

51

4
Evaluation

Chapter 3 detailed our heuristics for supporting the prioritization of code

anomalies according to their relevance to a system architecture. Those heuristics

were based on the assumption that by analyzing specific characteristics of a

software project, it is possible to identify and rank architecturally relevant code

anomalies. Such ranking could then help developers prioritize their refactorings

while aiming to solve deeper maintainability problems, i.e. architecture design

problems.

In order to verify whether those heuristics were indeed useful for ranking

code anomalies, we conducted an empirical study, guided by the following

questions:

1) Is it possible to accurately rank code anomalies based on their

architecture relevance?

2) Which characteristics help accurately ranking code anomalies based on

their architecture relevance?

Given that this is a first study in the field of ranking code anomalies, our

evaluation is of exploratory nature (KITCHENHAM et al., 2002) and focused on

a detailed analysis of four software projects. In order to make the purpose of our

evaluation clearer, we have defined a set of hypotheses (Section 4.2.1). However,

it was not our goal to rely on a large data set and carry out statistical tests over this

set. In other words, our aim here was to perform a first identification and

evaluation of project factors that are likely to be useful to rank architecturally

relevant code anomalies. Our evaluation is intended to derive some lessons

learned related to the usefulness of these project factors. These lessons will

provide insights for the conception of more specific hypotheses that need to be

rigorously tested in further studies.

This chapter presents the evaluation of the prioritization heuristics. Section

4.1 describes the selection criteria and the characteristics of four target

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

52

applications we used for evaluating the prioritization heuristics. Section 4.2

describes our study setting, including our hypotheses, procedures and analysis

methods. We discuss our results for each prioritization heuristic in Section 4.3.

Finally, we present the threats to our study validity in Section 4.4.

4.1.
Selection Criteria and Target Applications

In order to be feasible for the evaluation of the prioritization heuristics, the

selected target applications had to adhere to a series of characteristics.

First, either the architecture specification or the original developers and

architects had to be available. By analyzing such specification, or consulting the

developers and architects, we are able to verify whether the ranked code

anomalies are indeed architecturally relevant. It also helps us to better analyze the

architecture roles played by each code element. Such information is essential to

the application of the architecture role heuristic (Section 3.1.4), which directly

depends on architecture information to compute the ranking of code anomalies.

Second, the source version control systems of the selected applications

should be available, in order to enable the application of the change-proneness

heuristic (Section 3.1.1). In fact, the selected systems should also ideally present a

high number of changes (or revisions) through their evolutions.

Third, an available issue tracking system, although not mandatory, was

highly recommendable for providing input to the error-proneness heuristic. As

explained on Section 3.4.1.2, however, such heuristic might also use information

from commit messages for inferring bug fixes revisions. However, in this case,

the source version control system should not only be available, as required by our

second criterion, but also contain templates for well-formatted commit messages.

Such templates are essential for the retrieval of information regarding bug fixes

and their corresponding code elements.

Finally, the applications should present different design and implementation

structures. Such restriction helps us to better understand the impact of the

proposed heuristics for diverse sets of code anomalies, emerging on different

architecture designs. Moreover, it minimizes the possibility of bias for the results

of a particular architecture design.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

53

Based on these criteria, we selected the last versions of 4 software projects

from different application domains: HealthWatcher (GREENWOOD et al., 2007),

MobileMedia (FIGUEIREDO et al., 2008), MIDAS (MALEK et al., 2007) and

PDP – an acronym for an industry application, privately held by an entertainment

company. The table below summarizes the main characteristics of the selected

software projects.

Table 1 – Characteristics of target software projects

 MIDAS HW MM PDP

Application
Type

Middleware Web
application

Software
Product Line

Web
application

Programming
Language

C++ Java/AspectJ Java/AspectJ C#

Architectural
Design

Layers MVC Layers
PC &
Layers

of CE 21 137 82 97
of AE 9 19 24 15
KLOC 72 46 51 22
of CA 178 273 176 175
of AP 29 112 90 28
of
Revisions

1 10 10 409

HW – HealthWatcher, MM – MobileMedia, CE – code elements, AE –
architecture elements (modules and interfaces), CA – code anomalies, PC – Page
Controller, AP – Architecture Problems

HealthWatcher (HW) is a web software system used for registering

complaints about health issues in public institutions. Mobile Media (MM) is a

software product line that manages different types of media on mobile devices.

MIDAS is a lightweight middleware for distributed sensor applications (GARCIA

et al., 2009). PDP is a web application for managing scenographic sets in

television productions. These projects were previously analyzed in studies of

architectural degradation and refactoring (GARCIA et al., 2009; DANTAS et al.,

2011; MACIA et al., 2012b). Therefore, part of the needed information for

performing our evaluation had already been previously collected, without

introducing bias with respect to our specific research questions. More specifically,

the code anomalies for all of these systems had already been collected in a

previous study (MACIA et al., 2012b), in the context of this dissertation. The

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

54

detected code anomalies were also classified regarding their architectural

relevance in the aforementioned study.

It is important to mention the difficulty in finding software projects that

adhered to all of the defined selection criteria. In fact, such difficulty led us to

choose projects that only contained a subset of the characteristics we needed for

evaluating all of the prioritization heuristics. For example, the MIDAS project

was not suitable for the change-proneness heuristic, as only one revision of it was

available. However, as we had already studied its architecture problems and

detected its code anomalies for previous studies, it was reasonable to consider it

when analyzing the architecture role (Section 3.1.4) and anomalies density

(Section 3.1.3) heuristics.

4.2.
Study Setting

Our study aims at analyzing whether the proposed set of heuristics might

help developers to identify architecturally relevant code anomalies that should be

prioritized. It is expected that the use of the proposed heuristics will help

developers to early detect architecture problems reified in the implementation, so

that architecture degradation can be avoided. Our analysis is carried out in terms

of the accuracy (Section 4.2.1) of the prioritization heuristics towards ranking

code anomalies correctly. Following the recommendation from Wohlin et al

(2000), we defined our study and its goals using the GQM format, as follows:

Analyze: the proposed set of prioritization heuristics

For the purpose of: understanding their accuracy for ranking code

anomalies based on their architecture relevance

With respect to: rankings previously defined by developers or

maintainers of each analyzed system

From the viewpoint of: the researcher

In the context of: 4 software systems from different domains and with

different architectural and implementation detailed designs

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

55

The study was conducted in three phases: first, as a prioritization approach

for ranking code anomalies, we needed to detect and classify those anomalies

regarding their architecture relevance, in each of the target systems (Section

4.2.3.1). Second, we computed the scores for each detected code anomaly,

according to the heuristic under analysis, producing a resulting ordered list

(Section 4.2.3.4). In the third phase, we compared the heuristics results with

rankings previously defined by developers or maintainers of each analyzed

system, calculating their similarities (Section 4.2.4). Those rankings provided by

developers represent the “ground truth” data in our analysis.

