only the most relevant components need to be kept in order to
decrease the dimension of the portfolio problem. Let n be the number of chosen
components, where n ≤ k. This truncated transformation can be given as

βi = r ·Ei, ∀i = 1, ..., n (6-3)

where the truncated scores, given by βi is a p × n matrix, with n ≤ k. Also, the
loading matrix, Ei, will be a k × n matrix, i.e. the n first columns of E.

This procedure aims to potentially reduce the dimension of the portfolio and
yet is able to keep the correlation structure among the assets.

Since the remaining scores, {βi}ni=1, keep almost all the dynamics of the orig-
inal returns r, we can use these variables to perform our analysis taking advantage
of the resulting dimensionality reduction obtained by applying PCA to the original
returns of each asset in the portfolio.

In the next couple of sections, we will present a method to simulate the log-
returns and, consequently, the prices of the assets, using the reduced score matrix,
{βi}ni=1.
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6.3 Simulation of asset prices

As discussed in Chapter 3, aiming to find the optimal portfolio using the op-
timization models presented, we need to obtain a set of simulated scenarios that
represent the uncertainties (e.g. future asset prices) in the investor’s portfolio.

In this section, we present a method based on the chosen scores, {βi}ni=1,
and the most commons processes used to model scores devised from return series,
namely: GARCH with Normal or Student t innovations [11], Geometric Brownian

Motion [16] and Normal distribution. Since the scores, by definition, are uncor-
related, we can calibrate/simulate them using univariate models. Then, after sim-
ulating the chosen scores we can obtain the log returns using the transpose of the
reduced loading matrix, defined in Equation (6-3), and finally obtain the simulated
prices.

We decide to model chosen scores, {βi}ni=1 using GARCH models and Geo-
metric Brownian Motion due to their properties. Those definitions will be presented
subsequently.

Since time-varying volatility is more common than constant volatility in the
series, generalized autoregressive conditional heteroskedasticity (GARCH) models
emerged as a solution. The GARCH model has the ability to model conditional vari-
ances σt,i, i.e., assumes that the changes in variance are a product of the realizations
of preceding errors.

The uni-variate GARCH model is presented as follows: For a score series
βt,i, ∀t = 1, ..., p, i = 1, ..., n, where n is the number of chosen scores, let at,i =

βt,i − µt,i, be the innovation at time t for the chosen score βt,i is:

at,i = σt,i · εt,i, σ2
t,i = θi,0 +

m∑
k=1

θi,k · a2t−k,i +

q∑
j=1

γi,j · σ2
t−j,i, (6-4)

where µt,i is the conditional mean of each asset i ∈ A, {εt,i} is a sequence of i.i.d.
random variables with mean 0 and variance 1, {θi,k}mk=0 > 0, {γi,j}sj=1 ≥ 0 and∑max(m,q)

l=1 (θi,l + γi,l < 1), i = 1, ..., n. Usually, {εt,i} is assumed to follow a
standard normal or standardized Student t(m).

One of the main features of GARCH model is that the shock at,i of the score
βi, i = 1, ..., n is serially uncorrelated, but dependent and its dependence can be
described by a quadratic function of its lagged values.
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The estimation of the parameters of the GARCH (m,q) model was done by
using the software R. After estimation, it is important to test the residuals and the
Squared Residuals of the GARCH (m,q) chosen, in order to validate the model. The
statistical tests used were: Auto-correlation Function (ACF) and Partial Correlation

Function (PACF).
We will also use, the Geometric Brownian Motion process, as an alternative

way to model the scores and, as consequence, simulate the prices. This model
is usually used in mathematical finance and can be defined as a continuous-time
stochastic process in which the logarithm of the randomly varying quantity follows
a Brownian motion (also called a Wiener process) with drift. Thus, for a score
βi, i = 1, ..., n, its expression is given by:

∆βt,i = µi ·∆t+ σi · εt,i ·
√

∆t, (6-5)

where ∆t is the time period, µi is the mean of βi, σi is the standard deviation of the
score βi and εt,i is a random normal with mean 0 and variance 1.

Finally, we are able to simulate τ steps ahead the scores {βi}ni=1 by sampling
the innovations εt,i and applying the estimated model. With a set of simulated sce-
narios S, we can use the transpose of the matrix of loadings to obtain the simulation
of the log returns τ steps forward:

rt+τ,s = βt+τ,s ·ET , ∀τ ∈ T, s ∈ S (6-6)

where T is the set of step forward periods simulated, rt+τ,s is the matrix of simulated
log returns τ steps forward,ET is the transpose of the matrix of loadings andβrt+τ,s

is the matrix of scores τ steps forward. Note that, both βrt+τ,s and ET have a
reduced dimension.

Finally, for a given asset i ∈ A, τ steps forward the estimated prices will be
simulated as follows:

rt+τ,i,s ≡ ln

(
Pi,t+τ,s
Pi,t+τ−1,s

)
⇒ Pi,t+τ,s = exp(rt+τ,i,s) · Pi,t+τ−1,s ∀τ ∈ T, s ∈ S,

(6-7)
where:

• Pi,t,s = Pi,t, where Pi,t is the last observed price for the asset i in the historical
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data;

• rt+τ,i,s is the simulated return of the asset i ∈ A, in the step τ ∈ T;

• Pi,t+τ,s is the simulated price of the asset i ∈ A, in the step τ ∈ T;

• T and S have the same interpretation as in Equation (6-6).

This set of simulated prices will be used in the optimization models described
in Chapter 3 in order to find the optimal asset allocation for each risk measure. In
the next section, we discuss how the optimization is performed.

