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4 
Evaluation 

Chapter 3 detailed our heuristics for supporting the prioritization of code 

anomalies according to their relevance to a system architecture. Those heuristics 

were based on the assumption that by analyzing specific characteristics of a 

software project, it is possible to identify and rank architecturally relevant code 

anomalies. Such ranking could then help developers prioritize their refactorings 

while aiming to solve deeper maintainability problems, i.e. architecture design 

problems. 

In order to verify whether those heuristics were indeed useful for ranking 

code anomalies, we conducted an empirical study, guided by the following 

questions: 

1) Is it possible to accurately rank code anomalies based on their 

architecture relevance? 

2) Which characteristics help accurately ranking code anomalies based on 

their architecture relevance? 

 

Given that this is a first study in the field of ranking code anomalies, our 

evaluation is of exploratory nature (KITCHENHAM et al., 2002) and focused on 

a detailed analysis of four software projects. In order to make the purpose of our 

evaluation clearer, we have defined a set of hypotheses (Section 4.2.1). However, 

it was not our goal to rely on a large data set and carry out statistical tests over this 

set. In other words, our aim here was to perform a first identification and 

evaluation of project factors that are likely to be useful to rank architecturally 

relevant code anomalies. Our evaluation is intended to derive some lessons 

learned related to the usefulness of these project factors. These lessons will 

provide insights for the conception of more specific hypotheses that need to be 

rigorously tested in further studies. 

This chapter presents the evaluation of the prioritization heuristics. Section 

4.1 describes the selection criteria and the characteristics of four target 
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applications we used for evaluating the prioritization heuristics. Section 4.2 

describes our study setting, including our hypotheses, procedures and analysis 

methods. We discuss our results for each prioritization heuristic in Section 4.3. 

Finally, we present the threats to our study validity in Section 4.4. 

 

4.1. 
Selection Criteria and Target Applications 

In order to be feasible for the evaluation of the prioritization heuristics, the 

selected target applications had to adhere to a series of characteristics. 

First, either the architecture specification or the original developers and 

architects had to be available. By analyzing such specification, or consulting the 

developers and architects, we are able to verify whether the ranked code 

anomalies are indeed architecturally relevant. It also helps us to better analyze the 

architecture roles played by each code element. Such information is essential to 

the application of the architecture role heuristic (Section 3.1.4), which directly 

depends on architecture information to compute the ranking of code anomalies. 

Second, the source version control systems of the selected applications 

should be available, in order to enable the application of the change-proneness 

heuristic (Section 3.1.1). In fact, the selected systems should also ideally present a 

high number of changes (or revisions) through their evolutions.  

Third, an available issue tracking system, although not mandatory, was 

highly recommendable for providing input to the error-proneness heuristic. As 

explained on Section 3.4.1.2, however, such heuristic might also use information 

from commit messages for inferring bug fixes revisions. However, in this case, 

the source version control system should not only be available, as required by our 

second criterion, but also contain templates for well-formatted commit messages. 

Such templates are essential for the retrieval of information regarding bug fixes 

and their corresponding code elements. 

Finally, the applications should present different design and implementation 

structures. Such restriction helps us to better understand the impact of the 

proposed heuristics for diverse sets of code anomalies, emerging on different 

architecture designs. Moreover, it minimizes the possibility of bias for the results 

of a particular architecture design. 
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Based on these criteria, we selected the last versions of 4 software projects 

from different application domains: HealthWatcher (GREENWOOD et al., 2007), 

MobileMedia (FIGUEIREDO et al., 2008), MIDAS (MALEK et al., 2007) and 

PDP – an acronym for an industry application, privately held by an entertainment 

company. The table below summarizes the main characteristics of the selected 

software projects. 