4.2.1.
Hypotheses

In order to evaluate the accuracy of the proposed heuristics for ranking code

anomalies based on their architecture relevance, we first established thresholds of

acceptable accuracy. Such thresholds, in this study, were defined in three different

levels:

0%-40% - low accuracy

40%-80% - acceptable accuracy

80%-100% - high accuracy

We chose to analyze those three levels of ranking accuracy for analyzing to

what extent the prioritization heuristics might be helpful – qualifying the results in

three possible ranges. For example, an accuracy level of 50% means the rankings

produced by the proposed heuristics should be able to identify at least half of the

most architecturally relevant code anomalies outlined by the developers, in the

right order of priority. We performed our analysis over top ten rankings, as

explained on Section 4.2.4.

In this context, we defined the following null hypotheses:

H10. The change-proneness heuristic cannot accurately identify

architecturally relevant code anomalies ranked as top ten

H20. The error-proneness heuristic cannot accurately identify

architecturally relevant code anomalies ranked as top ten

H30. The anomaly density heuristic cannot accurately identify

architecturally relevant code anomalies ranked as top ten

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

56

H40. The architecture role heuristic cannot accurately identify

architecturally relevant code anomalies ranked as top ten

We also defined the following alternative hypotheses:

H1A. The change-proneness heuristic can accurately identify architecturally

relevant code anomalies ranked as top ten

H2A. The error-proneness heuristic can accurately identify architecturally

relevant code anomalies ranked as top ten

H3A. The anomaly density heuristic can accurately identify architecturally

relevant code anomalies ranked as top ten

H4A. The architecture role heuristic can accurately identify architecturally

relevant code anomalies ranked as top ten

In the context of the hypotheses defined above, accurately means that the

heuristic was able to identify architecturally relevant code anomalies with, at least,

acceptable accuracy. Therefore, the accuracy level should reach 40% or more.

4.2.2.
Variable Selection

In order to test our hypotheses, we have defined the following dependent

and independent variables.

Independent variables. There are five independent variables in this study:

the rankings produced by each of the prioritization heuristics and the ranking that

represents the ground truth. Those rankings are lists of code anomalies, ordered by

their respective scores. The ranking representing the ground truth was produced

by the original architects of each system.

Dependent variables. There are as many dependent variables as there are

similarity measures between the rankings produced by the proposed prioritization

heuristics and the rankings representing the ground truth. We selected three

different similarity measures: number of overlaps, Spearman’s Footrule

(DIACONIS et al., 1977) and Fagin’s extension to Speaman’s Footrule (FAGIN

et al., 2003). Those measures are defined in Section 4.2.4.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

57

4.2.3.
Data Collection

The data collection process of our study involved different activities,

including: detecting code anomalies, identifying the rankings representing the

ground truth and collecting the scores for each anomaly under the perspectives of

each prioritization heuristic. These activities are described next.

4.2.3.1.
Detecting Code Anomalies

As a first step, code anomalies were automatically identified using well

known detection strategies and thresholds (KHOM et al., 2009; OLBRICH et al.,

2010). These strategies and thresholds were also similarly applied in other studies

based on the same systems we analyzed (FIGUEIREDO et al., 2008; MACIA et

al., 2012a, 2012b). The analysis and validation of such detection strategies are out

of the scope of this dissertation; nevertheless, they are detailed and discussed by

previous works (MACIA et al., 2012a). The metrics required by detection

strategies were mostly collected with current tools such as: Together

(TOGETHER, 2012), NDepend (NDEPEND, 2012) and Understand

(UNDERSTAND, 2012). These tools are complementary: Together analyzes Java

programs, while NDepend and Understand analyze C++ and C# programs.

As a second step, the list of code anomaly suspects was checked and refined

by the developers and architects. This validation was an important step and

motivated by the fact that strategies presented low accuracy rates when detecting

architecturally relevant code anomalies (MACIA et al., 2012a). By mixing

automatic with manual detection, we aimed at analyzing a more reliable set of

code anomalies.

4.2.3.2.
Rankings Representing the Ground Truth

The ground truth ranking, in the context of this dissertation, is a list of

anomalous elements, ordered by their architecture relevance. For this analysis, we

chose to consider only classes as the analyzed elements. Such ranking was defined

by the architects of the target systems. We analyzed the accuracy of our

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

58

prioritization heuristics by comparing the similarity between the rankings each

heuristic produced with the ground truth ranking.

For collecting the rankings representing the ground truth, we contacted the

architects of the analyzed systems. They were asked to provide an ordered list of

the top 10 classes they believed better represented the main sources of

maintainability problems from the perspective of the architecture of those

systems. We did not provide any specific criteria for guiding them to choose the

most critical classes. In particular, we did not mention any of the factors explored

by the prioritization heuristics (Section 3.1), such as number of changes or faults

per module. Our intention was not influence the results at all towards a better

performance of any of the heuristics.

In some cases, like for the HealthWatcher system, architects claimed it was

not possible to fit only 10 classes into the ranking, as many of them were

considered equally problematic. For this particular case, the ranking representing

the ground truth had 14 elements, and our analyses were performed on 14-sized

rankings.

Besides informing the lists of high priority elements, we also asked

developers and architects to provide information regarding the architecture design

of the analyzed systems. More specifically, we asked for a list of architecture roles

that were present in each analyzed system, as well as their order of relevance from

the architecture perspective. They also provided traces between architecture

elements and code elements, which were essential for computing the architecture

role heuristic. It is worth mentioning that this data was only requested after the

architects had already provided their ground truth rankings, in order to avoid the

influence of the leveraged architecture information against the rankings.

4.2.3.3.
Calculating Scores

The second phase of our study involved the calculation of scores for each

code anomaly, in the context of the proposed heuristics. As the mechanics of each

heuristic are fairly different (Section 3.2.1), we detail below the steps followed for

each of them separately.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

59

Change-proneness heuristic. As explained in Section 3.2.1, the change-

proneness heuristic computes its scores based on the number of changes made to a

given code element. In the context of this study, we computed file changes only,

i.e, different code elements modified within a single file are not distinguished.

In order to correctly compute the scores for this heuristic, we first had to

extract the change log from the version control systems for each of the target

applications. We then processed the resulting log files, counting the number of

times each resource was changed. This extraction was first performed in the root

directory for each system, retrieving all the file changes in a single command.