6.4 Optimization of the allocations

The allocations used in the construction of the portfolio, inUS$, were decided
by maximizing the CVaR, VaR and Omega Ratio. Each optimization model has its
own Case Study in Chapter 7.

In possession of the simulated prices (described in the last section), we opti-
mize the allocations using CVaR, VaR and Omega Ratio, as described in Chapter 3.
The following Equations illustrate how the portfolio revenue is calculated and then,
how the Linear Programming is formulated:

Rs =
∑
i∈A

(P F
i,|T|,s − P I

i ) ·Qi, (6-8)

where

• P F
i,|T|,s is the price of the asset i ∈ A in the scenario s ∈ S at the end of the

simulated period |T| (for example, 5 or 20 days ahead);

• P I
i is the price of the asset i ∈ A at the last available historical date;

• Qi is the quantity (in MM BBL1) of asset i ∈ A that should be decided by the
optimization model;

• Rs is the portfolio revenue in scenario s ∈ S;

• A is the set of available assets and S is set of simulated scenarios (ex: 1000
scenarios).

1 MM BBL refers to one million barrels.
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6.5 Risk Analysis and Backtest

Finally, we conclude our method by applying the backtesting techniques de-
scribed in Chapter 5 in our portfolio. The backtesting is an important instrument to
check for model adequacy in the risk context used in order to measure the number
of violations on the estimated series and in the historical one.

Using the procedure described in section 6.3, we simulated the “out-of-sample”
performance of the portfolio 20 day ahead (T = {1, . . . , 20}), in order to capture the
uncertainty in the commodity market. Although the methodology described in Sec-
tion 6.3 can be applied for a generic step forward period of time, it is important to
mention that an accurate simulation is dependent of the number of steps. Therefore,
for a long-term operation, a recalibration of the portfolio is recommended. With the
proposed methodology, this recalibration can be easily made, with low computa-
tionally expenses. In this sense, in the next chapter, we present a set of case studies
to discuss and validate the proposed methodology within different contexts.
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Results

In this chapter, we will implement the method described in Chapter 6. This
chapter is of utmost importance because it validates the proposed method. Each
section will present a different Case Study and its particularities.

Investors pursue investments with high return and low risks. In order to
achieve this objective, managers have to select a portfolio for their investors ar-
ranging the current wealth of investors over a set of available assets.

Risk, in a financial context, is a measure for uncertainty. So, performance

measures and risk measures are instruments of estimating the worst-case scenarios,
because they capture the downside and upside potential of the selected portfolio,
while remaining consistent with utility maximization. In this chapter, we will com-
pare various risk measures and their performance in a portfolio of commodities.

In the following sections, we will apply the method explained in Chapter 6 to
different portfolios of commodities. Investing in actual physical commodities is the
best option for producers and consumers of raw materials.

7.1 Case Study 1

In this case study, we consider a portfolio of 4 assets: Brent, WTI, Petrobras

and RBOB1. The time period was January 2nd, 2007 until October 31st, 2013. This
time period was chosen carefully because includes the 2008 crisis and the period
after the 2008 crisis. The data was obtained from Bloomberg. Also, we will imple-
ment the method described in Chapter 6.

7.1.1 CVaR Optimization

In the first part of this subsection, we will apply PCA using only part of the
data available from January 2nd, 2007 until August 10th, 2008. This period was
chosen due to fact that is before the 2008 crisis.

Once we applied PCA to this subset of data, we were able to obtain the scores

and the loadings. In possession of this results, we were able to choose the most
relevant components of the score, that were able to expain 92% of the portfolio. In

1 This is an hypothetical portfolio that is relevant for producers and consumers of raw materials.
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order to calibrate the model applied to the obtained scores, different distributions
were tested in the scores, namely: Gaussian, Student t and GARCH. In order to
contrast those results, we used the AIC and BIC criteria and the best fit was the
GARCH (1,1) model with t-innovations. After, we were able to simulate the returns
and, consequently, the prices of each asset of the portfolio.

In order to decide the optimal allocations of our portfolio, we implemented
the optimization (using the software Xpress) for the most intuitive risk measure: the
Conditional Value-at-Risk (CVaR) [24]. The following allocations result at: Brent
(20,3%), WTI (51,6%), Petrobras (10%) and RBOB (18,1%).

In possession of the allocations resultant from the maximization of the CVaR,
we simulated 30 days ahead of the data used in the PCA and compared this result to
the historical CVaR and VaR with a confidence level of 95%, considering a sliding
window of 30 days. Figure 7.1 presents the VaR and CVaR (with a confidence level
of 95%) results for 30 days of simulation using the optimal weights maximizing the
CVaR and the comparison with the historical VaR and CVaR, considering a sliding
window of 30 days:

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

U
S$

 d
o

lla
rs

 

Days 

CVaR 30d VaR 30d CVaR Simu VaR Simu

Fig. 7.1: Time evolution of the estimated measures (VaR and CVaR) along 30 days period
from 1000 simulation and historical VaR and CVaR considering a sliding window
of 30 days before 2008 crisis, using CVaR optimization.

As one can see, the results in Figure 7.1 were very inaccurate. The model was
not able to forecast the 2008 crisis. The CVaR simulation predicted an approximate
loss of 15 dollars for the investor and the VaR an approximate loss of 11 dollars.
Furthermore, the historical VaR and CVaR had an approximate loss of 90 dollars.
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This demonstrates the consequences of having a static and non-hedged portfolio.
We obtained an interesting result by changing the period for which PCA was

applied in Figure 7.1. Due to fact that the PCA was applied in a different period of
time, the most 3 relevant components explained 94% of the original portfolio. The
new period chosen to repeat the whole method was the period from January 2nd,
2009 until November 1st, 2009. This period was carefully chosen to illustrate the
performance of the method proposed after crisis.

