

81

5
Conclusion

The presence of architecturally relevant code anomalies often leads to the

decline of the software architecture quality. Unfortunately, the removal of those

critical anomalies is not prioritized properly. This happens mainly because

existing techniques and tools are not devised to support the prioritization of

architecturally relevant code anomalies. Even worse, there is not much empirical

knowledge towards the factors that could be used to facilitate the prioritization of

code anomalies. In fact, we have observed that developers tend to restructure the

source code prioritizing the anomalies that do not affect the architecture design.

In this context, our findings have shown that developers can be guided into

prioritizing code anomalies according to architectural relevance. The anomaly

prioritization may help developers to optimize the refactoring process through

software evolution. In next subsections it is described how the contributions of

this dissertation address the aforementioned problem.

5.1.
Dissertation Contributions

This study explores the problem of prioritizing code anomalies based on

their architecture relevance. In this context, we outline our contributions below.

Prioritization heuristics. We proposed four prioritization heuristics for

ranking code anomalies according to their architecture relevance. Those heuristics

were based on four characteristics that might indicate symptoms of architecture

problems. More specifically, they explore the change-proneness, error-proneness,

anomaly density and architecture role for each infected code element in order to

produce prioritization rankings of code anomalies. This contribution addresses our

second research question (RQ2).

 Evaluation of the proposed heuristics from the architects’ point of

view. We also evaluated the prioritization heuristics against rankings provided by

architects, that represented the main maintainability issues for the systems we

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

82

analyzed. This evaluation comprised the comparison between the rankings

produced by the heuristics and the ranking provided by the architects. In most

cases, our heuristics were able to accurately detect a prioritization order that

reflected the most relevant code anomalies, from the perception of the architects.

Under this analysis, the prioritization heuristics were mostly useful when:

(i) there were architecture problems involving groups of classes that

changed together;

(ii) there were architecture problems related to Façades or classes

responsible for communicating with different modules;

(iii) changes were not predominantly perfective, i.e., the majority of the

changes performed on the systems were not refactorings;

(iv) there were code elements infected by multiple code anomalies;

(v) the architecture roles are well defined and have distinct architecture

relevancies.

Therefore, the main contributions of these results to the state-of-art are

providing knowledge on (i) which factors and (ii) to what extent they could help

developers prioritizing code anomalies according the architects’ point of view.

Evaluation of the proposed heuristics with actual architecture

problems. Besides evaluating the proposed heuristics from the point of view of

the architects, we also analyzed whether they were correctly prioritizing code

anomalies related to actual architecture problems. Overall, our results show that

most of the elements ranked by our heuristics belong to the set of architecturally

relevant code anomalies. In particular, the error-proneness heuristic consistently

presented an accuracy of 80% in the worst case. Another successful case is related

to the change-proneness heuristic. According to our analysis, between 70% and

100% of its top 10 elements were related to architecture problems. Therefore,

these results provide evidences that the proposed heuristics could be used to guide

developers towards the prioritization of code anomalies, when performing

architecture revisions based on the source code

Tool support. Another contribution of this work was the implementation of

a tool for applying the prioritization heuristics automatically. Such tool was

developed as an extension for SCOOP (SCOOP, 2012), which is an ongoing

implementation for detection of architecturally relevant code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

83

Finally, there is not much knowledge in the literature about the prioritization

of code anomalies. Our exploratory study represents a first effort to address this

gap. The dissertation presents in detail a systematic study, which evaluates the

usefulness of the prioritization heuristics proposed. We accurately prioritized

architecture relevant code anomalies in different levels, for 4 different software

projects. Our evaluation has shown that this prioritization could help architects

and developers to better invest their refactoring efforts, into removing

architecturally relevant code anomalies.

5.2.
Future Work

The results obtained and the aforementioned contributions represent an

initial effort into investigating the prioritization of code anomalies according to

their architecture relevance. We identify in this section our future plans towards

improving and extending this study.

1. Evaluate different combinations of the proposed heuristics

Although the current implementation of our tool supports the combination

of different heuristics (Section 3.2.2), we did not evaluate the benefits of such

combinations on the prioritization results. In this context, we intend to investigate

whether combining different heuristics improve the accuracy of the resulting

rankings. We also plan to verify whether there are specific combinations that are

always successful, regardless of the systems architecture designs. It would be

interesting to identify which combinations of heuristics, as well as their respective

weights, produce the best results. Finally, it would be also interesting to analyze to

what extent those combinations would enable the prioritization of architecturally

relevant code anomalies in the software project history. The separate use of

certain heuristics, such as the change-proneness and error-proneness heuristics,

might suffer from the problem of identifying critical anomalies too late in the

project history.

2. Discuss results with developers

Our evaluation for the proposed prioritization heuristics used as input

rankings of code anomalies provided by developers, which were compared to the

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

84

ones generated by our prioritization heuristics. As future work, we intend to

discuss those comparisons and their results with the developers, providing and

gathering feedback regarding how accurate they are. This feedback could help us

to identify opportunities for improving our heuristics or even to propose new

ones. More specifically, it would be interesting to analyze whether the generated

rankings include architecturally-relevant code anomalies that developers did not

anticipate.

3. Evaluate the heuristics efficacy

Our results show that the use of prioritization heuristics could help

developers to identify better refactoring candidates, towards solving possible

architecture problems. As future work, we intend to realize supervised studies

with groups of developers, for analyzing whether those heuristics are indeed

helping them to prioritize their refactorings. Our intention is to observe whether

there was an increase in the proportion of refactorings aimed at removing

architecturally relevant code anomalies. It would also be interesting to analyze

whether the prioritization heuristics help increasing developers’ productivity when

identifying the main problems in their code bases. Furthermore, both the

heuristics and their implementation could be evaluated against real development

scenarios.

4. Improve the implementation of the heuristics

The main focus of this study was proposing and evaluating prioritization

heuristics. Although tool support for applying them automatically was an

important contribution, there are still many possible improvements to the current

implementation. First, we intend to provide more flexibility to the definition of

architecture roles and the code elements that implement them, as required by the

architecture role heuristic (Section 3.1.4). Second, we intend to improve the

graphic interface and usability of our tool. More specifically, we plan to improve

the visualization mechanisms for presenting the prioritization results, allowing

developers to easily switch between the heuristics results. Finally, we intend to

improve the error-proneness heuristic mechanism, integrating it to issue tracking

systems APIs.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