Once the number of changes was computed, we ordered the list of resources and

their respective number of changes, thus producing our final ranking.

Error-proneness heuristic. For computing the error-proneness heuristic

scores, we used two different techniques: the first one is based on change log

inspection, looking for common terms like bug or fix. Once those terms are found

on commit messages, we increment the scores for the classes involved in that

change. Such technique has been recently applied on many relevant studies

(FISCHER et al., 2003; KIM et al., 2011). However, as we could not rely on it for

all of the analyzed systems – as only the PDP system had high quality and well-

formatted commit messages – we also used a bug detection tool on MobileMedia

and HealthWatcher. As both systems were implemented in Java, we chose the

findBugs tool (AYEWAH et al., 2008) for automatically detecting blocks of code

that could be related to bugs. The fingBugs tool uses static analysis to detect

potential bugs, such as security violations (SQL injection), runtime errors

(dereferencing a null pointer) and logical inconsistencies (a conditional test that

can't possibly be true). Once those possible bugs are identified, we collect the

code elements causing them and increment their scores.

Anomaly density heuristic. Computing the scores for this heuristic was

rather straightforward. In this phase, we verified which code elements

concentrated the highest number of code anomalies. Those anomalies had already

been detected in the first phase of our study, as described on Section 4.2.3.1.

Architecture role heuristic. The architecture role heuristic depends on two

kinds of information, regarding the system’s design: first, which roles each class

plays in the architecture and second, how relevant those roles are towards

architecture maintainability. For example, consider an application following the

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

60

MVC pattern (BUSCHMANN et al., 2007). Code anomalies found on classes that

implement Views might not be considered as relevant as those infecting classes

that implement the Model, as Views are not supposed to implement complex

behaviors or business rules.

For this study setting, when analyzing this heuristic, we first had to leverage

architecture design information in order to map code elements to their architecture

roles, as explained in Section 4.2.3.3. Part of this information extraction had

already been performed in our previous studies (MACIA et al., 2012a, MACIA et

al., 2012b). Then, we asked the architects to assign different levels of importance

to those roles, according to the architecture patterns implemented (e.g., MVC, 3-

layers, Page Controller).

Finally, we defined score levels to each architecture role. For doing so, we

considered the number of roles identified by the architects, and distributed them

according to a fixed interval from 0 to 10. Code anomalies that infected elements

playing critical architecture roles were assigned to the highest score – namely, 10.

On the other hand, when the code anomaly affected elements related to less

critical architecture roles, they would be assigned to lower scores, according to the

number of existing roles and the classification provided by the architects. For

example, in PDP, which implemented the Page Controller pattern, the architects

identified 4 different architecture roles. Hence, the scores for each architecture

role could assume the values 0, 2.5, 5, 7.5 or 10 (as 10/4 is 2.5, which we used as

the default interval). We assigned a 10-value score to anomalies found on

communication classes or interfaces; business classes received a 7.5 scores; and

finally, anomalies found on data classes were given a 2.5 score.

4.2.4.
Analysis Method for Comparing Rankings

In the third and last phase of our study, we compared the rankings produced

by each of the heuristics with those representing the ground truth – provided by

the developers or maintainers of the analyzed systems. We decided to analyze

only the top ten code anomalies ranked, for three main reasons: first, asking

developers to rank an extensive list of anomalies would be unviable and

counterproductive. Second, we wanted to evaluate our prioritization heuristics

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

61

mainly for their abilities to improve refactoring effectiveness – that is, improving

the chances developers will prioritize the removal of relevant code anomalies. In

this context, the top ten code anomalies represent a significant sample of

anomalies that could possibly cause architecture problems. Third, we focused on

analyzing the top 10 anomalies for assessing whether they already represent a

useful subset of architecturally relevant anomalies. Otherwise, the need to look

beyond those top 10 anomalies to find something useful could discourage

developers when using our prioritization heuristics.

For comparing such rankings, we considered three different measures: the

size of the overlap, Spearman’s footrule (DIACONIS et al., 1977) and Fagin’s

extension to the Spearman’s footrule for disjoint lists (FAGIN et al., 2003). The

first and simplest one was the size of the overlap between the two top ten lists. We

chose this measure mainly because (i) it is fairly simple and (ii) it tells us whether

the prioritization heuristics are accurately distinguishing the top k items from the

others. This measure has some disadvantages, as it does not consider permutations

between two lists. For example, lists containing the same elements in different

orders (or with different ranks) would have the same similarity measure,

becoming indistinguishable from lists that present a perfect match.

The second measure we considered was Spearman’s footrule (DIACONIS et

al., 1977), a well-known metric for permutations – or full rankings. It measures

the distance between two ranked lists by computing the differences in the rankings

of each item. That is, given two lists a and b, Spearman’s footrule is defined as

F(a, b) = Σ i ϵ U |a(i) – b(i)|. Therefore, when the lists are identical, Spearman’s

result is 0. The maximum value of F(a,b) is n2/2 when n is even and (n + 1) (n –

1) / 2 when n is odd – where n represents the size of the lists. We chose this

measure mainly because it is a classic, well-known metric on permutations (or full

rankings), along with Kendall tau (KENDALL and GIBBONS, 1990) – a metric

based on the number of permutations needed to turn one list into the other. We did

not measure the Kendall tau distance for our study, as it belongs to the same

equivalence class as Spearman’s footrule (FAGIN et al., 2003).

A clear limitation of Spearman’s footrule is the fact that it cannot be applied

to disjoint rankings; however, in our context, the top 10 code anomalies identified

by developers and the results of our heuristics are not necessarily identical. Thus,

in order to use Spearman’s footrule for measuring similarity, we needed to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

62

transform the obtained lists, eliminating items that did not overlap and re-ranking

the remaining items. This approach has been previously documented by (BAR-

ILLAN, 2006) when comparing search engine results.

Finally, the third measure used in this work was proposed by (FAGIN,

2003) as an extension to Spearman’s footrule for top k lists. A top k list is a list r

with |r| = k, and all other items i ∉ r are assumed to be ranked below every item in

r. Although the rankings produced by our prioritization heuristics are complete

rankings – in the sense that all elements are associated with a score – we are only

comparing the top ten items. Therefore, the use of measures for top k lists is

appropriate, especially considering that such lists might contain different

elements.