Once again, the allocations were obtained by the maximization of the CVaR.
We found different allocations to apply in the portfolio: Brent (23,1%), WTI (41,2%),
Petrobras (15,5%) and RBOB (20,2%). The results are presented in Figure 7.2:
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Fig. 7.2: Time evolution of the estimated measures (VaR and CVaR) along 30 days period
from 1000 simulation and historical VaR and CVaR considering a sliding window
of 30 days after 2008 crisis, using CVaR optimization.

Note that according to our convention, negative results correspond to losses
and positive results correspond to gains. In red and blue, we consider a sliding
window of 30 days for the calculus of the historical VaR and CVaR, respectively.
In black and green, we can see the time evolution of the estimated measures (VaR
and CVaR, both with a confidence level of 95%) along 30 days period from 1000
simulation.

Surprisingly, the results presented in Figure 7.2 were very coherent and sat-
isfactory. Actually, the investor won in the historical VaR and CVaR and our sim-
ulation predicted a soft loss. This means that our model is more conservative than
what really happened.
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In the next subsection, we will repeat the same method presented above using
the VaR maximization instead of CVaR Optimization.

7.1.2 VaR Optimization

A different setting is created when we decide to choose the portfolio alloca-
tions by maximizing the Value-at-Risk (VaR) (using again the software Xpress). We
applied PCA using only part of the data available: January 2rd, 2007 until August
10th, 2008. The data was carefully chosen in order to represent the period before
the 2008 crisis. We found the following allocations: Brent (10%), WTI (10%),
Petrobras (70%) and RBOB (10%).

In possession of the allocations, we simulated 30 days ahead of the sample
used in PCA and compared the results to the historical VaR and CVaR of the data,
considering a sliding window of 30 days. Figure 7.3 presents VaR and CVaR (both
with a confidence level of 95%) results for 30 days of simulation using the optimal
weights maximizing the VaR and the comparison with the historical VaR and CVaR,
also both with a confidence level of 95% considering a sliding window of 30 days:
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Fig. 7.3: Time evolution of the estimated measures (VaR and CVaR) along 30 days period
from 1000 simulation and historical VaR and CVaR considering a sliding window
of 30 days before 2008 crisis, using VaR optimization.

Once again, in Figure 7.3 the results were very inaccurate and the model pro-
posed was not able to forecast the 2008 crisis. The VaR simulation predicted an
approximate loss of 8 dollars for the investor and the CVaR, an approximate loss of
10 dollars. The historical VaR and CVaR had an approximate loss of 55 dollars.
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Utilizing the same method applied above, a better result was obtained by
changing the period which the PCA was applied in the last Figure 7.3. The new
period chosen to repeat the whole process of the VaR and CVaR (both with a con-
fidence level of 95%) simulation was the time period from January 2nd, 2009 until
November 1st, 2009. This time period was chosen in order to represent the pe-
riod after the 2008 crisis and how the method performs. We found the following
allocations: Brent (11%), WTI (12%), Petrobras (65%) and RBOB (12%).

Once decided the weights by the maximization of VaR, we simulated 30 days
ahead of the sample used in PCA and compared this result to the historical VaR

and CVaR both with a confidence level of 95%, considering a sliding window of 30
days: As expected, the results presented in the Figure 7.4 were fairly coherent and
satisfactory.
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Fig. 7.4: Time evolution of the estimated measures (VaR and CVaR) along 30 days period
from 1000 simulation and historical VaR and CVaR considering a sliding window
of 30 days after 2008 crisis, using VaR optimization.

Note that according to our convention, negative results correspond to losses
and positive results correspond to gains. In red and blue, we consider a sliding
window of 30 days for the calculus of the historical VaR and CVaR, respectively. In
black and green, we can see the time evolution of the estimated measures (VaR and
CVaR) along 30 days period from 1000 simulation.

The subsequent subsection presents the out-of-sample of the VaR and the
CVaR allocations.
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7.1.3 Out-of-sample with CVaR optimization

In order to test how the optimal allocations would perform in the historical
data, we present a case study that compares the out-of-sample with the historical
VaR and CVaR. Those graphics were built to understand the crisis effects in the
out-of-sample process.

Figure 7.5 represents the cumulative performance of the optimal allocations
found in Subsection 7.1.1 (applying PCA in January 2th, 2007 until August, 10th,
2008). This out-of-sample, from August 11st, 2008 until October, 31st, 2013, illus-
trates a long-term portfolio:
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Fig. 7.5: Cumulative out-of-sample performance using CVaR optimization and out-of-
sample adding the crisis period of 2008.

Figure 7.5 does not indicate a good performance of the portfolio. This is
probably due to the fact that out-of-sample begins before 2008 crisis.

As an alternative, the Figure 7.6 represents different scenarios and alloca-
tions decided in Subsection 7.1.2, using PCA applied from January 2nd, 2009 until
November 1st, 2009. Figure 7.6 represents this out-of-sample, from November 2nd,
2009 until October 31st, 2013, of a long-term portfolio:
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Fig. 7.6: Cumulative out-of-sample performance using CVaR optimization and out-of-
sample without the crisis period.

