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ABSTRACT 

This report presents an overview of Talisman's version 5 functionality. Talisman is a 
computer aided software engineering meta-environment. It focuses strongly on model 
driven tools. It provides means to build software development and maintenance 
environments composed of a harmonious collection of representation languages and 
tools. The set of representation languages and tools may cover a very wide variety of 
development and maintenance activities.  

Talisman operates on a net of workstations, each containing an environment 
instance providing tools to support some of the activities of a specific software 
development and maintenance process. The collection of environment instances 
supports a large portion of the activities of a given development process. 

Talisman stores fine grained objects in a distributed repository. The base schema 
and meta-schema of this repository as well as the definition of user interfaces, 
representation languages and tools are kept in a definition base. Definition bases are 
derived from an environment base which contains all facts about supported 
representation languages and tools. The environment base is used by the environment 
builder to create and maintain representation languages and to adapt tools to the 
specific needs of a particular project. 

One of the basic aims of Talisman is to compose and maintain code and other 
artifacts from high level specifications relying heavily on model driven activities. The 
result of the development using Talisman is a hyper-document interrelating all 
artifacts that constitute the target system. The construction and maintenance of this 
hyper-document is achieved by successive transformations, modifications and 
verifications of a variety of models. To define and fine-tune these tools, Talisman uses 
an internal programming language, which specializes tools and activities, such as 
editors, code composers, representation transformers, representation verifiers and 
hyper-document navigation control.  

Keywords: software engineering meta-environment, representation languages, 
software quality, representation transformation, model driven development, model 
driven maintenance. 
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RESUMO 

Este relatório descreve o meta-ambiente de engenharia de software assistido por 
computador Talisman versão 5. A ênfase deste meta-ambiente são ferramentas 
baseadas em modelos. Ele provê meios para desenvolver e manter ambientes 
compostos por um conjunto harmonioso de linguagens de representação e 
ferramentas. Este conjunto visa cobrir uma grande gama das atividades de 
desenvolvimento e manutenção.  

Talisman opera em uma rede de estações de trabalho, cada qual sendo uma 
instância de ambiente que provê ferramentas e linguagens adequadas o sistema 
objetivo a ser desenvolvido ou mantido. O conjunto de instâncias de ambientes apoia 
uma grande gama de processos de desenvolvimento de software. 

Talisman armazena objetos de pequena granularidade em um repositório 
distribuído. O esquema deste repositório, bem como as definições das interfaces 
humano-computador, as definições das linguagens de representação, as regras que 
governam as meta-ferramentas são armazenadas em uma base de definição. Estas são 
derivadas da base de ambiente que contém as descrições de todas as linguagens e 
ferramentas suportadas. A base de ambiente é utilizada para instanciar e adaptar 
bases de definição específicas para o projeto sendo realizado.  

Um dos objetivos de Talisman versão 5 é compor e manter código e outros artefatos 
derivados de especificações de alto nível de abstração, baseando-se fortemente em 
desenvolvimento e manutenção dirigida por modelos. O resultado do 
desenvolvimento e da manutenção realizados com o apoio de Talisman é um 
hiperdocumento inter-relacionando todos os artefatos que constituem o sistema 
objetivo em questão. A transformação de especificações em artefatos de baixo nível de 
abstração tais como código é realizada através de transformações, modificações e 
verificações sucessivas envolvendo uma variedade de modelos e artefatos. Para 
realizar estas transformações Talisman utiliza uma linguagem de programação capaz 
de especializar ferramentas e atividades tais como uma variedade de editores, 
compositores de código, transformadores, verificadores estáticos, e navegação em 
hiperdocumento.  

Palavras chave: meta-ambiente de engenharia de software, linguagens de 
representação, qualidade de software, transformação de representações, 
desenvolvimento dirigido por modelos, manutenção dirigida por modelos. 
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1  Introduction 

This document reports a research and development initiative aiming at developing 
version 5 of the computer aided software engineering meta-environment Talisman. 
Based on the experience gained with an earlier version (4.4) of Talisman [Staa, 1993], 
an initial draft of this document was written in 1995 [Staa and Cowan, 1995]. Later on 
it was massively revised several times. This report provides an abridged description of 
the system now under development. 

As shown in figure 1, the goal of a software system is not just being available, but is 
supporting users to adequately and dependably perform their work. As mentioned by 
Brooks [Brooks, 1987] the service of the software is its essence, while the way it was 
implemented (architecture, design, or code) is accidental. The term user is employed in 
a broad sense considering humans as well as hardware or other software systems with 
which the target software interacts. 

Work to
be done 1

Work to
be done 2

Target
software

Other
software

Commands
and data

Results Persistent
data

Interaction with
other artifacts

Goal: Support user work Consequence: serve user needs

User

Data bases

 
Figure 1. Software service supporting user needs 

Software is composed of a collection of artifacts such as specification documents, 
architecture designs, executable code, initial data bases, source code, test scripts, 
engineering and user documents, help files, executable tutorials, development plans 
and many others. As mentioned earlier, this rather large collection of artifacts aims at 
providing users with adequate and dependable computerized tools to achieve their 
goals.  

Many software systems are long lived, but even when short lived the collection of 
artifacts must usually be maintained consistent during the whole life cycle of the 
software. However, several authors report that software maintenance leads to 
structural deterioration or decay [Eick et al, 2001; Tvedt et al, 2002; Hochstein and 
Lindvall, 2004]. Hence, to prevent the software deterioration, the whole collection of 
artifacts should be kept consistent while being changed [Kajko-Mattson, 2000; 
Arisholm et al, 2006]. Furthermore, many changes will require reengineering the 
affected artifacts in order to prevent architectural or design degeneration. 
Unfortunately this reengineering work is often deferred in order to reduce 
maintenance costs, where such costs are usually due to inexistent or inadequate 
development and maintenance tools. However, not performing this reengineering 
may lead to considerable future debts [Sterling, 2011]. 
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1.1  Domains 

We call application domain the service that software must provide to satisfy the needs of 
its users as observed by them. The service of the target software is the set of 
functionalities and non-functional requirements that it offers to its users, see figure 1. 
The service must support the target user to adequately and reliably accomplish 
hers/his tasks. As mentioned earlier, users are not interested in just using some 
software; they are interested in accomplishing their work with the aid of adequate and 
dependable software [Avizienis et al, 2004].  

The application domain is not static; user needs evolve during the software’s life-
time. The longer the life expectancy of the software, the more one should expect that it 
will change in order to adapt to newly observed service needs and contextual changes, 
such as software platform and hardware [Beck, 2010; Lehman, 1996; Lehman and 
Belady, 1985]. Another characteristic of application domains is that its scope tends to 
increase with the passing of time. Among other reasons, increments may occur due to 
new capabilities offered by new technology, or due to the integration of several 
application domains into a larger encompassing one. All these changes imply non 
trivial modifications of the affected software.  

We call artifact domain the set of artifacts such as test scripts, test scaffolds, 
specifications, architectures, designs, and specialized tools created and used while 
developing and maintaining2 software. We use the term artifact for all work-products, 
and products that are needed to use and maintain the target software. Though some 
artifacts of the artifact domain are needed only while the software is being developed 
(e.g. mock objects, stubs, and simulators for some kind of hardware) several other 
artifacts are necessary to facilitate maintenance (e.g. architecture and design 
documents, test drivers, test scripts). In order to assure maintainability these latter 
artifacts must be co-evolved as long as the software is used. Hence, they should be 
available and must be evolved over time [Arisholm et al, 2006].  

We call technology domain the set of representations (e.g. executable code, XML files, 
and scripts), representation languages (e.g. programming languages, scripting 
languages), software tools (e.g. libraries, frameworks), software and hardware 
platforms (e.g. data base management systems, and processor types), required by the 
target software to provide its service. Software is developed envisaging a given 
technology domain. As time passes the technology domain may change (e.g. the 
hardware and/or operating systems evolve), consequently, to continue providing the 
desired service, the target software and artifacts must be adapted to these changes. In 
many cases the technology domain evolves dramatically during the life-time of the 
software, possibly rendering the software useless, although its service is still needed. 
Many software systems are critical for the enterprises that use them, hence while the 
enterprise exists the service provided by the software must be available too, 
independently of whether the technology domain has changed or not. Thus, the 
artifact domain must be kept coherent with the technology domain while the latter 
evolves over time. Presently such evolution is often performed rewriting the code or 
encapsulating it in some kind of wrapper. However, not only code must be changed, 
but also all persistent data stores. 

We call environment domain or development environment the set of representations 
(e.g. requirement specifications, architecture and other design documents) 
                                                   
2  We will use the term maintenance to denote all kinds of changes after the software has 
been delivered, i.e. corrective, adaptive, perfective maintenance as well as evolution. 
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representation languages (e.g. specification and design languages), software tools (e.g. 
editors, integrated development environments), development techniques and 
practices3 employed while developing and maintaining the software supporting artifacts. 
Independently of the maturity of an organization, software is developed and 
maintained using a given environment domain. Maintaining software requires the 
availability of at least part of the environment domain used to develop it. However, as 
time passes the environment domain will change; consequently the previous domains 
must possibly be adapted to these changes too.  

We call communication domain the tools and languages needed to establish proper 
communication between users or clients and the development team. Not necessarily 
all of these persons are conversant with software engineering languages and tools. 
When considering a long lived system it is expected that people involved with its 
maintenance will be replaced. Hence, documentation must exist and must assure 
proper communication between people that do not know each other. To increase the 
efficacy of the communication, domain specific languages, or dialects of existing 
languages, are frequently developed. Such languages are geared towards the user, or 
specifier. However, the artifacts written in these languages must later on be translated 
into standard software engineering artifacts.  

The need to adapt a software environment goes far beyond of choosing among 
existing representation languages. The new languages and dialects aim at reducing the 
amount of defects injected into the software due to incorrect communication. Since the 
people using the target software and the developers that maintain it are substituted 
during the life-time of the target software, it is expected that the communication 
domain also evolves over time. The communication domain involves also systems and 
their users. It is well known that inadequate human interfaces and system context 
expectancies are one of the major causes of human errors [Reason , 2003]. Hence, it is 
expected that the target system is changed to improve human interfaces, as well as 
being adapted to present better human interfaces. 

These domains are not orthogonal, instead they are quite interdependent. 
Furthermore, they evolve over time in a non predictable way. Due to the 
interdependence, if an artifact in a given domain is changed, other artifacts in the 
other domains may have to be changed too. On the other hand, it is almost always 
impossible to create a design that remains unchanged over the life-time of the 
software. Due to this it is important that maintenance be taken into account while 
designing and developing the software. No doing so may lead to debts, that is, costs 
that will show up at later times [Sterling, 2011]. Furthermore, software maintenance is 
known to deteriorate the structure of the software [Eick et al, 2001; Tvedt et al, 2002; 
Hochstein and Lindvall, 2004]. Hence, means should be available to reorganize, or 
better to reengineer the software, whenever its architecture becomes inadequate. 

Concluding, following interdependent domains must be taken into account when 
establishing a development and maintenance environment: 

1. Application domain – establishes the functional and non functional requirements 
that the software should satisfy to provide an adequate and dependable service 
for the user. Unfortunately there is often a difference between what the user 
desires and what the software provides, i.e. the service of the software. 

                                                   
3  We use the term practice to denote some human action that should be performed in some 
prescribed way. Very often, though, artifacts are developed in an ad hoc way, not using 
defined practices. 
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2. Artifact domain – establishes the set of artifacts (work products) that are needed 
to provide the service as well as to support the maintenance of the target system. 

3. Technology domain – establishes the technology on which the target software is 
based while in use (e.g. languages used to write the artifacts).  

4. Environment domain – establishes the technology used to develop and maintain 
the artifacts of the target system (e.g. tools and processes used to develop and 
maintain). 

5. Communication domain – establishes the communication needs and restrictions 
considering the humans that develop, maintain and use the software. 

Using a crude analogy, the application domain is the purpose for which a bridge has 
been built. The artifact domain contains the walkways, ladders, scaffolds, design 
documents and tools necessary to maintain the bridge. The technology domain is 
composed of the materials used to construct the bridge, the embedded maintenance 
support and the maintenance manuals. The environment domain is composed of the 
engineering techniques, equipment and tools that have been employed or developed 
to create the artifacts used to build the bridge. The communication domain involves 
the documents that are used by customers (e.g. transportation system architects), 
client engineers, construction engineers and workers to describe the bridge to be built 
and later maintained.  