Fagin extended Spearman’s footrule by assigning an arbitrary placement to

elements that belong to one of the lists but not to the other. Such placement

represents the position in the resulting ranking for all of the items that do not

overlap when comparing both lists. For example, when comparing lists of size k,

this placement can be k+1 for all missing items in each list. This extension

rationale is that items appearing only in one of the lists must have k+1 ranks, or

higher. Fagin’s extended metric is defined below:

F(a, b)k = 2(k - |Z|)(k + 1) + Σi ϵ z | a(i) – b(i) | - Σi ϵ s a(i) – Σi ϵ t b(i)

In this equation, Z is the set of overlapping items, S is the set of items that

belong to a but not to b and T is the set of items that belong to b but not to a.

In order to compare the results obtained from Spearman’s footrule and

Fagin’s equation, we conveniently used normalized versions of both measures, by

dividing each measure by its maximum value. The normalized versions lie in the

interval [0,1] – where 0 means the rankings were identical and 1 means they were

reversed. For Fagin’s extension, considering k = 10 (as we are comparing top 10

rankings), the normalization factor is the maximum value F(a,b)10 can assume.

This situation happens when the overlap between the lists is 0 (i.e., when the lists

have no elements in common). Thus, Z is an empty set, S is equivalent to a and T

is equivalent to b. Therefore:

F(S,T)10 = 2 (10 – |Z|)(10 + 1) + 0 – Σi = 1, 10 i - Σi = 1, 10 i

F(S,T)10 = 2 (10 – 0)(11) – 55 – 55

F(S,T)10 = 220 – 110

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

63

F(S,T)10 = 110

Using 110 as the normalization factor for k = 10, we can calculate the

normalized value for Fagin’s extension as:

Fn(a,b) = F(a,b) / 110

Such normalizations were discussed and proven equivalent on (FAGIN,

2003).

It is important to notice the main differences between the three measures:

the number of overlaps indicates how effectively our prioritization heuristics are

capable of identifying a set of k relevant code elements, disregarding the

differences between them. This measure becomes more important as the number

of elements under analysis grows. Clearly, a high number of overlaps for top 10

items in a list of 1000 items is much harder to obtain than in a list of 100 items.

Therefore, the number of overlaps might give us a good hint on the heuristics

capability for identifying good refactoring candidates, disregarding the differences

between them.

The two remaining measures’ purpose is to analyze the similarity between

two rankings. Therefore, unlike the number of overlaps, they take into

consideration the positions each item has in the compared rankings. It is important

to mention the main differences between those two measures: when calculating

Spearman’s footrule, we are only considering the overlapping items. When the

lists are disjoint, the original ranks are lost, and a new ranking is produced -

respecting the order among the overlapping elements. On the other hand, Fagin’s

measure takes into consideration the positions of the overlapping elements in the

original lists.

Finally, we used the measures results to calculate the similarity accuracy –

as defined in our hypotheses. We obtained the accuracy percentage for each

measure as described below:

Table 2 – Calculating similarity accuracy level

 Overlap NSF NF

Accuracy % k * 10 (1 – n) * 100 (1 – n) * 100

NSF – normalized Spearman’s footrule measure, NF – normalized Fagin’s

extension to Spearman’s footrule measure

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

64

Assuming that there are always at most 10 overlaps, the number of overlaps

measure will present 100% of accuracy when k = 10. In this context, k represents

the number of overlaps between the rankings.

For the NSF and NF measures, the rankings are perfect matches when they

evaluate to 0; therefore, (1 – 0) * 100 = 100%. In this context, n represents the

value obtained for NSF and NF, as previously defined by their equations.

Furthermore, a high number of overlaps increases the precision of both

Spearman’s footrule and Fagin’s measures. When that number is smaller than 5,

for example, Spearman’s footrule measure can only assume at most 5 different

values – e.g., for 4 overlaps, 0, 2,4,6 and 8 (i.e., 0, 25%, 50%, 75% or 100% of

accuracy). A small number of overlaps also affects Fagin’s measure – although

not as severely: as Fagin’s measure assigns a default value (k+1) to all missing

elements, the number of possible results is not affected. However, missing

elements belonging to top positions will have a greater impact in the final measure

– as the distance between their original ranks and the default value of (k+1) will

be large.

4.2.5.
Code Anomaly Rankings and Actual Architecture Problems

We used the ground truth ranking provided by architects to analyze the

accuracy of our prioritization heuristics. However, that analysis only takes into

consideration the point of view of the architects, regarding the most

architecturally relevant anomalies. Although that point of view provides

interesting insights on how architecture problems are perceived, we also wanted to

investigate the actual architecture problems that occurred through the systems’

history. For doing so, we compared the results of the prioritization heuristics

rankings to previously identified architecture problems. In this context, we

investigated the proportion of architecturally relevant code anomalies among the

top ten rankings produced by each heuristic.

This analysis was motivated by our previous studies (MACIA et al., 2012b),

where we investigated the correlations between code anomalies and architecture

problems. In this context, we wanted to understand whether – and to what extent -

our prioritization heuristics’ top results comprehend actual architecturally relevant

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

65

code anomalies. This analysis may provide insights into which characteristics, or

combined characteristics, explored by our heuristics are more helpful towards

finding architecture problems. Moreover, it adds another source of information for

evaluating our results, in addition to the rankings provided by developers.

For performing this investigation, we relied on the lists of architecture

problems detected in the aforementioned study. For each problem reported in

those lists, we identified the code anomalies that caused it, if pertinent, and the

code elements related to it. Next, we were able to look for those elements in the

rankings produced by our prioritization heuristics. If a ranked code element was

related to at least one architecture problem, we considered it architecturally

relevant. Table 3 summarizes the information regarding architecture problems and

architecturally relevant elements for each analyzed system.

Table 3 – Architecturally relevant code elements

 # of CE # of AP # of architecturally relevant CE
HW 137 112 39 (28%)
MM 82 90 30 (36%)
PDP 97 28 37 (38%)

MIDAS 21 29 6 (28%)
CE – code elements, AP – architecture problems

We can observe from Table 3 that part of the existing code elements are

responsible for every architecture problem found. Thus, in all systems, there are

code elements that were not related to any architecture problem. Our goal is to

analyze whether the prioritization heuristics are able to outline code elements that

are in fact related to at least one architecture problem.

4.3.
Heuristics Evaluation

This section presents the results of our heuristics evaluation. We evaluated

each heuristic separately, as they exploit different project characteristics in order

to determine the architecture relevance of anomalous elements in the

implementation. Such evaluation was performed in two separate phases: first, we

conducted a quantitative analysis on the similarity results; then, we perform a

qualitative evaluation of the results, regarding their relations to actual architecture

problems (Section 4.2.5), discussing them in detail.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

66

4.3.1.
Evaluation of the Change-Proneness Heuristic

The Change-Proneness Heuristic was applied to three out of the four target

systems. We did not analyze MIDAS under this heuristic as only one version of

this application was available. Our evaluation was based on the analysis of 10

different versions of HealthWatcher, 8 versions of MobileMedia and 409 versions

of PDP. We have selected software projects with different history sizes on

purpose. We wanted to check whether the heuristic performed well or not on

systems with shorter and longer longevity. In addition, it was not a requirement to

only embrace projects with long histories, as we wanted to better analyze whether

the heuristics would be effective in preliminary versions of a software system,

when there is more opportunity for architecture-wide refactorings.