The result was very good if one compares to Figure 7.5. The investor was
able to have a better return in the portfolio constructed after the crisis as we can see
in the Figure 7.6.

7.1.4 Out-of-sample with VaR optimization

In Figure 7.7, we show the cumulative out-of-sample results with VaR op-
timization allocations. Figure 7.7 shows the results using the allocation decided
before the 2008 crisis (applying PCA from January 2nd, 2007 until August 10th,
2008) in Subsection 7.1.1. This cumulative out-of-sample represents the period of
August 11th, 2008 until October, 31th, 2013:
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Fig. 7.7: VaR optimization and out-of-sample during the crisis period

As expected, Figure 7.7 presents a very bad performance. This happens prob-
ably because the out-of-sample begins before the 2008 crisis. We can see that this
result is very similar to the result present in the Subsection 7.1.3 using the same
period of time.

Finally, as an alternative, Figure 7.8 represents a different scenario and VaR

optimal weights (after the 2008 crisis), using the PCA applied from November 2nd,
2009 until November 1st, 2009. Figure 7.8 illustrates the cumulative out-of-sample
during November 2st, 2009 until October 31th, 2013:
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Fig. 7.8: Cumulative out-of-sample using VaR optimization after the crisis period
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The result was very good if one compares to that of Figure 7.7. The portfolio
constructed after the crisis had a better performance as we can see in Figure 7.8.

After substantial testing, one can conclude that the crisis of 2008 displays
extreme events. The out-of-sample, done without the crisis of 2008, presented co-
herent results. If we include the 2008 historical data, we see a substantial loss due
to the crisis.

7.2 Case Study 2

In this case study, the PCA had a relevant role in order to understand and
preserve the correlation between the 12 chosen assets: WTI, RBOB, Brent, Propane,

Heating Oil, JET, ULSD, UNL, Naphta, FO 1%, FO 3,5% and Eurobob2. It is
important to say that the investor can go long or short in any of these assets. Due to
the difficulty, the data available for all those assets was September 14th, 2011 until
December 27th, 2013, resulting in 574 daily observations.

This second Case Study will be divided in 3 subsections: VaR Optimization,

CVaR Optimization and Omega Optimization. In each subsection, we used the same
method explained in Chapter 6: We first apply PCA to the original returns series
(September 14th, 2011 until November 30th, 2013), then we chose the most relevant
Components (in this particular case study, only 4 components were able to explained
94% of a portfolio of 12 assets) and finally, we will model individually the Scores of
each of the chosen Component as a GARCH(1,1) model with t-innovations. After,
we were able to simulate the returns (preserving the correlation that the assets hold
to each other) and the prices of each asset of the portfolio.

In order to decide the optimal allocation of each asset, we implemented the
optimization (using the software Xpress) for the following 3 risk measures: VaR,

CVaR and Omega. In each risk measure, we optimize 2 portfolios: Optimal Static
Portfolio, whose allocations are decided just once and the Optimal Dynamic Port-
folio, whose allocations are recalibrated each 5 days.

Finally, we did a 20 days ahead simulation with the optimal allocations: con-
trasting the Optimal Static Portfolio and the Optimal Dynamic Portfolio (recalibrat-
ing the model each 5 days) with our benchmark Portfolio, which is composed by
the same 12 assets presented above with static allocations that will be presented in

2 This portfolio was carefully chosen due to its importance in the commodity market. Those assets
are known as components and benchmarks of gasoline.
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the next subsection.

7.2.1 VaR Optimization

In this Case Study, we will follow the method explained in the beginning of
this section. In this subsection, the allocations were decided by the VaR Optimiza-

tion in order to compare the performance of the Optimal Dynamic Portfolio and the
Optimal Static Portfolio, having a fixed Portfolio as a benchmark.

Table 7.1 refers to the optimal allocations of the Optimal Dynamic Portfolio
and its recalibration each 5 days during 4 weeks (20 days):

Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI 3 3 3 3
RBOB 3 3 3 3
BRENT 3 3 3 3
Propane -0.34 0.75 0.075 -0.54
Heating Oil -0.62 -0.55 0.60 -0.75
JET -3 -3 -3 -3
ULSD -3 -3 -3 -3
UNL -2 -1.59 -3 -1.67
Naphta 2.54 1.5 0.27 1.9
FO 1% Oil 3 3 3 3
FO 3.5% -3 -3 -3 -3
Eurobob -1.7787 -3 -1.45 -2.89

Tab. 7.1: Optimal Dynamic Portfolio allocations using GARCH simulations and VaR Opti-
mization.

We can notice that Table 7.1 shows a wide variability in the allocations each
week. This is due to fact that the model incorporates more information about the
market each time the model is recalibrated (every week for 20 days).

Also, according to the VaR optimization, we obtained the optimal allocation
of the Optimal Static Portfolio for the 20 days ahead. Table 7.1 shows the optimal
allocation of the Optimal Static Portfolio and the fixed allocation of the benchmark

Portfolio:

DBD
PUC-Rio - Certificação Digital Nº 1212899/CA



7. RESULTS 66

Assets Optimal Static Portfolio Benchmark Portfolio
(MM BBL) (MM BBL)

WTI 3 -3
RBOB -2.50 0.3
BRENT -3 -2
Propane 0.1 0.4
Heating Oil 3 0.4
JET -3 0.2
ULSD -0.50 0.4
UNL 3 0.3
Naphta -2.24 0.2
FO 1% Oil -3 -0.25
FO 3.5% 3 -0.25
Eurobob 3 0.1

Tab. 7.2: Optimal Static Portfolio allocations using GARCH simulations and VaR Optimiza-
tion and benchmark portfolio.