1.2  Development models 

Looking from another perspective, software may be considered to be a form of 
knowledge [Armour, 2003]. Thus, its development process would be a knowledge 
acquisition process. While using, developing and maintaining software, one acquires 
knowledge about the application domain as well as about the other domains. Due to 
insufficient knowledge at the onset of the development, it is highly improbable that 
specifications, architecture, designs and other artifacts remain unchanged during the 
software’s initial development [Berry et al, 2010; Kemerer and Slaughter, 1999]. 

All of the different artifacts that compose software are highly interdependent and 
constitute a hyper-document. As in other engineering fields, the collection of artifacts 
(e.g. specifications, design, code, tests, etc.) should be kept consistent one with the 
other. Hence, whenever some element of any of the five domains is changed, other 
elements must possibly be co-evolved to reestablish consistency. To be of practical use 
it should be possible to verify consistency at a low cost and also to help developers to 
reestablish consistency whenever problems are detected. 

It is well known that software maintenance is inevitable [Beck, 2010; Lehman, 1996], 
even while the software is being developed [Berry et al, 2010]. As already mentioned, 
it has also been observed that the software architecture deteriorates as maintenance is 
performed [Eick et al, 2001; Tvedt et al, 2002; Hochstein and Lindvall, 2004]. Finally, it 
has been observed that shortcuts are often taken in order to satisfy contract goals such 
as schedule and cost. Often these shortcuts lead to inadequately structured artifacts 
incurring in unnecessarily increased maintenance costs [Sterling, 2011; Glass, 2003]. 
Unfortunately these shortcuts may persist in the delivered code, polluting its 
architecture and design. Thus, preventive maintenance [Kajko-Mattson, 2000] and 
reengineering is expected to occur, aiming at restructuring the architecture and design 
of the software [Fowler, 2000] and consequently increasing the ability for it to remain 
useful over long periods of time. However, preventive maintenance is seldom 
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performed due to its costs and the difficulty to justify the return of investment. A 
consequence of this discussion is that software should be designed in such a way as to 
facilitate its evolution considering all five domains. 

A major reason for the difficulty of developing and maintaining software is its 
inherent complexity [Brooks, 1987]. Software is highly abstract in the sense that it is 
essentially the prescription of the behavior that one or more interacting automata 
should display when executing these prescriptions. Specifiers, designers and 
implementers must imagine how the software will behave while being developed. As 
technological capabilities increase more difficult it becomes for humans to imagine all 
facets and consequences of this behavior. Hence, effective tools are needed to specify, 
model, integrate and control different views of the software. A variety of views is 
necessary, since the complexity of the software often extrapolates the capability of 
humans to fully understand its specification and design. This understanding is 
necessary to enable developers to write and maintain adequate and dependable code. 
However, this approach may lead to the “blind men and an elephant” syndrome. 
Finally, a set of tools or practices is required to transform specifications into code, user 
documents and other artifacts that are required to enable users to properly interact 
with the software.  

Since software possibly contains defects and almost certainly will evolve during its 
life-time, the development environment must support not only maintenance, but also 
reverse engineering, reengineering and refactoring. These practices should be 
supported assuring that they are cost effective as well as require short time spans to be 
properly performed. The relevance of these practices grows as the expected life-time, 
complexity and risk grow. Purely manual practices are not sufficient since they often 
do not reduce costs nor do they assure sufficient quality. Hence, specialized software 
tools become more and more necessary as software complexity and usage risks 
increase. Hardly the same set of tools will provide adequate support for a large 
majority of software being developed and maintained. In other words, the 
development environment containing a set of tools used to specify, model, design, 
inspect, test and other activities must be adaptable to the needs of specific software 
systems.  

In addition to supporting openness in the face of constant change, the development 
environments must conform to the other domains of the target software. For example, 
the environment used for developing a large command and control system 
significantly differs from the environment required to develop a simple information 
system. Thus, development environments must not only adapt to some technology 
domain, they must also adapt to the target application domains. Also here it should be 
expected that in many cases this domain may change during the life-time of the 
software. 

1.3  Terminology 

In this section we introduce several terms that will be used throughout this document. 
Later many of them will be described in depth. 

The artifacts composing the software being developed or maintained are stored in a 
repository. This repository contains hyper-objects. Artifacts are built composing 
attributes of hyper-objects according to a prescribed rule, the representation language 
of the artifact. Many representation languages are graphic. A diagram is a hyper-
object; however, the graphical elements of a diagram are similar to hyper-objects too in 
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the sense that these elements contain a well defined set of attributes that are specific 
for each kind of element. Hence, hyper-objects may contain zero or more sub-objects. 
Hyper-objects and sub-objects are instances of hyper-classes. Only one sub-object level 
is supported. Deeper structures can be achieved using recursive relations, such as 
composition and decomposition, or specialization and generalization. In fact, a sub-object 
could be viewed as a named and well characterized sub-domain of a given hyper-
object's attributes. For example, a diagram (a hyper-object) contains several attributes 
for each of the items (boxes, links, labels, adornments) that compose this diagram. 
Each of these items corresponds to a sub-object and may refer to another hyper-object 
that contains its descriptive details. For example, in an UML class diagram boxes 
(sub-objects) refer to the classes (hyper-objects) that contain the facts (e.g. 
specifications, interfaces, attributes, methods) of these classes. Conversely, each 
class type hyper-object should refer to all places where it appears as a sub-object in 
some diagram. This latter relation allows navigating from any occurrence of a class to 
any other occurrence in a fashion similar to that of hyper-documents. 

Artifact – is any tangible result (work product) of the development or maintenance 
of the target software. Artifacts may be composed of other artifacts. 
Artifacts may contain several different representations. Examples of 
artifacts are: documentation files; compilable program modules; findings 
documents generated while performing some quality control activity. 
Example of an artifact composed of several representations is a design 
document containing a data flow diagram and the specifications of the 
elements that appear in this diagram. 

Definition base – is a special purpose data base that contains interpretable 
descriptions of representation languages and instantiations of meta-tools. 

Environment – is an interconnected collection of tools, representation languages and 
practices that is used to develop or maintain the target software. 

Fact –  is any elementary data used in some representation. Examples of facts are: 
boxes, edges and labels contained in some diagram; code fragments (e.g. 
statement lists) that are part of some algorithm; declarations of methods; 
composition lists of some document. In SQL terminology a fact would be a 
line of a table, however not all data is stored in a SQL compatible fashion.  

Hyper-class – is a class like element from which hyper-objects and sub-objects can be 
instantiated. 

Hyper-object – is an object like element that is persisted in a software base. A hyper-
object contains several attributes, each of which corresponds to an object in 
an object oriented programming language. 

Maintenance – is any activity that changes part of the target software aiming at 
eliminating defects (correction); adapting to new context conditions; 
adding or improving functionalities or quality characteristics; reorganize 
the software for the purpose of easier future maintenance. 
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Meta tool – is a generic tool that can be instantiated to perform a specific task. For 
example, the diagram meta-editor can be instantiated to edit a variety of 
different diagram representation languages. 

Repository – is a collection of software bases and files that contain all facts of one or 
more target systems. 

Representation – is any document or part thereof that describes some aspect of the 
target software. Examples are diagrams, architecture or design 
descriptions, and code. 

Representation languages – are natural or artificial languages used to write a given 
representation. Each representation is written in a specific language. 
Examples are: UML class diagrams; entity relationship diagrams; C++; 
Java; make scripts; JUnit scripts. 

Software base – is a special purpose database used to store facts of the target 
software or part thereof. 

Target software – is the software, component, of framework that is the object of 
development or maintenance activities. 

Tool – is any software, component or framework that is used for the purpose of 
developing or maintaining the target software.  

1.4  Overview of this report 

In section 2 Talisman version 4.4 functionalities we will provide an overview of several 
of Talisman’s version 4.4 capabilities. We will also describe several of the problems 
identified while using that system. Solving these problems will be one of the aims of 
the new version.  

In section 3 Functional requirements we will describe some of the services provided 
by software engineering environments instantiated with Talisman. We will use a 
narrative style instead of a more formal style frequently found in requirements 
documents. 

In section 4 Architectural aspects we will describe several architectural aspects of the 
Talisman meta-environment. The architecture of a meta-environment must be process, 
representation language and tool independent. Data contained in a definition base 
establish the specific behavior required by a specific instance of the meta-environment. 
This organization allows the construction of a large set of environments, without 
needing to reprogram any of Talisman’s components. 

Finally, in section 5 Concluding remarks we present a brief wrap up of this report. 
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2  Talisman version 4.4 functionalities 

In this section we will provide an overview of several of Talisman’s version 4.4 
capabilities. We will also describe several of the problems identified while using that 
system. Solving these problems will be one of the aims of the new version. 

The development of the Talisman Software Engineering Meta-Environment started 
in 1987, and its version 4.2 was finished in 1992 [Staa, 1993]. It was developed for a 
PC-XT running MS-DOS. Several small modifications were made that lead to its last 
version 4.4 finished September 1995. The following are some of Talisman's 4.4 
features:  

• It is an integrated meta-environment prototype supporting several meta-tools 
required for developing software such as: creating and editing composite text, 
diagrams, and structure charts. It also provides means to transform, verify, 
import and export representations, as well as to generate code or other textual 
files.  

• Representation languages can be dynamically adapted without destroying or 
losing already performed development. New representation languages can be 
added at any time. New representation languages editors based on some kind of 
diagram can usually be created in less than two days. Model checking tools, 
transformation tools and generators may take more time due to the intrinsic 
complexity of the new language. 

• The meta-environment is instantiated by means of a definition base. This is a 
special purpose data base containing a set of binary tables that direct how the 
meta-tools should operate. The definition base is created from a set of 
interdependent specifications contained in several text tables. 

• The meta-environment has been instantiated for a set of representation language 
families such as: organization analysis, goal specification, requirements 
specification, data flow based design, entity relationship based design, state 
transition graph design, modular design and implementation, work break down 
based planning, and document generation. It has been successfully used in 
several industrial projects. 

• After a bootstrap version (version 2) had been built, all module design and 
implementation files were imported to Talisman repositories (see below), 
allowing to continue development using Talisman itself. Presently all of the 
modules which comprise the Talisman 4.4 system are composed using the 
contents of Talisman repositories. 

• All tools interact via a repository. This repository is a special purpose object 
oriented data store. It stores lists containing hyper-object attributes of small 
granularity. Hyper-objects correspond to the syntactic elements of representation 
languages, and attributes correspond to conventional objects. Examples are: 
classes, methods, code blocks, states, transitions, processes, data elements and 
data stores. Coarse granularity objects, or better representations, are recomposed 
and then rendered whenever they are accessed. Examples of coarse granularity 
objects are: source code files, data flow diagrams, entity relationship diagrams, 
state transition diagrams, structure charts and user documents. Representations 
are built by selecting and formatting attributes contained in the repository.  
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• It is capable of generating many different kinds of text that could be used as 
input to some other tool. Furthermore, it is possible to import data from other 
tools, as long as it is contained in a text file adhering to the import syntax. This 
usually requires the development of a specialized conversion tool. This approach 
has been used to reverse engineer C code to structured design. Unfortunately, 
Talisman 4.4 is not capable of importing diagrams. 

• It uses an internal programming language, the form programming language. 
Among other uses, this language allows to define how to compose source code 
from the repository’s contents, how to define model checkers capable of 
generating quality control reports, how to implement representation 
transformers used to convert from one representation to another. 

• It allows linking hyper-objects using a large variety of relations. As a result it is 
possible to establish a trace trail from requirements items to code fragments and 
vice-versa. 

• Using its internal programming language, code composers can be built. These 
are programs capable of exploring (navigating through) diagrams and other 
content of the software base, picking some of the attributes (code fragments), 
composing them intermixed with generated code and producing a sequential 
text. If desired this text may be sent to a file, or to the composite text meta-editor. 
Code composers may generate files that can be sent to other tools. For example 
the composer may generate compilable code, or input for other text processing 
software. When sending the composed code to the composite editor, the 
attributes (text fragments) extracted from the software base can be edited. The 
visual aspect of the text is quite similar to the one a programmer expects to see. 
When closing the edited document, each modified fragment will be persisted in 
its proper place in the repository. 