The evolution characteristics of the analyzed systems are summarized on

Table 4. Those characteristics comprehend the total number of code elements per

system, the maximum number of revisions per file and the average number of

revisions per file. As PDP is the system with the highest number of revisions, its

files were also changed the most, with up to 74 changes in a single file – namely,

Inicial.aspx.cs. The second most changed file was also part of PDP,

having 40 different versions. The reason for such discrepancy relies on the fact

that the most changed file acted as a controller Façade, concentrating all the

request handling methods.

Table 4 – Change characteristics for each system

 # of revisions # of CE max revisions avg revisions
HW 10 137 9 1,5
MM 9 82 8 2,6
PDP 409 97 74 8,8

CE – code elements, avg – average

As we can see, HealthWatcher (HW) and MobileMedia (MM) had similar

evolution behaviors. As the maximum number of revisions for a single file is

limited to the total number of revisions for a system, neither HealthWatcher nor

MobileMedia could have 10 or more versions of a code element. Although

HealthWatcher had more revisions than MobileMedia, those changes were

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

67

scattered between more files. Therefore, changes to MobileMedia were

concentrated in a smaller number of code elements, resulting in a higher average

number of changes per file.

Because of the reduced number of revisions available for HealthWatcher

and MobileMedia, we had to establish a criterion for selecting items when there

were ties in our top 10 rankings. For example, Table 5 illustrates the change-

proneness ranking for MobileMedia. In this ranking, we used alphabetical order

for breaking ties. That approach was only possible because there were 9 elements

in the ground truth ranked as equally harmful. Therefore, we sorted the elements

alphabetically to avoid inconsistencies when calculating the scores, as we also

sorted alphabetically the elements on the rankings produced by our heuristics.

Another approach would be to rank files with the same number of changes so that

they co-occupied the same ranking position.

Table 5 – Top 10 change-proneness ranking for MM

Rank File # of
changes

1 ubc.midp.mobilephoto.core.ui.datamodel.AlbumData 8
2 ubc.midp.mobilephoto.core.ui.MainUIMidlet 8
3 ubc.midp.mobilephoto.core.ui.screens.AlbumListScreen 8
4 ubc.midp.mobilephoto.core.ui.controller.BaseController 7
5 ubc.midp.mobilephoto.core.ui.screens.PhotoViewScreen 6
6 ubc.midp.mobilephoto.core.ui.controller.PhotoViewController 5
7 ubc.midp.mobilephoto.core.ui.datamodel.ImageAccessor 5
8 ubc.midp.mobilephoto.core.util.Constants 5
9 ubc.midp.mobilephoto.core.util.ImageUtil 5
10 ubc.midp.mobilephoto.sms.SmsSenderThread 4

Finally, Table 6 shows the results for each measure when analyzing the

change-proneness heuristic.

Table 6 – Results for the change-proneness heuristic

 Overlap NSF NF
value accuracy value accuracy value accuracy

HW 8 57% 0,62 38% 0,87 13%
MM 5 50% 1 0% 0,89 11%
PDP 6 60% 0,44 56% 0,54 46%

NSF – normalized Spearman’s footrule measure, NF – normalized Fagin’s
extension to Spearman’s footrule measure

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

68

We can see that for the change-proneness heuristic, the highest absolute

overlap was obtained for HealthWatcher – with 8 overlapping items. The main

reason why this happened is that HealthWatcher had many files with the same

number of changes. Therefore, for computing the overlap measure, we did not

consider only the 10 most changed files, as that approach would discard files with

as many changes as the ones selected. Instead, we selected 14 files, where the last

5 had exactly the same number of changes. It is also important to notice that

HealthWatcher was the system with the highest number of code elements (classes,

interfaces or abstract classes) – having a total of 137 items that could appear on

our rankings.

However, although the number of overlapping items for HealthWatcher is

high, the similarity measures for this system show their rankings were quite

mismatched. The NSF measure of 0,75 was obtained because, from the 7

overlapping items, only 2 were ranked in the same position (#2 and #5). The NF

measure was also high due to the amount of non-overlapping items (7) and the

fact that their ranks were relatively high (i.e., were positioned in the top of the

ranking - for example, items #2, #4 and #5).

Another interesting finding was regarding the MobileMedia system:

although this heuristic identified 5 overlaps between the generated ranking and the

ground truth, all of them were shifted by exactly two positions – resulting in the 1

value for the NSF measure. However, when we considered the non-overlaps, the

position for one item matched - resulting in a slightly smaller distance measure for

NF. Moreover, this result shows us that the NSF measure is not adequate when the

number of overlaps is small: there were similarities between the compared

rankings that could be inferred from the resulting value. For example, the ranking

order for elements #1, #2 and #3 was preserved – as they appeared in the #3, #4

and #5 positions, respectively.

When comparing the results of MobileMedia and HealthWatcher to those

obtained by PDP, we realize there is a significant difference between them: all of

PDP measures performed above our acceptable similarity thresholds (> 45%

similarity). In this case, we found that the similarity was related to a set of classes

that were deeply coupled: an interface acting as a Façade (PDPServices) and three

realizations of this interface, implementing a client module, a Proxy and the server

module. As changes in the interface triggered changes in those three classes, they

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

69

suffered many modifications through the system’s evolution. Moreover, such

design was considered a serious architecture problem in this system.

Furthermore, the nature of the changes that those systems underwent is

fairly different: most changes on HealthWatcher were perfective, intending to

improve the overall system quality, without adding new features. Therefore,

classes that were top ranked by the change-proneness heuristic were probably

refactored many times throughout the system evolution. As those classes were

repeatedly refactored, they no longer represent threats to the systems’ architecture,

which explains why they did not appear on the ground truth ranking. Most

changes performed on MobileMedia, on the other hand, were related to the

addition of new functionalities, which was also the case for PDP. However,

MobileMedia also had low accuracy rates. Therefore, the different results for this

heuristic might also be associated with the differences between the evolution

histories of the analyzed systems: while MobileMedia and HealthWatcher had

around 10 analyzed revisions, PDP had 409.