Table 1 – Characteristics of target software projects 

 MIDAS HW MM PDP 

Application 
Type 

Middleware Web 
application 

Software 
Product Line 

Web 
application 

Programming 
Language 

C++ Java/AspectJ Java/AspectJ C# 

Architectural 
Design 

Layers MVC Layers 
PC & 
Layers 

# of CE 21 137 82 97 
# of AE 9 19 24 15 
KLOC 72 46 51 22 
# of CA 178 273 176 175 
# of AP 29 112 90 28 
# of 
Revisions 

1 10 10 409 

HW – HealthWatcher, MM – MobileMedia, CE – code elements, AE – 
architecture elements (modules and interfaces), CA – code anomalies, PC – Page 
Controller, AP – Architecture Problems 

 

HealthWatcher (HW) is a web software system used for registering 

complaints about health issues in public institutions. Mobile Media (MM) is a 

software product line that manages different types of media on mobile devices. 

MIDAS is a lightweight middleware for distributed sensor applications (GARCIA 

et al., 2009). PDP is a web application for managing scenographic sets in 

television productions.  These projects were previously analyzed in studies of 

architectural degradation and refactoring (GARCIA et al., 2009; DANTAS et al., 

2011; MACIA et al., 2012b). Therefore, part of the needed information for 

performing our evaluation had already been previously collected, without 

introducing bias with respect to our specific research questions. More specifically, 

the code anomalies for all of these systems had already been collected in a 

previous study (MACIA et al., 2012b), in the context of this dissertation. The 
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detected code anomalies were also classified regarding their architectural 

relevance in the aforementioned study. 

It is important to mention the difficulty in finding software projects that 

adhered to all of the defined selection criteria. In fact, such difficulty led us to 

choose projects that only contained a subset of the characteristics we needed for 

evaluating all of the prioritization heuristics. For example, the MIDAS project 

was not suitable for the change-proneness heuristic, as only one revision of it was 

available. However, as we had already studied its architecture problems and 

detected its code anomalies for previous studies, it was reasonable to consider it 

when analyzing the architecture role (Section 3.1.4) and anomalies density 

(Section 3.1.3) heuristics.  

 

4.2. 
Study Setting 

Our study aims at analyzing whether the proposed set of heuristics might 

help developers to identify architecturally relevant code anomalies that should be 

prioritized. It is expected that the use of the proposed heuristics will help 

developers to early detect architecture problems reified in the implementation, so 

that architecture degradation can be avoided. Our analysis is carried out in terms 

of the accuracy (Section 4.2.1) of the prioritization heuristics towards ranking 

code anomalies correctly. Following the recommendation from Wohlin et al 

(2000), we defined our study and its goals using the GQM format, as follows: 

Analyze: the proposed set of prioritization heuristics 

For the purpose of: understanding their accuracy for ranking code 

anomalies based on their architecture relevance 

With respect to: rankings previously defined by developers or 

maintainers of each analyzed system 

From the viewpoint of: the researcher 

In the context of: 4 software systems from different domains and with 

different architectural and implementation detailed designs 
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The study was conducted in three phases: first, as a prioritization approach 

for ranking code anomalies, we needed to detect and classify those anomalies 

regarding their architecture relevance, in each of the target systems (Section 

4.2.3.1). Second, we computed the scores for each detected code anomaly, 

according to the heuristic under analysis, producing a resulting ordered list 

(Section 4.2.3.4). In the third phase, we compared the heuristics results with 

rankings previously defined by developers or maintainers of each analyzed 

system, calculating their similarities (Section 4.2.4). Those rankings provided by 

developers represent the “ground truth” data in our analysis. 

 

4.2.1. 
Hypotheses 

In order to evaluate the accuracy of the proposed heuristics for ranking code 

anomalies based on their architecture relevance, we first established thresholds of 

acceptable accuracy. Such thresholds, in this study, were defined in three different 

levels: 

0%-40% - low accuracy 

40%-80% - acceptable accuracy 

80%-100% - high accuracy 

We chose to analyze those three levels of ranking accuracy for analyzing to 

what extent the prioritization heuristics might be helpful – qualifying the results in 

three possible ranges. For example, an accuracy level of 50% means the rankings 

produced by the proposed heuristics should be able to identify at least half of the 

most architecturally relevant code anomalies outlined by the developers, in the 

right order of priority. We performed our analysis over top ten rankings, as 

explained on Section 4.2.4.  