• It allows building code generators that use diagrams as input. Hence, part of the 
representations, especially code, can be maintained and generated using 
diagrams. This reduces development effort since a significant part of the code is 
correctly derived from the models represented by the diagrams. Furthermore, it 
allows to develop programs incrementally and to maintain programs editing 
design diagrams. Using entity relationship diagrams, we have successfully 
generated working Web systems containing more than 100.000 lines of correct 
Java code [Franca, 2000].  

• The set of meta-editors (composite text meta-editor, structure chart meta-editor 
and diagram meta-editor) are all definition base driven. This allows for the 
addition and evolution of representation languages without having to change 
the code of the meta-environment itself. Furthermore, existing representations 
are usually not affected when such additions or changes are made. 

• The set of editors provide a very powerful hyper-document navigation 
capability. For example, given that the current position in a composite text refers 
to some fragment, it is possible to navigate to a diagram that contains an 
instance of the hyper-object that contains this fragment. Alternatively, it is 
possible to navigate to another composite text that contains the specification (or 
other text) of the hyper-object that contains the fragment. 

• The Talisman 4.4 engine and supporting tools were developed using an 
approach similar to contract driven development. Structure verifiers [Staa, 2000] 
have been developed for all elaborate data structures, in particular for the 
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repository structure. These verifiers run in a multi-programmed fashion, 
monitoring the development on the go (over the shoulder). Since Talisman was 
developed using itself as a development tool, most of the testing was done using 
the system and relying on the power of verification tools. This approach proved 
to be very successful and has contributed to a substantial increase of 
productivity when compared to industrial benchmarks available at development 
time. A similar approach has been used successfully to develop supervisory 
systems [Magalhães, 2009] 

The experience gained with the development and use of Talisman 4.4 in many projects 
led to the proposal and development of this version 5 of Talisman. Among the 
problems observed we can mention: 

• For the meta-environment approach to be successful a meta-programming 
environment is required. The instantiation of the meta-environment using a 
collection of interdependent tables is very cumbersome and error prone. 
However, meta-environment programming could be performed using an 
instance of the meta-environment itself. Thus a bootstrap period will be required 
until the meta-environment development tool is available. This two step 
approach must be well designed to reduce startup effort. 

• Meta-programming should be partially rule based – aiming at lexical and 
syntactical aspects – and partially based on some procedural or object oriented 
programming language – aimed at semantic aspects. 

• To allow more control when evolving a representation, version control should 
not be performed by a separate textual version control tool, but should be 
structural [Araújo, 2010] and should be part of the environment itself [Pietrobon, 
1995]. Structural differences could be stored as attributes of the affected hyper-
objects. This structural difference data allows building tools that selectively 
propagate changes to related representations. 

• Diagrams should be considered first class hyper-objects. Hence, each diagram 
can be handled as a unit. Diagram hyper-objects should maintain an interface 
descriptor. This descriptor allows interface items to be associated with items 
contained in other diagrams or with other hyper-objects. This would provide 
means to establish interdependencies among the several diagrams that compose 
a system. It also provides means to perform model checking over the boundaries 
of a specific diagram, as well as transformations involving diagrams. 

• It should be possible to export and import diagrams from XMI (or similar) files. 
Currently Talisman 4.4 exports and imports name, string, text and relation 
attributes, but not graphical ones. 

• It should be possible to generate diagrams by means of some transformation 
operator. The placement of the diagram elements should be performed by some 
algorithm and, if necessary, hand improved afterwards. This transformation 
would facilitate reverse engineering diagrams. It would also provide means to 
reuse many architectural and design elements or to verify the coherence between 
textual and diagrammatic representations. Finally, it would allow developing or 
maintaining a complex system using several representations (development 
steps) each of which leading to a lower abstraction level or involving a variety of 
viewpoints.  
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• A consequence of being able to generate diagrams is the possibility to cut part of 
an existing diagram and move it to a new diagram or to another existing 
diagram. It allows also composing a larger diagram from elements contained in 
other diagrams. While moving or creating a new diagram from parts of existing 
ones, many of the relations between diagrams should be created automatically. 
This should contribute positively to the use of model driven development, 
reengineering and maintenance based on existing models. 

• A large integrated repository containing all systems of an organization4 creates 
risks and several problems such as: difficulty to share components among 
different organizations and difficulty to transfer components to other 
organizations. On the other hand, partitioning the overall repository into several 
independent repositories creates other problems such as: difficulty to establish 
verification tools that cross boundaries of the elementary repositories. It also 
hampers maintenance since several copies of an elementary repository might 
exist. A possible way to solve these problems is to partition the overall 
repository into several interdependent repositories. 

• Hardly a single meta-environment will provide support for all possible 
development tools. Hence an effective means to interoperate with other tools is 
needed, such as plug-ins. The internal programming language provides means 
to specialize the tool for specific purposes. For example, navigation rules, 
composite text construction rules. This internal programming language should 
be an extended version of a general purpose language. We are considering to 
use Lua [Ierusalimschy, 2004], since this language is a very efficient and 
powerful extension language and also contains a powerful library of pattern 
matching functions. 

• A large part of the software development effort is directed to maintaining 
existing legacy systems. Many of these systems suffer from inadequate 
architecture and design. However, these systems tend to be critical for the 
enterprise owning them. Hence, an effective way to reverse engineer and later 
on reengineer these systems might be an adequate form to increase life-
expectancy of legacy systems. 

• A training infrastructure must be available. Environments that use model driven 
development and maintenance require a fair deal of expertise in modeling since. 
Due to the use of representation transformers, they end up being part of the 
coding effort. Users with too little proficiency will find it much harder to work 
with such an environment than with the traditional integrated development 
environments that focus on programming in a given set of programming 
languages [Parker, 2001]. Furthermore, the aim of a meta-environment is 
allowing the creation of domain specific languages and the necessary 
transformers. Again a fair deal of expertise is needed to develop these artifacts. 

                                                   
4  An organization could be as small as a Scrum development team and as large as a 
software house. 
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3  Functional requirements 

In this section, we will describe some of the services to be provided by software 
engineering environments instantiated with Talisman. We will use a narrative style 
instead of a more formal style frequently found in requirements documents.  

Talisman 5 is a meta-environment that provides meta-tools to create specific 
environment workstations. Environment workstations are used to develop or maintain 
artifacts that compose software systems. Artifacts may be diagrams, composite text, 
text files and others. The data from which artifacts are rendered are kept in a 
repository. The repository is composed of one or more special purpose object oriented 
data bases. Instantiation data is kept in a definition base, which is also an object 
oriented data base. 

3.1  Software engineering environment user roles 
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Figure 2. Typical environment user roles 

Figure 2 depicts some of a wide variety of environment user roles. These roles may be 
enacted by humans, or may be performed by tools (shaded boxes in the figure). A 
same person may enact several of these roles. In contrast, a given role may be enacted 
by several individuals. Since the roles depicted are fairly well known, we will not 
describe them in more depth here. 

As mentioned earlier software environments must adapt to the needs of specific 
environment users, to the technology domain and also to the application domain of 
the target system. However, it is virtually impossible to identify the set of all possible 
user roles, since new or slightly changed user roles could be required when 
developing or maintaining a specific system. The environment must then be adaptable 
to a variety of user roles and to persons enacting these roles, where the set of possible 
roles is not known when building the meta-environment. Given the difficulty of 
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defining user roles a priori, Talisman does not impose a set of predefined user roles. 
Rather, it allows creating and improving roles, as well as role supporting 
representation languages and tools, assuring a harmonious development 
environment. 

Software systems must provide adequate and dependable support for the 
enactment of each user role. The goal of every environment user role is to contribute in 
a defined way to the effective development or maintenance of one or more artifacts all 
of acceptable quality. As shown in figure 1 the goal of an environment user is not just 
using the environment. Instead it is to perform the role’s duties with the aid of the 
environment in a productive and dependable way. Thus the environment must 
provide an adequate set of tools and representation languages for each of the user 
roles. Furthermore, user interfaces should be adjustable not only to the needs of each 
role and but also to the needs of the person enacting the role. 

User roles are interdependent. For example, database standards established by the 
database administrator must be strictly followed by at least the development teams, 
the maintenance teams and the quality assurance groups. Thus software environments 
must provide efficient and effective means to support communication among the 
different environment users. Much of this communication relies on documents, i.e. 
representations. Even when informally discussing aspects of some target system, 
several representations are used to support this discussion. Some of these 
representations are ad hoc, but usually are quite expressive. Furthermore, many issues 
of such discussions can receive some automated support. For example model checkers 
and design evaluation tools can identify design anomalies, reducing the amount of 
work spent in reviewing or, even worse, in useless rework [Macía, 2009]. In order to 
establish communication among environment users, Talisman allows the assembly of 
a variety of different representations from the facts contained in the repository. To 
fine-tune quality control to the needs of a specific project, model checkers and 
measuring tools can be developed or adapted. 

3.2  Software development activities 

Developing a system with Talisman corresponds to populating and updating the 
repository with facts. The order in which the repository may be populated should be 
process independent. This assures adaptability of the meta-environment to a variety of 
specific development processes.  

Of course, when following a well-defined development process, the amount of 
possible inconsistencies among representations will be small and could be removed 
soon after a representation has been built or changed. Consequently fewer 
inconsistencies will be detectable when performing quality control, less corrective 
effort will be necessary in order to assure consistency among a collection of 
representations. Furthermore, fewer defects will remain in the target system. 
However, imposing a predefined work order often hampers development due to 
unnecessary bureaucracy. 
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Figure 3. A partial language transformation graph 

The set of available representation languages can be organized as a directed graph, 
see Figure 3. The picture shows the interdependencies of data flow, entity relationship, 
transition diagrams, structure charts and code. In this graph representation languages 
are the rectangles, whereas the ellipses identify the transformation from a predecessor 
representation language to a successor representation language. This transformation is 
applied when transforming a representation written in the predecessor language into 
another representation written in the successor language. Transformations may 
require several sources, or produce several results. For example, to compose 
documentation for the user it may be necessary to extract facts from several 
representations such as requirements, entity relationship and dataflow diagrams. 
Since the set of diagrams must describe exactly the same system the contents of 
several artifacts may have to be consolidated. For example entity relationship and 
dataflow diagrams must pass joint model checking operations.  

The language transformation graph defines part of a development process. In 
particular it defines the pre- and post-conditions, i.e. representations in a given 
representation language, which specify each transformation. There may be more than 
one transformation from a given representation language to another one. For example, 
one might compose code from transition diagrams as well as from program structure 
definitions. Any specific process using these representation languages and 
transformations should obey the constraints established by the language 
transformation graph.  

However, the graph could be traversed in an inverse order. In this case the 
transformations correspond to reverse engineering like operations. Such operations 
are necessary when maintaining legacy systems. Their availability assures that the 
development may be performed at any point and propagated back or forth as needed 
[Antkiewicz, 2006]. 

In one extreme, a transformation could be fully automatic — a total transformation. 
For example, a compiler is a total transformation. In this case the result of the 
transformation does not need any additional information in order to build an adequate 
and dependable artifact. In the other extreme, transformations might require intensive 
human participation — a manual transformation. In this case there is only some text 
telling people how to perform the transformation. For example, when transforming 
textual requirement definitions into system specifications, usually a purely manual 
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transformation is performed. Most transformations fall somewhere in between these 
two extremes — a partial transformation. In these cases, part of the transformation can 
be performed automatically, producing a partially completed representation. 
Completing the representation requires human intervention. This kind of 
transformation allows a good separation of abstraction level concerns, but introduces 
maintenance problems, since the added information might be lost whenever the 
representation is changed and than transformed again. 

The ability to establish partial transformations is important when considering step-
wise development, since it allows data that is germane to a given level of abstraction 
to be added only when a representation at this very level is being filled out. Hence, 
high level abstraction representations need not to be polluted with low level of 
abstraction data, since these will be added only when a representation at the 
corresponding abstraction level is completed. This editing is preceded by one or more 
transformation steps from the higher level of abstraction representation to the lower 
level one. However, to implement such representations requires attention to how 
maintenance and reverse engineering operations are performed. 

When transforming a representation written in some language to another 
representation, several cross-references involving these representations are 
established. These cross-references define the information dependencies of facts 
contained in the two representations. These cross-references establish transformation 
trails that allow an inspector to verify where requirements have been reified, as well as 
given a code fragment identify the reason why it has been written. 