In conclusion, the results for this heuristic show us that it would be probably

useful for detecting and ranking architecturally relevant anomalies when: (i) there

are architecture problems involving groups of classes that change together; (ii)

there are architecture problems related to Façades or communication classes, as

changes to those classes might trigger changes in client components; (iii) changes

were not predominantly perfective, i.e., the majority of the changes performed on

the system were not refactorings.

The results we obtained in this analysis also helped us to reject the null

hypothesis H10 – as the Change-Proneness Heuristic was able to produce rankings

for PDP with at least acceptable accuracy in all of the analyzed measures (60%,

56% and 46%).

Correlation with Actual Architecture Problems

When analyzing the correlation of the change-proneness heuristic rankings

with actual architecture problems for each system, we also had interesting results,

confirming the usefulness of the prioritization. Such analysis was performed by

observing which of the ranked elements were related to actual architecture

problems. Table 7 summarizes our results.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

70

Table 7 – Change-proneness and actual architecture problems

 # of ranked CE architecturally
relevant

% of architecturally
relevant

HW 14 10 71%
MM 10 7 70%
PDP 10 10 100%

CE – code elements

It can be observed on Table 7 that elements containing architecturally

relevant anomalies were very likely to be change-prone. In fact, for the PDP

system, all of the top 10 most changed elements were related to architecture

problems. Considering that PDP has 97 code elements, and 37 of them are related

to architecture problems, this can give us a hint that change-proneness is a good

heuristic for identifying them.

4.3.2.
Evaluation of the Error-Proneness Heuristic

The error-proneness heuristic is based on the assessment of bugs that were

introduced by a given code element. The higher the number of bugs found on that

element, the higher its priority. Therefore, in order to correctly evaluate the results

for this heuristic, a reliable set of detected bugs should be available. This was the

case for one of the analyzed systems – namely, the PDP system. However, for the

remaining target systems, there was no such documentation of detected bugs and

the code elements that caused them. As explained in Section 4.2.3, for such case,

we relied on the analysis of bug detection tools, which indicate code elements that

could possibly introduce bugs.

The results for the error-proneness heuristic are summarized on Table 8.

Table 8 – Results for the Error-Proneness Heuristic

 overlap NSF NF
value accuracy value accuracy value accuracy

HW 10 71% 0 100% 0,74 26%
MM 3 30% 0 100% 0,76 24%
PDP 5 50% 0,83 17% 0,74 26%

It is important to mention that for the HealthWatcher system, exceptionally,

there were 14 ranked items, instead of 10, due to ties between some of them.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

71

Nonetheless, HealthWatcher presented the highest overlap – achieving an

accuracy of 71%. The reason why that happened is that the detected bugs were

related to a behavior found on every class implementing the Command role.

Furthermore, every Command class was listed by the developers as high-priority

in the ground truth ranking – meaning they represented a top rated architecture

problem. Therefore, the overlaps between the rankings were all related to classes

that implemented commands on HealthWatcher.

Besides the high number of overlaps, we also observed that the priority

order for the overlapping elements was exactly the same as the one pointed out in

the ground truth – hence, the accuracy obtained by NSF was 100%. However, the

4 remaining non-overlapping elements were exactly the top 4 elements in the

ground truth ranking. The fact that the top 4 elements did not appear in the

ranking produced by the error-proneness heuristic resulted in a low accuracy for

the NF measure – 26%.

We applied the same strategy for bugs mining in MobileMedia. However,

for this system, all of the measures presented low accuracies. In fact, because of

the small number of overlaps, the results for NSF may not confidently represent

the heuristics’ accuracy, as explained in Section 4.2.4.

For PDP, the results may be evaluated from a different perspective, as we

considered manually detected bugs, reported on its issue tracking system, instead

of automatically detected ones. However, even considering a reliable set of bugs

for performing our analysis, the overall results presented low accuracy. From the

5 non-overlapping items, 4 of them were related to bugs on utilitarian classes –

mainly related to data conversion and validation methods. As those classes were

neither related to any particular architectural role, nor implementing an

architecture component, they were not considered architecturally relevant. The

other non-overlapping element was a presentation class, which presented a bug

related to the graphical user interface.

Those results indicate that the error-proneness heuristic could benefit from

architecture information for discarding elements that are not related to any

architecture role. By itself, this heuristic might also not be able to identify the

most relevant code anomalies, as bugs can be found throughout the systems code

elements, regardless of their architecture relevance. Therefore, by combining it

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

72

with other heuristics, such as the architecture role heuristic, we can possibly

improve its results.

Correlation with Actual Architecture Problems

The analysis of correlation with actual architecture problems for the error-

proneness heuristic presented better results towards detecting relevant anomalies.

As we can observe on Table 9, at least 80% of the ranked elements were related to

architecture problems, for all of the systems we analyzed.

Table 9 – Error-proneness and actual architecture problems

 # of ranked CE architecturally
relevant

% of architecturally
relevant

HW 14 12 85%
MM 10 8 80%
PDP 10 8 80%

CE – code elements

The most significant results were obtained for the HealthWatcher system,

with 85% of the ranked elements related to architecture problems. That number is

even more significant when we consider that the ranking for HealthWatcher was

composed of 14 elements, instead of only 10. Furthermore, it is important to

mention that the rankings for HealthWatcher and MobileMedia were built over

automatically detected bugs. This shows us that even when formal bug reports are

not available, the use of static analysis tool for predicting possible bugs might be

useful.

Regarding the PDP system, which was the only one where actual bug

reports were considered, the results were also promising: from the top 10 ranked

elements, 8 were related to architecture problems. Considering that PDP had 97

code elements, with 37 of them related to architecture problems, that means the

remaining 29 were distributed among the 87 bottom ranked elements. When we

extended the analysis over the top 20 elements, we found an even better

correlation factor: 17, or 85% of the top 20 most error-prone elements were

related to architecture problems.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

73

4.3.3.
Evaluation of the Anomaly Density Heuristic

The Anomaly Density heuristic was applied to all of our target systems. We

analyzed 178 code anomalies from MIDAS, 273 from HealthWatcher, 176 from

MobileMedia and 175 from PDP – totaling 802 code anomalies. The results for

this heuristic are shown on Table 10:

Table 10 – Results for the Anomaly Density Heuristic

 Overlap NSF NF
Value accuracy Value Accuracy Value accuracy

HW 5 50% 0,66 34% 0,54 46%
MM 7 70% 0,41 59% 0,70 30%
PDP 8 80% 0,37 63% 0,36 64%

MIDAS 9 90% 0,4 60% 0,2 80%

As we can see, this heuristic had many good results in terms of accurately

ranking architecturally relevant anomalous elements. In fact, good results were

obtained not only when correctly selecting the top 10 (as evidenced by the number

of overlaps) but also when defining their ranking positions: only 2 out of 8

measures had low accuracies, according to our accuracy level thresholds (Section

4.2.1).