In order to compare the performance of the three portfolios (Optimal Dy-
namic Portfolio, Optimal Static Portfolio and benchmark Portfolio), we present the
cumulative out-of-sample given by the following Figure:
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Fig. 7.9: Cumulative out-of-sample of Optimal Dynamic Portfolio, Optimal Static Portfolio
and benchmark Portfolio for 20 days ahead.

We can see in Figure 7.9 that the Optimal Dynamic Portfolio has the best
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performance among the three Portfolios, followed by Optimal Static Portfolio and
then, our benchmark Portfolio. This means that the recalibration at each 5 days
(Optimal Dynamic Portfolio) is effective in the final results.

The Optimal Dynamic Portfolio had a better performance because, in each
recalibration, the system includes more 5 days of the data in the optimization. So,
the simulations try to follow the tendencies of the market.

7.2.2 CVaR Optimization

In this subsection, we will use the same data described in the beginning of
this section and the same time period.

In order to discover the optimal allocations of the Optimal Dynamic Portfolio,
we apply the method explained in the beginning of this section. Table 7.3 refers to
the optimal allocations of the Optimal Dynamic Portfolio and its recalibration each
5 days (each week) during 20 days using the CVaR optimization:

Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI 3 3 3 3
RBOB 3 3 3 3
BRENT -1.24 3 3 3
Propane -3 0.67 0.33 -0.35
Heating Oil -2 -1.77 -0.31 -1.1
JET -3 -3 -3 -3
ULSD -2.5 -3 -3 -3
UNL 3 -0.63 -1.8 -1.4
Naphta -1.79 1.8 1.9 1.2
FO 1% Oil 2.38 3 3 3
FO 3.5% -3 -3 -3 -3
Eurobob 1.9 -3 -3 -2.9

Tab. 7.3: Optimal Dynamic Portfolio allocations using GARCH simulations and CVaR op-
timization.

The allocations illustrated in Table 7.3 show some variations in the recalibra-
tion. The result of the optimization is different every week due to the fact that the
inputs are different, i.e., the model incorporates more market information.
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Also, according to the CVaR optimization, we obtained the Optimal Static
Portfolio for the 20 days ahead (using the same allocations during this period). Table
7.4 shows the allocation of the Optimal Static Portfolio and the fixed allocation of
our benchmark Portfolio:

Assets Optimal Static Portfolio Benchmark Portfolio
(MM BBL) (MM BBL)

WTI 3 -3
RBOB -2.72 0.3
BRENT -3 -2
Propane 0.11 0.4
Heating Oil 3 0.4
JET -3 0.2
ULSD -0.58 0.4
UNL 3 0.3
Naphta -2.17 0.2
FO 1% Oil -3 -0.25
FO 3.5% 3 -0.25
Eurobob 3 0.1

Tab. 7.4: Optimal Static Portfolio allocations using GARCH simulations and CVaR Opti-
mization and the benchmark Portfolio.

In order to compare the performance of the Optimal Dynamic Portfolio, Op-
timal Static Portfolio and the benchmark Portfolio, we did a cumulative “out-of-
sample” test 20 days ahead. Figure 7.10 shows the results
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Fig. 7.10: Cumulative out-of-Sample example with Optimal Dynamic Portfolio, Optimal
Static Portfolio and benchmark Portfolio.

It is interesting to notice the results presented in Figure 7.10: the Optimal Dy-
namic Portfolio had the best performance, followed by the Optimal Static Portfolio,
and finally, the benchmark Portfolio in the cumulative “out-of-sample” test 20 days
ahead. This results happen due to the fact that the Optimal Dynamic Portfolio has
access to more historical data (in each recalibration) then the Optimal Static Port-
folio and the benchmark Portfolio. In this way, the price simulation of the Optimal
Dynamic Portfolio is more reliable and coherent because of its reduced uncertainty.

7.2.3 Omega Optimization

Once again, we will use the same data described in the beginning of this
section 7.2 and the same period of time, so that we can compare the performance of
each optimized risk measure.

Finally, we will optimize the allocations using the Linear Programming of
Omega Ratio, presented in Chapter 3. Table 7.5 refers to the optimal allocations of
the Optimal Dynamic Portfolio and its recalibration each 5 days (week) for 20 days
(4 weeks):
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Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI 3 3 3 3
RBOB 3 3 3 3
BRENT 3 3 3 3
Propane -0.41 0.74 0.33 -0.35
Heating Oil -1.74 -1.9 -0.41 -0.8
JET -3 -3 -3 -3
ULSD -3 -3 -3 -3
UNL -1.19 -0.73 -1.75 -1.47
Naphta 2.28 1.9 2.4 1.5
FO 1% Oil 3 3 3 3
FO 3.5% -3 -3 -3 -3
Eurobob -3 -3 -3 -2.4

Tab. 7.5: Optimal Dynamic Portfolio allocations using GARCH simulations and Omega Op-
timization.

The allocations illustrated in Table 7.5 show the variations in the recalibration
proposed by the method. The result of the optimization is different every week due
to the fact that the inputs are different, i.e., the model incorporates more market
information.