When editing a lower level of abstraction representation, elements derived from 
higher level representations may be edited. This induces loss of consistency between 
the two representations. Talisman uses point-wise propagation due to the use of 
small-grained interrelated hyper-object attributes. When modifying a given 
representation, all existing relations to hyper-object attributes contained in some 
derived representation are kept and remain correct, except, of course, for those 
affected by the modification. However, it is expected that only few of these are 
modified. When navigating back to the higher level representation, these changes will 
be shown, allowing to adjust the representation in order to be defect free. Once these 
changes have been performed, forward transformation may be performed again, 
which will only affect the elements derived from the changed parts of the higher level 
representation. All these changes are under structural version control embedded in the 
Talisman repository. It is expected that such changes ripple through the collection of 
artifacts ebbing out once this collection returns to a consistent state. 

3.3   Representation languages 

Every representation is written in some representation language. Each representation 
language defines: 

1. Rendering formats (pretty printing rules) involving properties such as shapes of 
graphic elements, or style sheets, fonts, and margins of textual elements. 

2. User interface, defining how to create or modify representations written in the 
language. 

3. Syntax, defining hyper-object classes and their attributes which can be 
manipulated and how these hyper-objects may be combined. 
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4. Semantics, defining the meaning of hyper-objects and of the relations between 
them. Semantics establish how representations may be verified, transformed into 
or combined with other representations. 

5. Composition, defining how a specific representation is built from a starting hyper-
object using the content of the repository.  

Each representation language contains several hyper-classes. Hyper-objects of these 
classes will be created when designing a specific representation using this 
representation language. Hyper-classes relate to other hyper-classes or to themselves 
by means of a relation. All relations are bidirectional and establish cross-references 
between hyper-objects.  

Considering a given representation language, its hyper-classes and their relations 
may be defined by means of a diagram such as the one shown in figure 4, which 
defines graphically a simplified version of the “modular programming” representation 
language. This language contains most of the C++ features. In this diagram boxes 
correspond to hyper-object classes and labeled edges correspond to relations between 
these classes. Labeled edges identify a pair of forward and inverse relations. All 
relations are 0..n to 0..n. Names of relations may be equal, as long as the source hyper-
class is different.  
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Figure 4. Example of a graphical representation language definition 

Each hyper-class defines several attributes which its hyper-objects may contain. 
Hyper-object attributes correspond to objects in some object oriented programming 
language. For example: a “Module” class may contain an “Informal description text” and 
a “Structural invariant specification text”. Both attributes are objects of the class “Plain 
text fragment”. Talisman groups attributes into several attribute categories, such as 
“names”, “strings”, “plain text fragments”5. Once extracted, they are rendered according 

                                                   
5 A text fragment is a text of unbounded size. In the case of code it corresponds usually to 
a statement list that is part of a method, but not necessarily corresponds to the whole 
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to the meta-editor rules being used. The extraction may be performed navigating over 
several hyper-objects accessible from the referred one. 

The diagram used to model a representation language is written in a representation 
language in its own right. Hence it can be defined as a representation language 
contained in the repertoire of the representation languages supported by the meta-
environment. This feature allows Talisman to define itself. 

Talisman groups representation languages into: 

1. Representation language families, and 

2. Representation language categories. 

A representation language family defines a collection of strongly interrelated 
representation languages. For example, the DataFlow representation language family 
contains among others the DataFlowDiagram, the ProcessSpecification, and the 
DataStoreSpecification representation languages. 

Each representation language category is edited by a meta-editor. Each meta-editor 
handles all representation languages of the corresponding category. For example, the 
diagram meta-editor handles all representation languages based on diagrams; the 
structure meta-editor handles all representation languages using hierarchical 
structures; the composite text meta-editor handles textual representation languages. 
An example of a meta-editor is a diagram editor capable of editing any diagram 
containing nodes (boxes), hyper-nodes (a sub-graph) and edges (arrows). Meta-editors 
are instantiated for a specific representation language by means of descriptors 
contained in the definition base. 

3.4  Form programs 

Talisman builds and verifies all representations by means of form programs. These 
programs are developed by the environment builder and are stored in the 
environment base. Later on they are compiled and stored in a definition base. Each 
representation language may be bound to several form programs, each of which 
aimed at an activity such as: editing attributes, verifying properties, transforming a 
representation, composing code to be compiled and generating reports. Talisman 
always considers a specific hyper-object to be the current focal hyper-object. Form 
programs may explore, verify, transform and render representations departing from a 
focal hyper-object.  

                                                                                                                                                     
method. In the case of text it may correspond to one paragraph or part thereof. 
Considering the other extreme, a text fragment may correspond to a whole document. 
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 BeginForm void EditModule( void ) 

    Title "Module name: " ; 

    NoNewLine ; 

    Name ;  

    If Exists( [ Text ChangeRequestText ] ) 

    Then 

       Title "Change requests" ; 

       Text ChangeRequestText ; 

    EndIf ; 

    If Exists( [ Text ReportText ] ) 

    Then 

       Title "Findings report" ; 

       Text FindingsText ; 

    EndIf ; 

    Title "Module description:" ; 

    Text DescriptionText ; 

    Title "Functions exported by this module" ; 

    Relation ExportsFunction ; 

    Title "Functions contained in this module" ; 

    Relation Functions ; 

 EndForm ; 

Figure 5. Example of a specification form program fragment (Talisman 4.4) 

Each specification form, when applied to an acceptable focal hyper-object, explores 
the repository and builds the representation view corresponding to this focal hyper-
object. Different tools are defined by means of form programs. For each of the hyper-
classes of a representation language, there must be several form programs, one for 
each of the macro-actions which may be triggered by the environment user. Examples 
of such macro-actions are EditRepresentation, VerifyRepresentation, and 
TransformRepresentation.  

Figures 5 and 6 illustrate respectively a specification form and a small fragment of a 
simple-minded verifier. The language used in both examples is derived from the 
language used in version 4.4 Talisman. However, in version 5 the extension language 
Lua [Ierusalimschi, 2004] is being considered as the form programming language to be 
used. 
 

 BeginForm bool VerifyClass( void ) 

    If Not Exists( [ Relation Methods ] ) 

    Then 

       Title "Class does not contain methods" ; 

    EndIf ; 

    If SelectPublic( [ Relation Methods ] ) == empty 

    Then 

       Title "Class does not contain public methods" ; 

    EndIf ; 

    ForAll Methods Do 

       If Not Exists( [ Text PreConditionText ] ) 

       Then 

          Title "Method " ; 

          NoNewLine ; 

          Name ; 

          NoNewLine ; 

          Title " does not define a pre-condition." ; 

       EndIf ; 

    EndForAll ; 

 EndForm 

Figure 6. Example of a verification program 
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3.5  Representations and artifacts 

When developing software, several representations are rendered, edited, verified, 
inspected, transformed and maintained. Examples of representations are: source code 
files, requirement specifications, design diagrams, algorithm structures, help files, 
target system user documents, and make or Maven files. Welsh and Han [1994] even 
depart from the premise that software development is a documentation-based process. 
These composite concrete representations usually consist of a number of elementary 
fragments such as text paragraphs, code fragments, diagram items and the 
relationships among them.  

Artifacts are work-products. An artifact may contain several representations. For 
example, a design artifact may contain graphical and textual representations. Artifacts 
appear in some machine readable form and a basic goal of an artifact is to serve as a 
communication means between the different environment users, regardless of whether 
they are humans or software systems. 

One may extend the concept of artifact to include several reports and work files. 
For example, the findings report generated while performing model checking could be 
considered as a special kind of artifact. Similarly make or Maven script files and test 
script files, such as JUnit files, could also be viewed as being some sort of artifact. 

Artifacts may vary from the very large and complex, e.g. a user manual, to a very 
small and simple one, e.g. a data element specification. Coarse grained representations 
such as diagrams or program code, are usually composed of a large quantity of facts, 
whereas fine grained representations contain one or very few facts. Talisman stores very 
fine grained facts in the form of hyper-object attributes in its repositories. It always 
reconstructs coarse grained artifacts whenever they are accessed.  

In order to display an artifact all its component representations will be displayed. 
To display a representation, i.e. a coarse grained object, a form program explores the 
repository, reading and formatting all attributes which compose the representation to 
be rendered. Talisman defines a representation by following tuple: 

   < RLF, RLC ,  ACT, FP , OBJ > where: 

RLF identifies the representation language family to be used. The family allows 
bundling several form programs together, reducing the effort of 
configuring the specific environment. 

RLC identifies the specific language category to be used. 

ACT identifies the action that is being performed. Examples are: create a hyper-
object, edit a representation, verify a representation, and transform a 
representation into some other one. 

FP identifies the form program to be used. There may be more than form 
program for a given action, leaving to the environment user the choice of 
which one to use. 

OBJ identifies the focal hyper-object from which the representation will be 
rendered. 

As an example consider the editing of a data flow diagram and its corresponding data 
dictionary. In this case the representation language family is DataFlow. When editing a 
data flow diagram the language category is Diagram. When editing data dictionary 
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specifications the language category is CompositeText. When editing a data flow 
diagram using bubble charts, the form program selected by the environment builder 
would be BubbleChart [DeMarco, 1979]. However, the same diagram could be rendered 
using the conventions defined by Gane and Sarson [1978], in which case the form 
program selected would be GaneSarson. 

Assume now that the user wants to see the data flow diagram corresponding to the 
decomposition of the process A-DFD. In order to display the diagram the user selects 
the hyper-object A-DFD and triggers the action ShowDiagram. Now the identifiers 
RLF=DataFlow and RLC=Diagram are used to select the form program BubbleChart. 
Usually there will be just one form program. If there is more than one, the user is 
prompted for a choice. From the BubbleChart program, the function EditDiagram is 
selected. Now the repository will be accessed retrieving the facts that fit in the 
viewport and that are related to the diagram A-DFD. These facts are stored in a 
workspace and then the diagram meta-editor is invoked to display and edit the 
diagram in an appropriate window. 

If the user chooses to see and edit the specification of some process A-PR contained 
in the displayed diagram, she/he points to the object in the diagram and triggers the 
action EditSpecification. Now the identifiers RLF=DataFlow and RLC=CompositeText are 
used to select the form program BubbleChart and then the function 
EditProcessSpecification is invoked. Using this function the repository will be explored 
retrieving all facts related to the specification of the process A-PR. These facts are 
stored in a workspace, the composite text meta-editor is invoked, which displays and 
edits the composite text. 

The rendered representations may contain attributes of hyper-objects that are part 
of several different representations, independently of their family or category. For 
example the composite text of a process may contain attributes extracted from the data 
flow diagram, as well as from state transition diagrams, or even from other 
representation languages. For example, the representation could list all incoming 
flows, where they are coming from, and also tell what data flows on them. 
Furthermore, a process could be bound to a transition in a state transition diagram. It 
might be important for the developer to know aspects related to this transition. Once 
displayed, the user may edit this specification. When she/he closes the window 
containing the representation all changes recorded in the workspace are stored in the 
repository and, if necessary, a RepositoryModified message is issued. This message 
triggers the refreshing of all open windows (MVC pattern). 

Artifacts are not generated just for the purpose of documenting aspects of the target 
system. They are an active part of the development and maintenance processes, 
guiding these processes. One of the goals of Talisman is to compose code from 
specification and design documents. For example, when using a state transition 
diagram to specify some user interface, one wants to be able to systematically 
transform this diagram into code structure skeletons. After this transformation, these 
skeletons are filled with code fragments. Then the diagram and code fragments are 
linearized (flattened, serialized) into compilable sequential code. When changing the 
diagram, independently of the amount and nature of changes, all derived elements 
which are not related to the changed portion remain as they are and still allow 
composing correctly the corresponding source code. 

Talisman users may perform following operations on representations: 

1. addition: This occurs when an artifact is written from scratch, or when an existing 
artifact is enlarged, or when a generated skeleton of an artifact is filled with 



 

 21

information. For example, when drawing a state transition diagram that refers to 
a process already defined in a data flow diagram one can search and select this 
process to insert in the state transition diagram. Afterwards one can fill 
information that is germane to the diagrams in which the object is referred to. 
The composite text corresponding to the process may contain all fragments 
added considering all places where this process is referred to. State transition 
diagrams can be converted into compilable code. To allow this the elements 
contained in the diagram must possibly contain code fragments. When the 
diagram is changed, all these code fragments remain attached to the diagram 
elements. Thus, all portions of the diagram that is not affected by the change will 
yield the same code text as before of the change. Diagrams may be converted to 
editable composite texts. If a text fragment in this composite text is changed, the 
corresponding place of this fragment is changed in all diagrams as a 
consequence of the fact that Talisman refers to fragments contained in the 
repository instead of copying them into the diagram. 