The number of overlaps in this heuristic was considered highly accurate in 3

out of the 4 analyzed systems. This is an indication that code elements infected by

multiple code anomalies are often perceived as high priority by maintainers. The

only system where this did not occur was HealthWatcher, which had only 5

overlaps. When analyzing the number of anomalies for each element on the

ranking representing the ground truth, we found that many of them had exactly the

same number of code anomalies, namely 8. However, around 40 classes in the

entire system (or 30%) had at least 8 anomalies, which is why those elements did

not appear in the top 10 ranking. In fact, the 10th element in the ranking was

infected by 13 anomalies. It is important to mention that for this heuristic, in

contrast to the change-proneness and error-proneness heuristics, we only

considered the top 10 elements for the HealthWatcher system, as there were not

ties to be taken into consideration.

MIDAS had a significant number of overlaps – 9 out of 10 elements

appeared in both rankings. However, this was highly expected, as this system was

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

74

composed of 21 code elements only. Nonetheless, the NSF and NF measures also

presented a high accuracy – meaning that the rankings were similarly ordered. The

NF measure had a better result, influenced by the fact that the only mismatched

element was ranked as #10 – a low position. As explained on Section 4.2.4,

missing items appearing in low positions have a positive effect on the NF measure

– i.e., they decrease the distance between the rankings, and increase the accuracy.

MobileMedia had the most discrepant results regarding the two ranking

measures: 59% accuracy for the NSF measure, and 30% for the NF measure. Such

difference was also related to the position of the non-overlapping elements in the

ranking generated by the prioritization heuristic: the elements ranked as #1, #3

and #4 were all missing from the ranking provided by developers. Therefore, their

ranks were assigned to k+1 in the developers list, which resulted in a huge

distance from their original positions. Those elements comprehended a data model

class (core.ui.datamodel.ImageMediaAccessor), a utilitarian class

(core.util.MediaUtil) and a base class for controllers

(core.ui.controller.BaseController). Intuitively, utilitarian classes are not cohesive

and often contain multiple methods – characteristics that favor the presence of

code anomalies. The ImageMediaAccessor class was infected with 23 code

anomalies – mostly long methods – and was also involved with architecture

problems. However, it was not mentioned by developers in their rankings. Finally,

the BaseController class, although missing from the original ranking, is the base

class for all the other controllers in the MobileMedia architecture, which

correspond to 9 out of the top 10 elements ranked by developers.

By analyzing the results for this heuristic, we observed that code elements

infected by multiple code anomalies are often perceived as high priority. This

could be an indication that automatic detection of code anomaly patterns is

desirable (ARCOVERDE et al., 2012; MACIA et al., 2012c), as those groups of

code anomalies could be identified together. We also identified that many false

positives (i.e., classes that are infected by multiple code anomalies, but are not

related to architecture problems) could arise from utilitarian classes, as those

classes are often large and not cohesive. By combining this heuristic with the

architecture role heuristic, we could help discarding such results.

Finally, the results obtained in this analysis also helped us rejecting the null

hypothesis H30 – as the anomaly density heuristic was able to produce rankings

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

75

with at least acceptable accuracy in all of the systems we analyzed for at least one

measure. Furthermore, we obtained a high accuracy rate for the MIDAS project in

2 out of 3 measures (90% for the overlaps and 80% for NF).

Correlation with Actual Architecture Problems

When analyzing the rankings produced by the anomaly density heuristic,

comparing them to the actual architecture problems, the results were not

consistent through all the analyzed systems. For the HealthWatcher system, only 5

out of the 10 top ranked elements were related to architecture problems, as shown

on Table 11. Those results are similar to the ones found when comparing the

ranking to the ground truth provided by the architects. In fact, we the 5 elements

related to actual architecture problems are exactly the 5 overlapping items

between the compared rankings (Table 10). The reason why that happened for

HealthWatcher is related to the high number of anomalies, concentrated in a small

number of elements, that were not architecturally relevant. In this context, all of

the 5 elements not related to architecture problems were data access classes,

responsible for communicating with the database.

Table 11 – Anomaly density and actual architecture problems

 # of ranked CE architecturally
relevant

% of architecturally
relevant

HW 10 5 50%
MM 10 9 90%
PDP 10 8 80%

MIDAS 10 6* 60%*
CE – code elements

Another interesting result for this analysis emerged from the MIDAS

system. From the top 10 elements with the higher number of anomalies, 6 were

architecturally relevant - or 60% of them. However, the MIDAS system has

exactly 6 elements that contribute to the occurrence of architecture problems.

Thus, the anomaly density heuristic correctly outlined all of them in the top 10

ranking. For that reason, those results are highlighted on Table 11.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

76

4.3.4.
Evaluation of the Architecture Role Heuristic

For evaluating the architecture role heuristic, we analyzed three systems:

HealthWatcher, MobileMedia and PDP. We consulted the original architects of

those systems for gathering information on the architecture roles. Table 12 depicts

our results.

Table 12 – Results for the Architecture Role Heuristic

 Overlap NSF NF
value accuracy Value accuracy Value Accuracy

HW 4 40% 0,5 50% 0,72 28%
MM 6 60% 0,22 78% 0,41 59%
PDP 6 60% 0,33 67% 0,41 59%

 PDP held the most consistent results across the three similarity measures,

having around 60% of accuracy when comparing the similarity between the

rankings. It was also the only system where we could divide the classes and

interfaces in more than three levels when analyzing their architecture roles. In this

context, we divided classes and interfaces from PDP in four different roles, as

detailed below, in Table 13:

Table 13 – Architecture roles for PDP

Architecture roles Priority Score # of CE

Utilitarian and internal classes 1 23

Presentation and data access classes 2 28

Domain model, business classes 4 24

Public interfaces, communication
classes, façades

8 6

CE – code elements (classes and interfaces)

 From this classification, we were able to draw the architecture role

heuristic ranking for PDP, containing all of the 6 elements from the highest

category (public interfaces, communication classes and façades) and 4 elements

from the domain model and business classes. In this case, we ordered the elements

alphabetically for breaking ties. Therefore, although 24 classes had the same

score, we only compared the first 4 of them. However, some of the elements

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

77

ranked by developers belonged to that group of discarded elements. Had we

chosen a different approach, such as considering all the ties as one item, we would

turn our top 10 ranking into a list of 30 items and have a 100% overlap rate – as

all of the non-overlapping items belonged to the domain model category.