Also, according to the Omega optimization, we obtained the optimal alloca-
tion of the Optimal Static Portfolio A for the 20 days ahead. Table 7.6 shows the
optimal allocation of the Optimal Static Portfolio and the fixed allocation of the
benchmark Portfolio:
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Assets Optimal Static Portfolio Fixed Portfolio
(MM BBL) (MM BBL)

WTI 3 -3
RBOB -1.9 0.3
BRENT -3 -2
Propane -0.05 0.4
Heating Oil 3 0.4
JET -2.45 0.2
ULSD -1.27 0.4
UNL 2.75 0.3
Naphta -1.5 0.2
FO 1% Oil -3 -0.25
FO 3.5% 3 -0.25
Eurobob 3 0.1

Tab. 7.6: Optimal Static Portfolio allocations using GARCH simulations and Omega Opti-
mization and benchmark Portfolio.

Aiming to compare the results of each Portfolio, we did a cumulative “out-of-
sample” test 20 days ahead, using the allocations presented above in Table 7.6 and
7.6. Figure 7.11 shows the results
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Fig. 7.11: Cumulative out-of-Sample example with Optimal Dynamic Portfolio, Optimal
Static Portfolio and benchmark Portfolio.

Indeed, one can see that the Optimal Dynamic Portfolio, once again, had the
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best performance among the compared Portfolios. It is due to the fact, that Optimal
Dynamic Portfolio was recalibrated each 5 days and the optimization was able to
capture the tendencies of the commodities markets.

This result was very satisfactory because both of our Optimal Portfolios has
outperformed the benchmark Portfolio. This means that the prices simulations were
reliable and capable of extract the tendencies of the market.

7.3 Case Study 3

In this Case Study, we will apply the method described in Chapter 6. This
section will be divided in 3 subsections. Each subsection represents the risk measure
optimized VaR, CVaR and Omega Ratio.

Once again, we will use the same period of time (September 14th, 2011 until
December 27th, 2013) and the same data described in the beginning of Section
7.2: the 12 chosen assets (WTI, RBOB, Brent, Propane, Heating Oil, JET, ULSD,

UNL, Naphta, FO 1%, FO 3,5% and Eurobob). The frequency of data was daily.
The same portfolio was chosen so that we could compare the performance of each
optimized risk measure. In addition, it is important to say that the investor can go
long or short in any of these assets.

The method of Case Study 3 consists in applying the PCA directly in the
original returns (September 14th, 2011 until November 30th, 2013) in order to po-
tentially decrease the portfolio dimension. The main difference between Case Study
2 and Case Study 3 is that in Case Study 3, the Scores were modeled as Geometric

Brownian Motion instead of GARCH, as used in Case Study 2.
Once decided the most relevant Components of the result of PCA, we simu-

lated the simulated prices by using the method presented by Equation (6-7). Thus,
the correlations that the assets hold to each other and the Scores volatility will be
preserved in the simulated prices.

Aiming to decide the optimal allocation of each asset, we optimized (using
the software Xpress) the following 3 risk measure: VaR, CVaR and Omega. In each
risk measure, we optimize 2 portfolios: Optimal Static Portfolio, whose allocations
are decided just once and the Optimal Dynamic Portfolio, whose allocations are
recalibrated each 5 days.

Finally, we did a 20 days ahead simulation with the optimal allocations: con-
trasting the Optimal Static Portfolio and the Optimal Dynamic Portfolio (recalibrat-
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ing the model each 5 days) with our benchmark Portfolio, composed by the same
12 assets and static allocations.

7.3.1 VaR Optimization

We will follow the method explained in the beginning of this section. Ac-
cording to the results of the VaR Optimization, we found the optimal allocations of
the Optimal Dynamic Portfolio. Table 7.7 refers to the optimal allocations of the
Optimal Dynamic Portfolio and its recalibration each 5 days (week) for 20 days (4
weeks):

Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI 0.26 0.19 1.38 -0.28
RBOB 0.04 -0.10 -0.18 0.32
BRENT -0.47 0.39 -0.11 0.29
Propane 0.1 -0.08 0.02 0.24
Heating Oil -0.06 -0.65 0.63 -0.03
JET -0.17 0.48 -0.12 -0.22
ULSD -0.69 0.20 0.79 0.16
UNL -0.92 -0.05 0.01 0.26
Naphta 0.08 -0.21 0.52 0.58
FO 1% Oil 0.10 -0.06 -0.10 0.11
FO 3.5% -0.11 -0.14 -2.11 -0.37
Eurobob -0.06 -0.17 0.02 0.05

Tab. 7.7: Optimal Dynamic Portfolio allocations using GBM simulations and VaR Opti-
mization.

The allocations illustrated in Table 7.7 show the variations in the recalibration
proposed by the method. The result of the optimization is slightly different every
week due to the fact that the inputs are different, i.e., the model incorporates more
market information.

Also, according to the VaR optimization, we were able to obtain the allocation
of the Optimal Static Portfolio for the 20 days ahead. Table 7.8 shows the optimal
allocation of the Optimal Static Portfolio and the fixed allocation of the benchmark

Portfolio:
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Assets Optimal Static Portfolio Benchmark Portfolio
(MM BBL) (MM BBL)

WTI 0.20 -3
RBOB 0.03 0.3
BRENT 1.49 -2
Propane 0.89 0.4
Heating Oil -0.11 0.4
JET -0.35 0.2
ULSD -0.24 0.4
UNL -0.08 0.3
Naphta -0.05 0.2
FO 1% Oil -0.17 -0.25
FO 3.5% -0.24 -0.25
Eurobob 0.08 0.1

Tab. 7.8: Optimal Static Portfolio allocations using GBM simulations and VaR Optimization
and Benchmark Portfolio.