2. extraction: This occurs when an artifact is displayed, when a hard-copy is 
generated, or when a file is generated to be used by some foreign tool. 
Representation languages should convey the writer’s intent and should be 
understandable by the reader, even if this is some other software. Extraction is 
performed by form programs, which may explore the repository in any way 
they find necessary. 

3. modification: This occurs when an artifact is updated. Typically, a modification of 
an already accepted fact leads to a new version of this fact. However, 
modifications of facts which have already been modified but not yet accepted 
will not lead to a new version of this fact. 

4. propagation: This occurs when a consequent artifact is generated or changed in 
conformance to a given antecedent artifact. A consequent artifact is an artifact 
which, in accordance to the normal work flow, is to be created after the 
antecedent artifact. Propagation does not affect already existing facts in the 
consequent representation. In fact propagation maintains and possibly 
establishes references to these facts. Propagation is performed by form 
programs, which are capable of generating new content in the repository. Again 
these programs may explore the repository and create fragments or even new 
hyper-objects whenever and wherever needed. 

5. reverse propagation: This occurs when an antecedent artifact is built or adapted to 
conform to a given consequent artifact. Reverse propagations are usually 
performed during reverse engineering activities. Propagations and reverse 
propagations are transformations.  

6. search: This occurs when the environment user examines the repository in order 
to find a set of hyper-objects satisfying some search criteria. Since all facts are 
stored in the repository, it is possible to create form programs that explore the 
repository searching for some text and/or property. The result is a list that 
might be displayed and used to navigate or explore starting at one of the 
selected desired objects. 

7. reuse: This occurs when the environment user incorporates an already existing 
fact, or even artifact, as part of some artifact being built or modified. Talisman 
promotes as-is reuse relating artifacts to reused artifacts. 
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8. composition: This occurs when several artifacts, elementary or not, are combined 
to form a composite artifact. Conversely, decomposition occurs when 
disassembling an artifact into several other artifacts.  

3.6  Navigating over representations 

As already mentioned, Talisman does not keep representations in its repositories, 
instead whenever necessary it reconstructs representations from some focal hyper-
object applying to it a function contained in a form program belonging to a 
representation language category and family.  

Get hyper-object
attribute object

hyper-object hyper-objecthyper-object

attribute attribute attribute

object object object

Form
program

Focal
hyper-object Representation

Render
representation

Repository

. . .

. . .

 
Figure 7. Rendering architecture 

Whenever a representation is required, the facts that compose it are retrieved from 
the repository and then rendered. If a required datum is not found, the form program 
can render default data or error messages allowing the environment user to correct 
these defects. Missing data may be due exploring partially completed work; due to 
incorrect design; or due to interrupted connection to another computer. Talisman 
assures continually structural correctness, but not semantic correctness, since this 
would easily lead to deadlocks. Hence, the repository should be validated upon user 
request. A consequence of this is that use, or exploration, of the repository is 
independent of the order in which the repository is populated during the 
development process. This is a desirable feature since it assures that the environment 
does not impose a fixed development process, allowing environment builders to tailor 
development processes to specific needs. 

The set of all representations corresponds to a hyper-document [Bigelow, 1988; 
Conklin, 1987]. Whenever a representation containing a given focal hyper-object is to be 
displayed or manipulated it is rendered using the form program of the target 
representation language applied to this hyper-object. This assures that representations 
always reflect all changes made anywhere to one or more of its constituent facts. This 
capability of reconstructing representations is very important since hyper-objects and 
attributes, i.e. facts, may be shared by several representations, consequently may be 
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edited in several different contexts, and, also, a given representation may display 
several times the same attribute or hyper-object. 
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Figure 8. Hyper-document navigation  

As shown in figure 7 rendering is performed by a form program associated with 
the target representation language and is applied to a focal hyper-object. While 
performing the rendering, the repository is explored in search of attributes that are 
returned as objects of the programming language used. As shown in figure 8 this 
allows to explore the set of representations navigating from one representation to 
another. Since rendering is governed by a form program, the content and complexity 
of the rendered representations as well as navigation details can be adjusted to the 
needs of the development stages and processes of a given project. 

Talisman does not interrelate representations, instead it interrelates hyper-objects. 
This architecture supports a wide range of navigation facilities using explicit links, i.e. 
relations between hyper-objects or edges in a diagram. Since the construction rule 
applies to all artifacts regardless of their complexity, this architecture allows 
navigating between quite complex document sets. Finally, when editing or creating 
relations all navigation operations will adapt to these new relationships. 

Different from many conventional hyper-text systems [Conklin, 1987], in Talisman 
links and frames have types, where these types convey semantic information. For 
example, when examining a specific requirement (a fact) in a requirements definition 
(a frame), one might want to see how this requirement influenced the system design. 
Thus, one may want to see all the entities (facts) in the set of data models (frames) 
which reify this requirement. In another occasion we might want to see all user 
interfaces (frames) which reify this same requirement.  

3.7  Cross references 

Representations contain cross references linking one representation to another. Cross 
references define semantic interdependencies. They are in fact relations involving 
hyper-objects. For example, the specification of a given class (a representation) 
should be cross referenced to all representations which make use of this class.  

Cross references establish traceability involving several representations. Building 
such relations by hand is error prone and tedious; i.e. omissions and semantically 
inexistent relations might occur frequently. Thus some assistance should be provided 
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to at least partially generate and maintain the set of relations by automatic means. 
Talisman creates or updates relations as a response to user actions, or to editing, or to 
assignments performed by some form program.  

Cross referenced representations must be consistent. That is, the information content 
of one representation must not conflict with the information content of the other 
representation linked by a cross-reference. In order to mechanically reduce the chance 
of inconsistencies Talisman uses transformers and verifiers. Given the facts of an 
antecedent representation, a transformer creates or updates facts of a corresponding 
consequent representation. Given a collection of representations, a verifier determines 
whether they are mutually consistent. Any discrepancy will be noted and stored in a 
defect attribute of the offending hyper-object.  

3.8  Reuse 

Reuse is assumed to be one of the most effective ways to reduce development effort. 
Talisman emphasizes specification, design and fragment reuse, as well as conventional 
class or function reuse. It provides two mechanisms for sharing facts:  

1. Representation languages share hyper-classes; hence a given hyper-object may 
be part of several representations, as well as attributes of it may appear in 
several places in a same representation. 

2. Representations are built while navigating over relations between hyper-objects. 

The first mechanism allows hyper-objects of shared hyper-classes to appear in 
different representations (specification and design reuse). For example, assume that 
we are specifying a system using entity relationship diagrams (ERD) and data flow 
diagrams (DFD). Both the ERD representation language and the DFD language share 
the class Record (e.g. similar to a struct in C or a line in a SQL table). Thus a given 
entity, defined in an ERD, may contain records which in turn are contained in the DFD 
and appear in several data flows and data stores. These Records will later be 
complemented with code fragments allowing the composition of compilable code.  

The second reuse mechanism is based on relations between hyper-objects. The 
related objects may belong to different hyper-classes. Relations permit form programs 
to navigate to hyper-objects belonging to any hyper-class even those which do not 
belong to the set of hyper-classes contained in the focal representation language. 
Continuing the same example, it is possible to establish a relation between a data store 
in a DFD and an entity in an ERD. Now when building the specification of the data 
store, it is possible to navigate to the ERD and extract relevant information to be 
displayed in the data store specification. It is also possible to perform model checking 
of both diagrams reporting inconsistencies that possibly occur in one of them. When 
correcting the shared element both diagrams are changed. Now both have to be 
checked again. Hence changes in one propagate to the other diagram. 

These two mechanisms, together with the ability to share software bases and 
partially locking the contents of repositories against change, provide means to reuse 
standard specifications and designs. For example, a corporation could have defined a 
standard corporate data schema (see figure 17). This schema can now be used to build 
several different applications. Since the schema is protected, no application developer 
can accidentally or willfully change it. Furthermore, if the data administrator changes 
the data schema, all applications bound to it can be notified. 
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Different representations may have non empty intersections. This redundancy is a 
positive property since it increases the ability to control consistency among different 
representations, and it also makes it easier for readers to understand a complex 
system since several representations, i.e. views, can be used to understand the system. 
This redundancy is also necessary since different readers want to see the same 
information from different points of view. For example, the programmer of a function 
wants to see its source code. The user of this function wants to see the interface 
specification, the corresponding definition code, and some examples of its use. The 
user of an application containing this function wants to see help information relative 
to its specific operational aspects. 

In Talisman artifacts share facts as a direct consequence of the way how they are 
built from the contents of the repository. Sharing facts between artifacts eliminates 
repetitive writing effort, since different artifacts can be generated from the repository 
containing these facts. For example, consider the development of a class library. There 
are at least five documents, the source code, the interface definition code, the test data 
files, the help files, and the user manual. All these documents share a large amount of 
information. Generating all these documents from a common base significantly 
reduces the inconsistencies which could build up whenever some maintenance is 
performed. It also contributes to the reduction of the co-evolution effort required to 
maintain consistency of all these representations. 

In order create and maintain interrelated artifacts, Talisman: 

• allows facts to be acquired and updated in any of the artifacts where they occur, 

• provides verifiers to control and propagate changes, and 

• provides fine-grained version and configuration control. 

Obviously Talisman supports also the traditional copy and paste kind of reuse.  

3.9  Quality assurance 

When finishing the creation or modification of a representation its quality should be 
controlled. Whether performed by tools or humans quality control generates a findings 
report. This report contains error and warning messages relative to the controlled 
representation. Since the findings report is a fragment of some hyper-object, it might 
be bound to versions of the corresponding hyper-object. In Talisman text fragments 
related to the findings report are associated with the hyper-objects that expose the 
related defects. Thus, when controlling a representation, findings will be associated to 
the hyper-objects contained in this representation. The findings report of the 
representation corresponds to a composite text containing the set of findings texts of 
the hyper-objects contained in this representation. 

Several causes may lead to defects found in a representation. However, every 
defective representation must eventually be modified in order to eliminate all causes 
of error messages and most of the causes of warning messages. In Figure 9, we show 
the set of actions and their interfaces which are performed when developing 
representations. 
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Figure 9. Representation development activities 

When controlling the quality of a consequent representation, it is possible that 
defects are uncovered in some of its antecedent representations. For example, when 
implementing a class one may find that a method is missing in its specification. It is 
unreasonable to enforce a zero specification defect rule, such as “all implementations 
must be strictly consistent with their original specifications”, since all sorts of errors 
and omissions may occur when writing the specification [Berry et al, 2010]. 

 Enforcing specifications to be corrected immediately whenever a defect is 
uncovered may hamper work progress. On the other hand, letting quality control go 
unenforced is risky and may lead to large technical debts [Sterling, 2011]. Finally, 
letting a specification be changed by the person deriving the consequent artifact is a 
source of trouble, since specifications are often antecedents to several artifacts. Thus, 
due to the lack of uniformity when treating inconsistencies between specifications and 
their consequent representations, Talisman allows quality enforcement policies to be 
adjusted to the needs of the projects and progress states in these projects. 

In Talisman antecedent and consequent representations may be under 
development at the same time. For example, when developing class diagrams, the 
detailed specification of classes and the diagrams may be created in a concurrent way. 
Thus it is unreasonable to expect that all antecedent specifications (the diagrams) have 
necessarily been accepted before starting the development of a consequent artifact (the 
class details). Instead, negotiation should be supported allowing the antecedent and 
consequent artifacts to evolve until they stabilize on a feasible and acceptable point. 

Talisman allows attributes of a hyper-object to be frozen, i.e. locked. Once an 
attribute is frozen it may only be changed if it is first unfrozen. Freeze and unfreeze are 
configuration control operations similar to check-in and check-out available to the 
project manager. If a defect report is directed to a frozen attribute it will be kept as a 
problem or enhancement report, otherwise it will be kept as a findings report. In order 
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to achieve this, Talisman allows the existence of several findings texts and problem 
report texts associated with hyper-objects. 

Changing an accepted artifact may impact several simultaneously ongoing 
activities. Furthermore, due to schedule pressure some changes and verifications may 
have to be delayed. Thus, changes may have to be postponed until an adequate 
opportunity arises. Thus, problems found in antecedent artifacts should be kept 
separate from conventional findings reports. These problems will be kept as problem or 
enhancement reports – PER – of the antecedent representation. As already mentioned, 
some problems found in the consequent artifact may have to be delayed. These PERs 
will be associated with the consequent artifact.  