 For HealthWatcher and MobileMedia, we followed a different scoring

approach, by consulting the original architects for each system directly. They

informed us the existing architecture roles, and their respective relevance on the

systems’ architectures. This procedure is described on Section 4.2.3.3. Once we

identified which classes were directly implementing which roles, we were able to

produce the rankings for this heuristic.

HealthWatcher presented the worst results among the analyzed systems.

However, when producing the ranking for the architecture role heuristic, almost

20 elements were tied with the same scores. We first only selected the top 10

elements, and broke the ties according the alphabetic order of the ranked

elements. That led us to an unreal low number of overlaps, as some of the

discarded items were present in the ground truth ranking. In fact, because of the

low number of overlaps, it would not be fair to evaluate the NSF measure as well

– since it is calculated over the overlapping elements only. We then performed a

second analysis, considering the top 20 items instead of the top 10, for analyzing

the whole set of elements that had the same score. In such analysis, the number of

overlaps went up to 6, but the accuracy for the NSF measure decreased to 17% –

indicating a larger distance between the compared rankings. This shows us that

the 50% accuracy for NSF obtained in the first comparison round was misleading,

as expected, due to the low number of overlaps. The NF measure, on the other

hand, considers missing elements as part of the distance measure. In fact, it

computes the non-overlapping items as a mismatch between the rankings – thus,

resulting in a more reliable similarity index. For HealthWatcher, that index was

.72 – or 28% of accuracy. This number was, nonetheless, highly influenced by the

low number of overlapping items – as that indicates a big mismatch between the

compared rankings.

As for MobileMedia, high accuracy rates were found for both the NSF and

NF measures. We observed when analyzing its architecture documentation that

many elements reported as high priority by developers were implementing

architecture components. More specifically, there were 8 architecture components

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

78

described in the document directly related to 9 out of the top 10 high priority

classes, according to the developers’ ranking. Furthermore, we identified one

architecture component (SMSController) that was implemented by two classes

(SMSReceiverController and SMSSenderController). As they were related to the

same architecture role, they were both present in the ranking produced by the

heuristic. However, only one of them appeared in the top 10 ranking representing

the ground truth.

The results for this heuristic are highly dependent on the quality of the

architecture roles defined. More specifically, we observed that the best results

were obtained for the PDP system, with had multiple architecture roles defined,

and with different levels of relevance. Furthermore, this heuristic is probably

better when combined to other heuristics, in order to discard elements that do not

represent an important architecture role from the final results.

Finally, the results obtained in this analysis also helped us to reject the null

hypothesis H40 – as the architecture role heuristic was able to produce rankings

with at least acceptable accuracy in all of the systems we analyzed for at least one

measure.

Correlation with Actual Architecture Problems

The analysis of correlation between the architecture role heuristic rankings

and actual architecture problems for each system is summarized on Table 14.

Table 14 – Architecture role and actual architecture problems

 # of ranked CE architecturally
relevant

% of architecturally
relevant

HW 10 4 40%
MM 10 9 90%
PDP 10 10 100%

CE – code elements

Again, the results are quite discrepant between HealthWatcher and the two

remaining systems. However, for this analysis, the problem resided on the

analyzed data. We identified two different groups of architecture roles among the

top 10 elements for HealthWatcher, ranked as equally relevant: 6 of the related

elements were playing the role of repository interfaces; the remaining 4 elements

were Façades (GAMMA et al., 1994) or elements responsible for communicating

different architecture components. We then asked the original architects to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

79

elaborate on the relevance of those roles, as we suspected they were unequal.

They decided to differentiate the relevance between them, and considered the

repository role less relevant. That refinement led to a completely different

ranking, which went up from 4 to 7 elements related to architecture problems.

The results obtained for HealthWatcher show us the importance of correctly

identifying the architecture roles and their relevancies for improving the accuracy

of this heuristic. However, this also constitutes a drawback, as we cannot evaluate

the heuristic without some input from the original architects, who might not be

available or give imprecise information. When that information is accurate, the

results for this heuristic are highly positive. Furthermore, the other proposed

prioritization heuristics could benefit from information regarding architecture

roles in order to minimize the number of false positives, like utilitarian classes.

This indicates the need to further analyze different combinations of prioritization

heuristics.

4.4.
Threats to Validity

This section describes the main threats to validity of our studies and the

mitigations we considered.

Validity of detected code anomalies. A threat to construct validity is

related to possible errors in the detection of code anomalies in each selected

system. As our approach consists of ranking previously detected code anomalies,

the method for detecting them must be trustworthy. There are several kinds of

detection strategies documented on literature; however, many have been proved

inefficient for detecting relevant anomalies in previous studies (MACIA et al.,

2012a). We mitigated the risk of imprecision when detecting code anomalies by

(i) involving the original developers and architects in this process and (ii) using

well-known metrics and thresholds, previously and independently evaluated

elsewhere, for constructing our detection strategies (KHOM et al., 2009;

OLBRICH et al., 2010).

Identification of errors. Another threat to construct validity is related to

how we identified errors for applying the error-proneness heuristic. We first

relied on commit messages for identifying classes related to bug fixes, which

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

80

means some errors might be missing. We tried to mitigate such threat by also

investigating issue tracking systems, looking for error reports and traces between

those errors and the code that was changed to fix them. Moreover, we also

investigated test reports, when available, in order to identify the causes for

eventual broken tests. When that information was unavailable, we relied on the

use of static analysis methods for identifying bugs (AYEWAH et al., 2008).

Identification of architecture roles. The architecture role heuristic is based

on identifying the relevance of a given code element regarding the system’s

architecture design. Therefore, in order to compute its scores, we needed to assess

the roles each code element plays on the overall architecture. This information

was extracted differently depending on the project under analysis, which we

considered a threat to construct validity. For example, for HealthWatcher and

MobileMedia, we studied the architecture documentation, looking for classes that

implemented described interfaces or components. For PDP, on the other hand, as

the architecture documentation was absent, we interviewed the original architects

for identifying those classes. Nonetheless, we understand that the absence of

architecture documentation reflects a common situation, and may be inevitable

when analyzing real world systems.

Choice of the target applications. The choice of the target applications is

related to a threat to external validity. As in every empirical study, our results are

limited to the scope of these applications. However, we tried to minimize such

threat by selecting systems developed by different programmers, with different

domains, programming languages, environment (i.e., academy and industry) and

architecture styles. Nonetheless, in order to better generalize the obtained results,

our study should be replicated with other applications, from different domains –

as long as the selection criteria described in Section 4.1 are respected.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