The allocations presented in Table 7.7 were decided by the implementation
of maximization of the VaR. In possession of this allocations, we did a cumulative
“out-of-sample” test 20 days ahead, in order to compare the performance of the
three presented Portfolios (Optimal Dynamic Portfolio, Optimal Static Portfolio
and benchmark Portfolio). Figure 7.12 shows the results:
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Fig. 7.12: Cumulative out-of-Sample example with Optimal Dynamic Portfolio, Optimal
Static Portfolio and benchmark Portfolio.

In this cumulative out-of-sample, we can notice that the Optimal Dynamic
Portfolio outperformed the Optimal Static Portfolio and benchmark Portfolio. This
is due to the fact that the Optimal Dynamic Portfolio recalibrate its allocations every
5 days, identifying correctly the tendencies of the market.

7.3.2 CVaR Optimization

In this section, we will optimize the allocations by using the Linear Program-
ing of CVaR. But first, we will apply the method already explained in the beginning
of this section.

Table 7.9 refers to the optimal allocations of the Optimal Dynamic Portfolio
and its recalibration each 5 days (week) for 20 days (4 weeks):
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Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI -0.24 1.12 1.25 0.93
RBOB -0.14 0.58 0.41 0.24
BRENT 3 -0.37 -0.13 0.32
Propane 0.15 0.18 0.05 0.37
Heating Oil -0.40 -0.35 0.14 -0.16
JET 0.75 -0.19 -0.11 0.56
ULSD -2.5 -0.04 0.17 0.18
UNL -0.80 0.13 0.28 0.11
Naphta 2.89 -0.71 0.07 -0.38
FO 1% Oil -2.69 0.15 -1.3 0.10
FO 3.5% 0.63 0.52 -0.24 -0.14
Eurobob 0.27 0.19 -0.06 -0.05

Tab. 7.9: Optimal Dynamic Portfolio allocations using GARCH simulations and CVaR Op-
timization.

Table 7.9 illustrates the results of the recalibration proposed by the method.
The result of the optimization is slightly different every week due to the fact that
the inputs are different, i.e., the model incorporates more market information in the
simulations.

Also, according to the CVaR optimization, we were able to obtain the opti-
mal allocation of the Optimal Static Portfolio for the 20 days ahead. Table 7.10
shows the allocations of the Optimal Static Portfolio and the fixed allocation of the
benchmark Portfolio:
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Assets Optimal Static Portfolio Benchmark Portfolio
(MM BBL) (MM BBL)

WTI 0.16 -3
RBOB 0.2 0.3
BRENT -0.37 -2
Propane 0.13 0.4
Heating Oil 0.67 0.4
JET -0.05 0.2
ULSD 0.61 0.4
UNL -0.29 0.3
Naphta 0.51 0.2
FO 1% Oil -0.04 -0.25
FO 3.5% 0.27 -0.25
Eurobob 0.03 0.1

Tab. 7.10: Optimal Static Portfolio allocations using GBM simulations and CVaR Optimiza-
tion and benchmark Portfolio.

One way of comparing the performance among the Optimal Dynamic Portfo-
lio, Optimal Static Portfolio and the benchmark Portfolio is to perform a “out-of-
sample” test 20 days ahead. Figure 7.13 shows the results of this example
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Fig. 7.13: Cumulative out-of-Sample example with Optimal Dynamic Portfolio, Optimal
Static Portfolio and the benchmark Portfolio using GBM simulations.

The result that Figure 7.13 presents shows that the Optimal Dynamic Portfolio
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had a better performance when compared Optimal Static Portfolio and the bench-
mark Portfolio. This result was expected due to the fact that the Optimal Dynamic
Portfolio have access to more historical data (in each relaibration) than the Optimal
Static Portfolio and the benchmark Portfolio, so the simulated prices of the Optimal
Dynamic Portfolio are more align with the tendencies of the market.

7.3.3 Omega Optimization

In this subsection, as explained in Section 7.3, the Scores will be modeled
as GBM. Thus, we will optimize the allocations using the Linear Programming of
Omega Ratio, already presented in Chapter 3. So, Table 7.11 illustrates the result of
the optimal allocations of Optimal Portfolio A:

Table 7.11 refers to the optimal allocations of the Optimal Dynamic Portfolio
and its recalibration each 5 days:

Assets
Optimal Dynamic Portfolio (MM BBL)

1st Calibration 2nd Calibration 3rd Calibration 4th Calibration
WTI -0.18 1.47 2.31 0.28
RBOB 0.27 0.29 -0.03 0.13
BRENT -1.61 -3 -2.69 3
Propane 0.23 0.27 0.77 0.21
Heating Oil 0.67 -0.28 0.33 0.05
JET 0.03 1.34 -0.39 0.38
ULSD -1.31 -0.35 3 -0.44
UNL 0.08 -0.19 0.27 0.84
Naphta 1.19 -0.51 1.44 -0.29
FO 1% Oil -0.79 1.10 -1.79 0.98
FO 3.5% -3 1.04 -2.65 -0.82
Eurobob 0.16 0.05 0.14 0.34

Tab. 7.11: Optimal Dynamic Portfolio allocations using GBM simulations and Omega Op-
timization.