The set of PERs which affect a given artifact can be explored navigating through the 
artifact and displaying all findings found while visiting a constituent hyper-object. 
While a given activity is being performed, or when getting more insight about the 
problem to be solved, problems or suggestions may be uncovered that affect the whole 
project. These reports are added to the PER lists related to the project. Later on they 
while being analyzed, they can be transferred to the PER list of the affected artifact. 

Creating or updating representations may take considerable time. During this time 
the representation will contain several defects due to incomplete or even incorrect 
modifications. Continually applying quality control tends to be more of nuisance than 
an effective aid, since defects will be reported for parts of the representation which the 
environment user knows are wrong. Thus, quality control should be applied at the 
environment user’s discretion. On the other hand, sometimes the environment user 
may find it helpful to obtain findings reports even for still incomplete representations. 
For example, a findings report could be generated for a not yet finished consequent 
representation. Such a findings report may help to avoid specification errors that will 
later lead to rework. These reports will help her/him to complete and correct 
representations she/he is developing. In order to reduce noise, the quality control 
rules should be adaptable to the level of completion selected by the environment. This 
can be achieved selecting among the available verifiers the one which is most adequate 
considering the development stage. However, full acceptance will only be granted if 
the representation satisfies the specified quality requirements. 

Talisman defines three levels of rules to be verified by tools: 

• The first level contains rules which are applied before committing the result of 
an individual edit action to the workspace. Rules of this level may allow editors 
to validate properties such as “data stores may not be linked to other data 
stores”. 

• The second level contains rules which are applied before committing the 
workspace to the repository. Rules of this level may validate properties such as 
“text fragment must satisfy syntax X”. 

• The third level contains rules which are applied to part or all of the content of 
the repository. Rules of this level may validate statements such as “an entity 
must define at least one key data item”. Rules belonging to the third level 
generate finding reports. These rules are applied upon user request. 

The first two levels are handled while editing since they are context independent. 
They assure a minimal degree of syntactic and semantic integrity of the repository 
content. This degree depends on the control rules being used. Lax rules lead detect 
few defects while editing and leave a large volume of possible defects in the 
repository. Strict rules lead to a large amount of defects detected while editing, and 
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leave a smaller amount of defects in the repository. However, verification rules at the 
editor level are often a nuisance. Furthermore, they cannot be as strict as desired, since 
rules may require context attributes that not necessarily are available when their 
evaluation is triggered. The third level examines the contents of the repository. Part of 
the repository will be explored in accordance to the verification rules.  

In addition to verification performed by tools, representations may undergo 
inspections performed by humans. The recording of the defects and suspicions found 
during inspections follows exactly the same rules as the recording of defects found by 
means of tools. Inspections may be aided by tools, as for example check lists. 
However, the findings are reported by human action. To simplify reporting, Talisman 
permits the linking of the report generators with inspection support tools. 

The rigor of assured quality may evolve in time as the development progresses 
from a very abstract description of the target system to a more concrete description. 
For example, when designing a class, the methods which compose this class are 
specified. At the beginning only the input and output data must be specified for each 
of them. Later on, decisions are made determining which of these data items are 
passed by parameters, which ones are object attributes, and what their code names 
are. Finally, code bodies are built for these methods. Obviously, each of these three 
states corresponds to a different level of completion and should satisfy different 
quality control rules. 

At given times, pending problem or enhancement reports will be analyzed. This 
evolution control will select some PER to be implemented. This corresponds to moving 
messages contained in the PER lists to the corresponding findings reports. Since PERs 
may have been originated outside of the development group, they may have been 
attached to the wrong hyper-object. Evolution control should move these improperly 
filed requests to the proper hyper-objects.  

Once a modified representation is accepted, all of its consequent representations 
must have their quality checked again. This quality control may generate new findings 
reports for several of the objects contained in this representation. Thus, the 
modification of some representation is propagated to all of its consequent 
representations, from these to their consequent representations, and so on. While 
propagating changes to other representations, already accepted representations may 
become inconsistent with other representations. These defects will lead to new change 
requests in order to recover consistency. Thus a change may trigger a change ripple that 
traverses back and forth the set of representations, possibly repeatedly returning to a 
same representation. Eventually this ripple must ebb out, that is, all representations 
must achieve a mutually consistent state, otherwise a stable set of representations 
cannot be established, which in turn means that no stable system can be developed. 
That does not mean that all of the causes leading to change requests and to findings 
reports have always been completely eliminated. It may be acceptable for a given 
target system that pending requests are kept for several of its components, but all 
these requests must be known. 

3.10  Version control 

Several different versions of a same attribute may exist. Each versioned attribute has 
its own access key, which takes the version in account. However, the version 
derivation history is global for each individual repository. Some relations define both 
the target object and the version of that object. These relations can be used to define 
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configurations. For example, in a versioned context, a given version of a module is 
composed of specific versions of its component functions. Since in Talisman a relation 
is an attribute, the configuration of the module is itself versioned. Thus, the 
composition of the module in one version may be quite different from that in another 
version. Each individual repository has its own version history. This version history is 
not related to the target system version history, that is, a target system version is built 
from a configuration of attributes possibly contained in several different individual 
repositories. 

Talisman’s development paradigm assumes that representations cannot be 
correctly written from the onset. Rather they must converge to correctness, where 
correctness is defined by means of quality requirements and verification rules applied 
to the representation. Defects uncovered by these activities stimulate feedback leading 
to changes in the representation set. Obviously, if representations are always written 
in order to conform to the defined quality control rules, little effort will be spent 
processing change ripples, thus, less rework will have to be performed. 

It is known that quality control operations usually uncover only part of the defects 
contained in a representation will be uncovered by the quality control mechanisms. 
Thus, considering two representations, one containing many defects and the other 
few, after correcting these representations, the former will probably still contain more 
defects than the latter [Fenton, 1994]. 

Once an artifact, i.e. a well defined collection of representations, has been found to 
be of an acceptable quality, a new version of it may be established. In Talisman, a new 
non modifiable version is created only after the artifact has been accepted. While the 
change is being developed, a temporary version will be under development. All 
attributes changed or added while this modification is in progress will receive the 
same version id. After accepting the temporary version, the version id is set to 
permanent. When accessing a given version of an attribute, the derivation path of this 
specific version is used to retrieve the most recent permanent version of this attribute 
and that is compatible with the version of the artifact being rendered. 

When changing a representation, other representations may become inconsistent 
with this new version, although they are consistent with some older version of it. In 
other words, for each representation A related to a representation B, version correctness 
must be stated. Hence, version and configuration control cannot be performed 
adequately by foreign tools; they must be part of Talisman’s repository management 
system. In Talisman the version information is an inextricable part of any given 
representation. 

We may conclude that a representation is composed of three parts: 

1. the representation proper, containing the versioned attributes of the target system. 
These attributes may be shown to the environment user by means of 
representations written in some representation language. 

2. the findings report, stating all defects found among the attributes of this 
representation. The findings are stored as attributes of objects which are accessed 
by the representation. 

3. the change requests, stating all defects found among frozen attributes used by this 
representation, or identified by external observations. 
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3.11  Application generators and transformers 

A transformer propagates or reflects information contained in some representation to 
some other representation. Transformers are defined in terms of the representation 
languages used. For a given pair of representation languages there may be several 
transformers, of which one should be selected when performing a transformation.  

Application generators are a special class of transformers. Application generators 
have been proposed as specification driven prototype generators [Balzer, 1981]. Once a 
prototype has been accepted, the target system is developed from the corresponding 
accepted specification. Typically, an application generator produces applications 
directly from specifications (models) containing little, if at all, implementation 
information. For example, application generators could be used to generate code 
directly from state transition diagrams. Associating a few source code fragments to 
states, transitions and labels (processes), it is possible to generate full operational 
graphical user interfaces [Hübscher, 1995]. Changing the diagram may entail a 
significant change to the user observed interface, in general requiring almost no 
changes to the added code fragments. Hence, models can be used not only to generate 
the first version, but may also be used to maintain the code [Franca, 2000]. 

Application composers are special kinds of application generators. Typically, they 
organize the contents of the repository producing adequate input to some foreign tool. 
For example, consider an editor capable of editing a structure diagram and linking 
code fragments to this diagram. An application composer would traverse the structure 
and output the code fragments in the appropriate order required by a compiler. While 
composing, application composers may also insert code fragments that are not in the 
structure, or skip parts of the structure (e.g. instrumentation that is compiled only for 
testing).  

Transformers should be capable operating with selected versions of a same artifact. 
For example, when changing the schema of a database, database files may have to be 
regenerated. In order to perform the regeneration, some database management 
systems write the database contents out to a sequential file extracting data in 
accordance to the new model. The generated file is then read in, rebuilding the data 
base in accordance to the new structure. The definition of what has to be written and 
how to read in the temporary file depends on the old and the new version. Often the 
rules can be derived from the two models, but only if the transformer has access to 
these versions. 

3.12  Reverse engineering and re-engineering 

Most organizations already own and use a large amount of software. Independently of 
how this software has been built and of user satisfaction, this software is usually a 
valuable asset of the organization and cannot simply be removed or substituted by 
another without causing major disruption. It follows immediately that, from a 
pragmatic point of view, any computer aided environment will be successful only if it 
is capable of absorbing legacy code, designs and specifications, independently of how 
they have been built. Thus pragmatic environments must be capable of supporting 
reverse engineering. 

In its most simple form reverse engineering attempts to recreate engineering 
documentation from already existing code. For example, a code composer could 
generate code from a repository using structure diagrams decorated with code 
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fragments. These structure diagrams correspond essentially to parse trees, where parts 
of the tree have been coalesced to a single node. What the composer does is to flatten 
this parse tree, generating sequential source code. Obviously, given existing code this 
code could be analyzed building the parse tree and store it in the repository. Later on 
this very detailed tree could be rearranged coalescing some of its parts. 

Once an artifact is contained in the repository, the environment user may change it 
assuring that it corresponds to an acceptable design. This is a form of re-engineering. 
As a result the repository will contain a well organized and documented program 
structure, from which an enhanced target system code can be generated [Guedes and 
Staa, 1993]. 
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4  Architectural aspects 

In this section we will describe several architectural aspects of the Talisman meta-
environment. The architecture of a meta-environment must be process, target 
representation language and tool independent. Data contained in a definition base 
establish the specific behavior required by a specific instance of the meta-environment. 
This organization allows the construction of a large set of environments, without 
needing to reprogram any of Talisman’s components. 

Software engineering environments are systems in their own right. They must be 
populated with several interdependent tools and representation languages editors. 
They must be specified, designed, developed, tested and maintained, i.e. evolved, 
adapted and corrected. The environment’s characteristics and performance must be 
continually evaluated and upgraded. They must be reliable and continually available, 
since they are the basis for the development and maintenance of target systems used 
by some enterprise. Some of these systems may be long lived and mission critical, 
hence, their maintenance cannot wait long periods for the tools to be corrected or 
upgraded. Finally, environments must be long lived, since they should also be used to 
maintain target systems throughout their life-cycle. A consequence of this longevity 
requirement is the need for a powerful maintenance infrastructure built in to the meta-
environment. 

Environment users must be trained in the proper use of tools and languages. 
Independently of the adequacy and effectiveness of the tools and languages users with 
insufficient proficiency (knowledge, training and experience) will be unable to 
produce satisfactory target systems [Parker, 2001]. Thus a fair amount of effort must 
be spent providing training support as well as on-the-go help for users. Furthermore, 
tools and languages must be adjustable to the needs and capabilities of the 
environment users instead of the other way round. This entails a fair amount of 
experimentation until a proper environment configuration is achieved. 

Software engineering meta-environments are expected to be an adequate solution 
to many of the problems described in the previous sections. Meta-environments are 
composed of a collection of meta-tools for creating, maintaining, assembling and fine-
tuning specialized environments that are adequate considering the five domains 
identified in the Introduction. However, such meta-environments must support target 
system evolution; otherwise they will not solve long lived software’s essential 
problem. In addition, since much has still to be learned, such a meta-environment 
should also support experimentation with new tools and representation languages. 
Ideally the learning curve needed to learn and effectively use the meta-environment 
should be short and shallow in order to encourage its use while developing or 
maintaining software, or while experimenting with new software tools or processes.  
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4.1  System architecture 
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Figure 10. Talisman version 5 overall system architecture. 

