PUC-RIo - Certificacdo Digital N° 1021808/CA

81

5
Conclusion

The presence of architecturally relevant code atiemaften leads to the
decline of the software architecture quality. Uhioately, the removal of those
critical anomalies is not prioritized properly. $hhappens mainly because
existing techniques and tools are not devised fpat the prioritization of
architecturally relevant code anomalies. Even waisere is not much empirical
knowledge towards the factors that could be usdddititate the prioritization of
code anomalies. In fact, we have observed thatlojeses tend to restructure the
source code prioritizing the anomalies that doatffact the architecture design.

In this context, our findings have shown that depels can be guided into
prioritizing code anomalies according to architestuelevance. The anomaly
prioritization may help developers to optimize ttefactoring process through
software evolution. In next subsections it is désd how the contributions of

this dissertation address the aforementioned pmoble

5.1.
Dissertation Contributions

This study explores the problem of prioritizing eodnomalies based on
their architecture relevance. In this context, w#ine our contributions below.

Prioritization heuristics. We proposed four prioritization heuristics for
ranking code anomalies according to their architectelevance. Those heuristics
were based on four characteristics that might etdicymptoms of architecture
problems. More specifically, they explore the chewpgoneness, error-proneness,
anomaly density and architecture role for eachctef#® code element in order to
produce prioritization rankings of code anomalilsis contribution addresses our
second research question (RQ2).

Evaluation of the proposed heuristics from the archects’ point of
view. We also evaluated the prioritization heuristicsiasfarankings provided by
architects, that represented the main maintaitpbssues for the systems we

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

82

analyzed. This evaluation comprised the comparibetween the rankings
produced by the heuristics and the ranking providgdhe architects. In most
cases, our heuristics were able to accurately tetegrioritization order that
reflected the most relevant code anomalies, froenpitrception of the architects.
Under this analysis, the prioritization heuristiesre mostly useful when:
(1) there were architecture problems involving groupglasses that
changed together;
(i) there were architecture problems related to Facadeslasses
responsible for communicating with different modyle
(i) changes were not predominantly perfective, i.e nfajority of the

changes performed on the systems were not refag&ri

(iv) there were code elements infected by multiple @ouenalies;
v) the architecture roles are well defined and hagemdit architecture
relevancies.

Therefore, the main contributions of these restdtshe state-of-art are
providing knowledge on (i) which factors and (ib) what extent they could help

developers prioritizing code anomalies accordiregatchitects’ point of view.

Evaluation of the proposed heuristics with actual echitecture
problems. Besides evaluating the proposed heuristics frompttiet of view of
the architects, we also analyzed whether they wereectly prioritizing code
anomalies related to actual architecture probleéihverall, our results show that
most of the elements ranked by our heuristics lgetorthe set of architecturally
relevant code anomalies. In particular, gneor-proneness heuristic consistently
presented an accuracy of 80% in the worst caseth&nguccessful case is related
to the change-proneness heuristic. According to our analysis, between 70% and
100% of its top 10 elements were related to archite problems. Therefore,
these results provide evidences that the proposedstics could be used to guide
developers towards the prioritization of code an@sa when performing
architecture revisions based on the source code

Tool support. Another contribution of this work was the implemnegidn of
a tool for applying the prioritization heuristicuitamatically. Such tool was
developed as an extension for SCOOP (SCOOP, 20d#gh is an ongoing
implementation for detection of architecturallyensint code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

83

Finally, there is not much knowledge in the literatabout the prioritization
of code anomalies. Our exploratory study represarfisst effort to address this
gap. The dissertation presents in detail a sysiemsaidy, which evaluates the
usefulness of the prioritization heuristics prombs&/e accurately prioritized
architecture relevant code anomalies in differenels, for 4 different software
projects. Our evaluation has shown that this graaiion could help architects
and developers to better invest their refactorinifores, into removing

architecturally relevant code anomalies.

5.2.
Future Work

The results obtained and the aforementioned catioibs represent an
initial effort into investigating the prioritizattoof code anomalies according to
their architecture relevance. We identify in thextson our future plans towards
improving and extending this study.

1. Evaluate different combinations of the proposed heuristics

Although the current implementation of our tool pags the combination
of different heuristics (Section 3.2.2), we did maluate the benefits of such
combinations on the prioritization results. In thantext, we intend to investigate
whether combining different heuristics improve thecuracy of the resulting
rankings. We also plan to verify whether there syecific combinations that are
always successful, regardless of the systems acothie designs. It would be
interesting to identify which combinations of hestigs, as well as their respective
weights, produce the best results. Finally, it widog also interesting to analyze to
what extent those combinations would enable therifidation of architecturally
relevant code anomalies in the software projectohjs The separate use of
certain heuristics, such as the change-pronened<mar-proneness heuristics,
might suffer from the problem of identifying criit anomalies too late in the
project history.

2. Discussresults with developers

Our evaluation for the proposed prioritization hstics used as input

rankings of code anomalies provided by developghsch were compared to the

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

84

ones generated by our prioritization heuristics. fAgire work, we intend to
discuss those comparisons and their results wehdwelopers, providing and
gathering feedback regarding how accurate theyTdmes. feedback could help us
to identify opportunities for improving our heurcs or even to propose new
ones. More specifically, it would be interestingaimalyze whether the generated
rankings include architecturally-relevant code aabes that developers did not
anticipate.
3. Evaluate the heuristics efficacy

Our results show that the use of prioritization retics could help
developers to identify better refactoring candidat®wards solving possible
architecture problems. As future work, we intendréalize supervised studies
with groups of developers, for analyzing whetheosth heuristics are indeed
helping them to prioritize their refactorings. Qatention is to observe whether
there was an increase in the proportion of refawgsr aimed at removing
architecturally relevant code anomalies. It woulsbabe interesting to analyze
whether the prioritization heuristics help incregstlevelopers’ productivity when
identifying the main problems in their code basésirthermore, both the
heuristics and their implementation could be eualdiagainst real development
scenarios.

4. Improve the implementation of the heuristics

The main focus of this study was proposing and uatalg prioritization
heuristics. Although tool support for applying theautomatically was an
important contribution, there are still many possiimprovements to the current
implementation. First, we intend to provide morexibility to the definition of
architecture roles and the code elements that mmgié them, as required by the
architecture role heuristic (Section 3.1.4). Second, we intend to improve the
graphic interface and usability of our tool. Mogesifically, we plan to improve
the visualization mechanisms for presenting therjization results, allowing
developers to easily switch between the heuristssilts. Finally, we intend to
improve theerror-proneness heuristic mechanism, integrating it to issue tracking
systems APIs.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