Table 7.11 illustrates the results of the recalibration proposed by the method.
The result of the optimization is slightly different every week due to the fact that
the inputs are different, i.e., the model incorporates more market information in the
simulations.
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According to the Omega optimization, we also obtained the allocation of the
Optimal Static Portfolio for the 20 days ahead. Table 7.12 shows the allocation of
the Optimal Static Portfolio and the fixed allocation of the benchmark Portfolio:

Assets Optimal Static Portfolio Benchmark Portfolio
(MM BBL) (MM BBL)

WTI 0.8 -3
RBOB -0.78 0.3
BRENT -2.67 -2
Propane 0.84 0.4
Heating Oil 0.55 0.4
JET -1.17 0.2
ULSD -0.23 0.4
UNL 0.17 0.3
Naphta -0.04 0.2
FO 1% Oil -1.01 -0.25
FO 3.5% 3 -0.25
Eurobob 0.58 0.1

Tab. 7.12: Optimal Static Portfolio allocations using GBM simulations and Omega Opti-
mization and Benchmark Portfolio.

Then, we did a “out-of-sample” test 20 days ahead in order to compare the
performance of the Optimal Dynamic Portfolio, Optimal Static Portfolio and of the
Benchmark Portfolio. Figure 7.14 shows the results
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Fig. 7.14: Cumulative out-of-Sample example with Optimal Dynamic Portfolio, Optimal
Static Portfolio and of the Benchmark Portfolio.

In Figure 7.14, we can see that, once again, the Optimal Dynamic Portfolio
outperforms the Optimal Static Portfolio and the Benchmark Portfolio.
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Conclusion

This work developed a numerical method to determine how to treat the corre-
lation between the assets, simulation of prices and the optimization of a portfolio,
maximizing various risk measures, such as VaR, CVaR and Omega. This methodol-
ogy was illustrated in three case studies, presented in Chapter 7.

One of the main achievements of this work was to implement, as a Linear
Program, the recently proposed performance measure Omega Ratio and the imple-
mentation of maximization of this measure.

Given the uncertainty present in commodities markets, an investor usually
wants to protect his assets from potential losses. So, the optimization of risk mea-
sures, such as VaR, CVaR and Omega, can describe a range of future possible sce-
narios and their intrinsic risk.

In Case Study 1, we applied the method described in Chapter 6 in 4 assets
portfolio. We applied this method in different periods of the data available in order
to understand the impact of the 2008 crisis in our results. We modeled individually
the scores of the most relevant components as GARCH processes. In each subsec-
tion, we optimized the allocations using the CVaR and the VaR maximization. The
results, when applying PCA from January 2nd, 2007 until August 10th, 2008 (be-
fore the 2008 crisis) were surprising because our method was not able to predict
the crisis and also the performance of the cumulative out-of-sample during August
11th, 2008 until October 31th, 2013 was very inaccurate.

To contrast the results with a after crisis period, we applied PCA on the orig-
inal returns in different period of time, after 2008 crisis (January 2nd, 2009 until
November 1st, 2009). Once again, we optimized the allocations using the CVaR
and the VaR maximization. Our simulation was more conservative then what really
happened. Also, the cumulative out-of-sample results done from November 2nd,
2009 until October 31th, 2013 were fairly satisfactory because were profitable.

Case Study 1 alerts to the consequences of the choice of a static and non-
hedged portfolio. The Case Study 1 is different from Case 2 and 3, because it aims
to contrast the results of the proposed method before and after the 2008 crisis.

In Case Study 2, we treated the daily log returns and then, applied Principal
Component Analysis (PCA) method to the original returns, in order to (potentially)
decrease the dimensionality of the problem. Once the most relevant components
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were found, we modeled individually the scores of the most relevant components as
GARCH processes. After that, we were able to simulate the prices, preserving the
correlations that the assets holds to each other.

Once the prices were simulated, we optimized the portfolio, maximizing the
VaR, CVaR and Omega, in each subsection. In possession of these optimal allo-
cations, we were able to perform a cumulative out-of-sample 20 days ahead. We
optimized two portfolios: Optimal Dynamic Portfolio (recalibrated each 5 days for
20 days) and Optimal Static Portfolio (using fixed optimized allocations).

The results presented in Section 7.2 were coherent and better than expected.
Our Optimal Dynamic Portfolio and Optimal Static Portfolio had a better perfor-
mance than the benchmark Portfolio in the 20 days ahead out-of-sample in all sub-
sections.

Additionally, in Case 3, we presented a different approach. The method con-
sisted in applying Principal Component Analysis method to the original returns
and, based on that, choosing the most relevant components. The difference between
Cases 2 and 3 is that in Case 3, the scores were modeled as Geometric Brown-
ian Motion process, whereas in Case 2 were modeled as a GARCH process. Our
major concern was to simulate prices preserving the correlations among and their
volatilities.

Each subsection of Case 3 represents the optimization of the VaR, CVaR and
Omega in order to solve the optimal allocation problem. In possession of those
allocations, the 20 day ahead cumulative out-of-sample of the portfolio.

The results are illustrated in Section 7.3. Once again, our Optimal Dynamic
Portfolio and Optimal Static Portfolio outperformed the benchmark Portfolio in all
Cases in the Case 3.

Since Sections 7.2 and 7.3 used the same Portfolio (12 assets) and the same
time period, we were able to compare their results. In Case 2, the results of VaR
Optimization had a better performance in the cumulative out-of-sample.

In a relative comparison between the results of Sections 7.2 and 7.3, we can
say that the CVaR Optimization in Case 2, whose Scores were modeled as GARCH,
presented higher returns in the 20 day ahead out-of-sample.

Finally, in Case 3, the Omega Optimization with GBM simulations results
were more conservative and had a lower return than the Omega Optimization with
GARCH simulations, in Case 2.

In conclusion, we cannot judge the best model or optimization, using GARCH
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or GBM, because both of them present good features. This decision has to be made
according to the the investor’s objective to validate such choice.
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