Figure 10 depicts Talisman’s system architecture. The meta-environment engine is 
controlled by two special purpose data bases: the Parameter base and the Definition base. 
Essentially the meta-environment engine is capable of interpreting a plethora of 
specifications that instantiate the available meta-tools, where these specifications are 
contained in the parameter and definition bases. To assure better response times for 
the user, these two bases must be in an interpretable format.  

The parameter base contains engine specific descriptions, which are invariant for all 
instances of a same version of the meta-environment engine. It defines all frozen 
elements that govern the functionality of the Talisman system. Examples of these 
elements are: the meta-schemata of the definition base and of the software base. Other 
examples are static symbol tables that define symbols such as: user interfaces, 
messages and representation language symbols. The parameter base may have to be 
redefined whenever the engine evolves. 

Every Environment instance is defined by a set of Definition bases. Typical data 
contained in the definition bases are interpretable (binary) definitions of representation 
language, editors, verifiers, transformers, generators and other development tools. An 
environment instance contains one or more Environment workstations. Each of these 
workstations is driven by its own definition base. Furthermore, it is used by an 
Environment user and should be configured for the needs of the role this user plays 
while developing or maintaining artifacts. 
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A special kind of definition base is the Meta-definition base. This definition base 
enables the Talisman engine to create and maintain the Environment base, which 
contains all tool and representation language descriptions in an editable format. In fact 
the meta-definition base is just a normal definition base that instantiates the meta-
environment engine to edit the environment base.  

The Environment builder uses the meta-environment instance containing the 
interpretable definitions of meta-environment representation languages and meta-
environment tools that are needed to create, edit and verify the contents of the 
environment base. Notice that this architecture allows creating and maintaining the 
meta-definition base using the same meta-environment engine as the one used to 
develop target systems. After an initial bootstrap development, this architecture 
allows maintaining the meta-definition base using the Talisman system itself. 

Using the Instance builder tool, the Software process designer selects the representation 
languages, tools and possibly workflows that should be used while developing or 
maintaining specific software. This selection is necessary since the environment base 
contains all available language and tool descriptions, where some of them may be 
mutually exclusive when considering a specific environment. While performing the 
selection, the coherence of this selection must be verified. The instance builder 
typically transforms the symbolic descriptions contained in the environment base to 
engine interpretable descriptions contained in the definition base. The result of the 
instance builder is a set of one or more definition bases. Several definition bases are 
generated if the software process designer wishes to create different environment 
workstations, one for each environment user. The instance builder is in fact part of the 
bootstrap support enhanced with some meta-environment tools and representation 
languages. 

The collection of definition bases establish a specific Environment instance that is 
geared towards the actual environment users and supports the development of target 
systems in some specific application domain, using specific technology and 
environment domains for its development and maintenance. The collection of 
definition bases describe all the representation languages specifications (rendering, 
user interfaces, syntax and semantics) and tools (verifiers, transformers, code 
composers, measurement tools among others) to be used while developing or 
maintaining a target system. 

Several different environments instances may be assembled. For example, one 
might want to create a specific environment for developing information systems, and 
another one for developing embedded control systems. The criteria used to select the 
components of a specific environment instance from the environment base are 
typically: quality requirements of the target systems to be developed, software 
development standards to be obeyed, technology and application domains of the 
software to be developed, and environment user proficiency. While composing a 
definition base possibly new development knowledge is acquired. Similarly, while 
adapting the environment to its users knowledge may be acquired too. Both cases lead 
to the need of updating the environment base. 

The Global metrics base contains all measurement data about all projects developed. 
The measurements are collected by each of the environment stations and then 
integrated into the global metrics base. This base gathers information that can be used 
to enhance the environment tools, languages and workflows.  
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4.2  Environment instance 
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Figure 11. Interfaces of an environment instance 

Using an environment instance one or more Environment users cooperatively create 
and maintain Target systems, see figure 11. The facts of these systems are kept in a 
Repository, which consists of a collection of interconnected software bases. Whenever 
desired environment users may export files to be used by other tools (e.g. code to be 
compiled) or import files generated by other tools (e.g. XML or XMI files). Imported 
files are decomposed and saved in a software base.  

The development of target systems is performed by populating and maintaining 
the repository. The structure of the repository is controlled by the definition and the 
parameter bases. On the environment administrator’s discretion, software bases may 
contain all facts about all target systems of the enterprise, or may contain facts about 
one or few of these target systems, or even of a part thereof. 

One of Talisman’s aims is to provide interoperating interfaces with existing tools. In 
particular, Talisman should support development, maintenance and quality control 
right down to code and documentation. Thus, environment instances must be capable 
of exporting source code to foreign tools. Examples of exported files are source code 
files directed towards some language processor, model or code verifier, and target 
system source documentation files directed towards some text formatter.  

Conversely, other tools might be used to create and maintain facts about target 
artifacts and, hence, their output must be imported by the environment instance. For 
example it may be interesting to import the list of compile errors and bind them to 
facts contained in the software base. Thus, Talisman could act as a front-end of several 
other tools. Foreign tools may interface with the environment by means of sequential 
files, e.g. some XML file. These files typically adhere to a syntax dictated by the 
foreign tool. Talisman provides pattern matching tools that help building interactive 
interfaces. These interfaces are implemented by means of form programs. As an 
example consider the case of cross code generation and compiling. Here the 
environment is used on a given development platform to produce code which will run 
on some different target platform. The target system could run in a virtual machine 
sharing files with the base machine. Typically the language processors and test 
support tools will reside on the target platform. In many cases, especially when not 
using virtual machines, it is cumbersome to continually transfer files between different 
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platforms. Due to this, programmers will tend to compile and test programs and, 
possibly change the program, in the target platform. However, any changes to the 
generated programs made at the target platform will make the program inconsistent 
with the repository. Thus, unless there is some mechanism to recover changes made 
outside of the environment and insert them back into the repository, the user may 
complain that the environment hampers effective development. 

4.3  Environment workstations 
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Figure 12. Interfaces of an environment workstation 

An environment workstation is a partition of the environment instance used to 
develop and maintain one or more components of a target system. Each environment 
workstation is tailored towards a specific environment user (user role) supporting the 
development activities that this environment user is allowed to perform. Figure 12 
shows the typical interfaces of an environment workstation. 

Every environment workstation is used by an environment user. This person 
explores, adds, changes and deletes target system facts about the target system 
component being developed. These facts are kept in the software bases. Each instance 
allows several tools to be used. However, tools may restrict which facts may be 
changed. The access permissions are contained in the definition base.  

Talisman provides two forms of maintaining definition bases. The first form, as 
described in section 4.1 System architecture, requires updating the environment base 
and then deriving the specific definition base using the instance builder tool. The 
evolution of the environment instance should have a minimal effect on the ongoing 
work. To reduce the risk of loss of work this tool provides version and configuration 
control of the environment itself. This form is needed for creating a new representation 
language, or when architectural changes are required in some existing language. 

The second form of changing the definition base is to allow the environment user to 
fine-tune the environment instance to her/his particular needs. These changes must 
not modify representation language schemas, or even software base schemas. They 
may modify the way artifacts and representations are composed and rendered. 
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While the environment workstation is being used, several process metrics and artifact 
metrics may be gathered, such as number of objects created, changed and deleted, 
usage of tools and error counts while using tools. Other metrics may be extracted from 
the repository, such as number of hyper-objects per hyper-class, existence and size of 
selected attributes. All these metrics can be used to improve the processes and tools 
used by the environment workstation. They can also be used to point out possible 
design or implementation anomalies (bad smells) [Macía, 2009].  

4.4  Language category meta-editor interaction 
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Figure 13. The structure and components of Talisman 

Figure 13 shows some of the language categories supported and how the 
corresponding meta-editors interact. As already mentioned, the set of meta-editors is 
open-ended. However, each time a new meta-editor is added, the programs which 
compose the Talisman engine must be changed and possibly the storage schemas of 
the repository and of the definition base will have to be changed too.  

In the sequel we will briefly describe these meta-editors. The meta-editors shown 
are: a dialog meta-editor for designing human interfaces; a diagram meta-editor for 
graphical representations; structure meta-editor for hierarchical representations such 
as structure charts; and a composite text meta-editor for textual representations. The 
parameter and the definition bases specialize these meta-editors for specific 
representation languages.  

The dictionary editor is a specialized processor capable of browsing all hyper-class 
directories. It triggers actions on a selection of hyper-objects. As discussed before, 
representations are always reconstructed from a focal hyper-object, a language 
category identification, a language family identification, a form program and an 
action. For example, the dictionary editor may be used to generate code using the 
structured programming language family. In this case, the composite text meta-editor 
is selected, the code generating rule set corresponding to the programming language 
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is chosen, and the code is generated for each of the selected objects. If the target of the 
editor is a viewport, the user may edit all text fragments of the generated code which 
have been fetched from the repository. Otherwise, if the target of the editor is a file, 
the code will be written out onto this file and may then be submitted to a compiler. 

Each representation language operates on some level of abstraction such as the 
system, module or code level and establishes an interpretation for its assembled 
collection of repository facts. For example, the interpretation could encompass 
activities such as functional modeling, user interface modeling, data modeling, and 
test data definition. 

The storage schema of the repository depends on the representation language 
categories which the meta-environment is capable of supporting. Thus, if a new 
category is implemented, possibly the storage schema must be adapted in order to 
facilitate composition and decomposition of representations written in languages of 
this new class. It is expected that this kind of evolution is not frequent. 

4.5  Meta-editors 
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igure 14. Meta-editor architecture 

Each concrete representation is edited by some meta-editor instantiated for this 
representation. All these meta-editors satisfy the generic architecture shown in figure 
14. The behavioral model contains both concrete and abstract representations. The user 
operates on the concrete representation, which is rendered from the corresponding 
abstract representation through a set of formatting rules. While editing the user 
interacts with the concrete representation changing the underlying abstract 
representation.  

The abstract representation is similar to a syntax graph of the representation. This 
syntax graph contains tags identifying all attributes brought in from the repository, 
tags defining access rights, structure tags and formatting tags. The first two groups of 
tags define the structure of the representation at the repository attribute level, whereas 
the third and fourth groups of tags contain data for the rendering rules. The 
representation language is used to define how to format and display the abstract 
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representation. This may be achieved by means of a style sheet, where this style sheet 
is part of the representation language definition. 

The repository schema provides a definition of the organization of the data 
elements in the repository. The data elements are stored in or retrieved from the 
repository using this schema. When a representation is to be rendered the processing 
layer fetches chunks of data from the repository and assembles them forming the 
abstract representation, which is stored in the workspace base. When the abstract 
representation should be saved the processing layer disassembles the abstract 
representation and saves its elements in the repository. While editing context 
independent verification rules are applied as described in section 3.9 Quality assurance. 

For each language category a specific set of program components has to be 
developed. The formatter renders and displays the concrete representation 
corresponding to the contents of the abstract representation. The editor receives user 
commands and modifies accordingly the contents of the abstract representation. The 
verifier verifies the correctness of the changes made on the abstract representation. As 
already seen, context insensitive actions may be validated before changing the 
contents of the abstract representation or before committing the abstract 
representation to the repository. In this way the abstract representation acts as a data 
gathering device, where these data will be used by a repository updating transaction 
whenever the abstract representation is saved.  

There is a need to translate between the organization of the repository and the 
abstract representations with which the editor interacts. The assemble and disassemble 
components translate the organization of the data contained in the repository to the 
organization required by the abstract representation and back. 

These five components are meta-components and provide means to edit and 
browse all representation languages of a given representation language category. 
While generating the specific environment, the representation language definitions are 
converted into a set of rules. These rules are represented as ellipses in figure 14. The 
formatting, editing and validation rules connect the abstract representation to the 
concrete representation manipulated by the user, whereas the assembly and 
disassembly rules define how to convert the contents of the repository to the abstract 
representation and back. There is a set of rules for every representation language. 
Experience with Talisman 4.4 has shown that writing a wholly new representation 
language can be accomplished in a couple of days or less. It has also been shown that 
it is worthwhile to invest few hours specializing tools for a given project. 

4.6  Definition base and software base interaction 

Figure 15 shows a fragment of the definition base and software base schemata and 
their interaction while rendering a fragment of a diagram. The parameter base stores 
both definition and software base schemata. The environment engine is tightly bound 
to these definitions; hence any change in the diagram handling component may entail 
a change in these schemata and vice-versa. 
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Figure 15. Definition base and software base schemata interaction 

The definition base defines the hyper-classes and the relations between them. 
Instance classes correspond to instance hyper-objects (sub-objects) which are rendered 
as some box. The rendering rules are kept in the definition base whereas the data is 
kept in the software base. For example, the instance classes (rounded box, rectangle, 
relations) define how the hyper-object instances are to be created (Box 1, Box 2, 
coordinates in the diagram, sizing of the boxes, relationships). Since hyper-object 
instances may correspond to some hyper-object, the instance may also contain a 
relationship to this object (not shown). In this case the name is usually extracted form 
the hyper-object instead of from the instance. Instances may be linked by an edge. The 
link hyper-class defines what hyper-classes may be linked, the aspect of the linking 
line, the set of labels and adornments that may be associated with the link.  

A diagram is stored as a list of references to hyper-object instances, links, labels and 
adornments. When a diagram is to be rendered the view-port where it will be 
rendered and the focal instance must be given. The diagram meta-editor selects the 
instances and links that can be displayed. While rendering it also renders the labels 
and adornments if they can be shown in the viewport. 

4.7  Repository properties 

All Talisman development activities interact with the repository. Developing a system 
corresponds to populating and/or updating this repository. The repository contains 
all facts (hyper-object attributes) about the target systems being developed. It may also 
contain standard facts which have a wider scope than a particular system. For 
example, corporate data models and dictionaries are often defined in order to assure 
integration between different target systems, possibly being developed in different 
environments by different teams. 

Repositories may be acquired from third parties. For example, a corporation 
providing some interactive service for other corporations could distribute repositories 
containing components of this service. This would allow distributing not only the 
source code but also all maintenance support documents and tools. Finally, the 
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repository and tools should encourage generalized reuse. In other words, it is desired 
that the different target systems share large quantities of facts. 

Since Talisman is a meta-environment, the hyper-classes and hyper-object attributes 
may change at any time, as long as the underlying schema is not changed. For 
example, at any time new hyper-object attributes may be established. One of the basic 
characteristics of the data contained in the repository is the large quantity of relations 
between these data. Typical development using several levels of abstraction and view-
points induces several relations that establish how a high abstraction level fact evolves 
until it reaches the corresponding lowest level facts. Obviously it should be possible to 
show this evolution in some specialized representation.  

When developing a new work-product, the local software base starts empty. When 
a legacy system is to be recovered, the local software base may be populated by means 
of a reverse engineering operation, or by accessing data extracted from a foreign 
software base that contains its design and implementation. Another way of integrating 
the contents of software bases is achieved by means of links between objects contained 
in different software bases. In this case no copy operation will be needed. These 
mechanisms allow the integration of all facts about target systems developed or re-
engineered with the support of the environment. 

Talisman uses a proprietary object oriented data base. Such databases seem to be 
more appropriate to CAD/CAE and by extension CASE applications [Nyström, 2004]. 
We could have followed the Object Definition Standard (ODL) [Cattell et all, 2000], 
however departed from it for several reasons, the main one being the existence of a 
large portion of code that would have to be rewritten. 

4.8  Attributes 

The repository contains hyper-objects. Hyper-objects may contain zero or more sub-
objects. Hyper-objects and sub-objects are instances of hyper-classes. Only one sub-
object level is supported. Deeper structures can be achieved using recursive relations, 
such as composition and decomposition. In fact, a sub-object could be viewed as a named 
sub-domain of a given hyper-object's attributes. For example, a diagram (a hyper-
object) contains several attributes for each of the items (boxes, links, labels, 
adornments) that compose this diagram. Each of these items corresponds to a sub-
object. However, sub-objects may refer to the hyper-objects that are instantiated in the 
diagram. For example, in an UML class diagram boxes (sub-objects) refer to the 
classes (hyper-objects) that contain the facts (e.g. specifications, interfaces, 
attributes, methods) of these classes. Conversely, each class type hyper-object 
should refer to all places where it appears as a sub-object in some diagram. This latter 
relation allows navigating from any occurrence of a class to any other occurrence. 
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Figure 16. Attribute categories 

Each hyper-object and sub-object contains several attributes. Each attribute belongs 
to an attribute category, see figure 16. Examples of attribute types are: “name”, “simple 
text”, “string”, “binary relation”, and “link”. Attributes can be unlimited large, e.g. a 
text attribute. Within each category, a virtually unrestricted set of attributes can be 
defined for each hyper-object. Each attribute has its own access key. From a strict 
object oriented language view, attributes correspond to objects and attribute categories 
correspond to classes. Hyper-class descriptors are hyper-objects too, but are kept in 
the definition base instead of in the software base. 

Hyper-object attributes are fine grained. Coarse grained objects such as diagrams, 
program code, or other representations are usually composed from a large quantity of 
fine grained attributes and are recomposed every time they are required by extracting 
attributes contained in the repository as discussed in section 3.6 Navigating over 
representations. In fact a diagram is a hyper-object that contains several sub-objects, 
each of which referring to another hyper-object.  

A dictionary-class is a special type of hyper-class. It contains the set of all 
dictionaries. A dictionary is an attribute of this class. Dictionaries contain an 
alphabetized list of hyper-object names, where these hyper-objects are instances of the 
hyper-class corresponding to the dictionary. Each hyper-class may refer to several 
dictionaries. This allows a hyper-object to own several names (aliases), each of which 
aiming at a specific use. For example a method name may be a string containing 
several words in some natural language, as well as code names used in a given 
programming language. The latter can be used by editors to mark up code text 
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allowing navigation from the text fragment to the hyper-object corresponding to the 
method name found in the code.  

Another special attribute is a table descriptor. A table is similar to a Pascal record or a 
SQL table definition. A table contains one or more fields. Field descriptors have a 
name (e.g. column name in SQL) and a type identifier. Examples of field types are 
integers, floating point numbers, date, time and fixed size strings.  

Hyper-objects contain also attributes that are system defined and are kept in object 
descriptors. Among them are data that define properties of the hyper-object. Examples 
of such properties are the type identifier of the hyper-object, and coordinates and size 
parameters of a graphical sub-object of a diagram. Object descriptors may also contain 
system defined relations, as for example the list of sub-objects that refer to a given 
hyper-object. 

4.9  Relations  

Each hyper-object or sub-object6 may contain several relations to other hyper-objects 
or to itself. Relations are attributes that link the owning hyper-object to zero or more 
other hyper-objects. They may link hyper-objects that are part of different 
representation languages. There may be several relations involving the same two 
hyper-objects. For example, consider the work break down structure 
representation. Here an activity decomposes into several other activities, but 
it also depends on the completion of other activities.  

Relations may require specific information for each of its relationships. For 
example, consider the method of a class relation. Here it may be necessary to 
discriminate whether this method is public or private with regard to the 
corresponding class. However, the same method may be related to more than one 
class each defining visibility in a different way. Thus visibility is not a property of the 
method itself, but is a property bound to the method of a class relationship. 

Talisman implements inheritance using relations (inherits_from and is_inherited_by). 
Similarly composition and decomposition are relations as are contains and is_contained. 

Mark-up texts are text containing formatting information (small subset of HTML). A 
Relational text is a mark-up text that contains references to hyper-objects. These 
references refer to attributes of other hyper-objects that should be gathered when 
rendering a representation containing the relational text. For example in a program 
code instead of inserting literal method names one could insert a reference to the 
hyper-object describing the method. When rendering the program code the reference 
can be substituted by the appropriate code name of the method, and which can be 
chosen depending on the programming language used. Furthermore, since the text 
contains a link to a hyper-object, this link may be used to navigate to other 
representations using the referred hyper-object as focus.  

A collection refers to the hyper-object attributes refer to several hyper-objects of a 
variety of hyper-classes. Collections may be specialized to stacks, queues, lists, sets and 
bags. A link is a graphical relation between graphical elements of a diagram. Links are 
always binary. In diagrams where links may interconnect more than two elements, a 
special element connector_node must be defined. 

                                                   
6  To reduce text repetition we will use the term hyper-object to denote both hyper-objects 
and sub-objects. 
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An abstract syntax graph is a directed graph that describes the syntax structure of 
some text (usually a code fragment). Nodes of an abstract syntax graph (ASG) may refer 
to hyper-objects or to strings in a symbol table associated with the ASG. The 
procedure used to compute the ASG is contained in the definition base. 

4.10  Multi-base 
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Figure 17. Logical partitioning of repositories 

Talisman's repository is a collection of interdependent software bases, where these 
software bases may be distributed over a network, see figure 17. Hyper-objects in one 
individual software base may relate to hyper-objects contained in another software 
base. For every remote hyper-object a local indirect object must exist. Such objects 
establish the link with the remote object. Since all relations contain an inverse, also 
indirect objects will be referred to by the remote object. 

The partitioning of the overall repository into the set of software bases is arbitrary. 
This multi-repository structure allows using semantical (e.g. financial aspects, 
personnel aspects), or abstraction-level (e.g. requirements specification, architecture, 
code, test), or other criteria to define the partitioning. It allows also partitioning the 
repository with respect to the organization that maintains it, as shown in figure 17. 
This allows sharing of software bases across organization boundaries and, hence, 
provides means to establish verbatim reuse even when several organizations 
collaborate for the development or maintenance of a target system.  
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4.11  Shared software bases 
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Figure 18. Composing an environment from several instances 

As illustrated in Figure 18, every environment instance may interact with shared public 
software bases as well as with several local (not shared) software bases. Public software 
bases are always read only.  

Private software bases allow locking of hyper-objects or attributes. For example, 
when developing a target system that uses a specific library, the symbolic interface 
definition of this library could be included in the software base. Obviously these 
definitions may not be changed; otherwise it would be impossible to assure correct 
interfacing between target systems code and the pre-compiled library.  

When editing a representation, public objects may have to be updated. For 
example, when establishing a reuse link, the reused object must be updated in order to 
identify all places where it is used. When a public repository needs to be updated, it 
may either be checked out or a differential software base may be created. Checking out 
the software base entails assigning it to the user who will update it, while this 
updating is in progress no other user may access the software base. Since 
development transactions might turn out to be quite long (days), checking out is often 
felt as a hindrance to work progress.  

The differential software base contains all changes to be made to a public software 
base. When the artifact being developed has been accepted, the differential software 
base can be integrated with the public repository. This integration creates a new 
version for each of the modified attributes and also adjusts the version references 
contained in the private software base. If several users update simultaneously the 
same public software base, conflicts may arise. Talisman's integration tool will provide 
mechanisms to help users to resolve these conflicts by negotiation. 

4.12  Repository integrity  

The repository is a very critical component of a computer aided software development 
environment. If it gets damaged, months of work may be lost, even if a backup 
procedure is in place. Hence, tools must be provided that are capable of verifying and 
reconstructing a valid repository if its structure is corrupted. These tools must be 
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capable of reconstructing the repository using available meta-data in the definition 
base, as well as static meta-data available in the parameter base. 

All data structures, both memory resident and persistent, should satisfy robustness 
criteria [Taylor et al, 1980; Taylor and Seger, 1986; Staa, 2000; Demsky and Rinard, 
2003]. To allow verification and recovery with little loss, selective redundancy will be 
included in the schemata and models, as well as in the code. Furthermore, multi-
threaded structure verifiers should be available. These verifiers should be capable of 
operating while the work station is being used. Whenever they detect a failure, 
execution should be interrupted in such a way as to prevent persistent data 
corruption. 
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5  Concluding remarks 

In this report, we presented an overview of the functionality of the Talisman software 
engineering meta-environment. A prototype, Talisman version 4.4, already exists and 
has been in use for more than 15 years. This prototype and a plethora of available 
papers have allowed us to identify new requirements as well as establish several 
design issues. 

Talisman version 5 is being designed and implemented using Talisman version 4.4. 
Once a bootstrap version of the new system is available, the development will 
continue using Talisman version 5 itself. We hope that this approach will allow us to 
iron out several specification and architectural defects, leading to a better initial 
version.  

For the purpose of developing Talisman version 5 several new tools have been 
added to the Talisman 4.4 environment using its meta-environment capabilities. 
Furthermore, an automated testing environment has been created. In this way we are 
not only developing Talisman, but are also using this development effort to assess the 
stated requirements for tools and representation languages, which are ultimately to be 
satisfied by Talisman.  
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