In this context, we defined the following null hypotheses: 

H10. The change-proneness heuristic cannot accurately identify 

architecturally   relevant code anomalies ranked as top ten 

H20. The error-proneness heuristic cannot accurately identify 

architecturally relevant code anomalies ranked as top ten 

H30. The anomaly density heuristic cannot accurately identify 

architecturally relevant code anomalies ranked as top ten 
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H40. The architecture role heuristic cannot accurately identify 

architecturally relevant code anomalies ranked as top ten 

We also defined the following alternative hypotheses: 

H1A. The change-proneness heuristic can accurately identify architecturally   

relevant code anomalies ranked as top ten 

H2A. The error-proneness heuristic can accurately identify architecturally 

relevant code anomalies ranked as top ten 

H3A. The anomaly density heuristic can accurately identify architecturally 

relevant code anomalies ranked as top ten 

H4A. The architecture role heuristic can accurately identify architecturally 

relevant code anomalies ranked as top ten 

 

In the context of the hypotheses defined above, accurately means that the 

heuristic was able to identify architecturally relevant code anomalies with, at least, 

acceptable accuracy.  Therefore, the accuracy level should reach 40% or more. 

 

4.2.2. 
Variable Selection 

In order to test our hypotheses, we have defined the following dependent 

and independent variables. 

Independent variables. There are five independent variables in this study: 

the rankings produced by each of the prioritization heuristics and the ranking that 

represents the ground truth. Those rankings are lists of code anomalies, ordered by 

their respective scores. The ranking representing the ground truth was produced 

by the original architects of each system. 

Dependent variables. There are as many dependent variables as there are 

similarity measures between the rankings produced by the proposed prioritization 

heuristics and the rankings representing the ground truth. We selected three 

different similarity measures: number of overlaps, Spearman’s Footrule 

(DIACONIS et al., 1977) and Fagin’s extension to Speaman’s Footrule (FAGIN 

et al., 2003). Those measures are defined in Section 4.2.4. 
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4.2.3. 
Data Collection 

The data collection process of our study involved different activities, 

including: detecting code anomalies, identifying the rankings representing the 

ground truth and collecting the scores for each anomaly under the perspectives of 

each prioritization heuristic. These activities are described next. 

 

4.2.3.1. 
Detecting Code Anomalies 

As a first step, code anomalies were automatically identified using well 

known detection strategies and thresholds (KHOM et al., 2009; OLBRICH et al., 

2010). These strategies and thresholds were also similarly applied in other studies 

based on the same systems we analyzed (FIGUEIREDO et al., 2008; MACIA et 

al., 2012a, 2012b). The analysis and validation of such detection strategies are out 

of the scope of this dissertation; nevertheless, they are detailed and discussed by 

previous works (MACIA et al., 2012a). The metrics required by detection 

strategies were mostly collected with current tools such as: Together 

(TOGETHER, 2012), NDepend (NDEPEND, 2012) and Understand 

(UNDERSTAND, 2012). These tools are complementary: Together analyzes Java 

programs, while NDepend and Understand analyze C++ and C# programs.  

As a second step, the list of code anomaly suspects was checked and refined 

by the developers and architects. This validation was an important step and 

motivated by the fact that strategies presented low accuracy rates when detecting 

architecturally relevant code anomalies (MACIA et al., 2012a). By mixing 

automatic with manual detection, we aimed at analyzing a more reliable set of 

code anomalies. 

 

4.2.3.2. 
Rankings Representing the Ground Truth 

The ground truth ranking, in the context of this dissertation, is a list of 

anomalous elements, ordered by their architecture relevance. For this analysis, we 

chose to consider only classes as the analyzed elements. Such ranking was defined 

by the architects of the target systems. We analyzed the accuracy of our 
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prioritization heuristics by comparing the similarity between the rankings each 

heuristic produced with the ground truth ranking. 

For collecting the rankings representing the ground truth, we contacted the 

architects of the analyzed systems. They were asked to provide an ordered list of 

the top 10 classes they believed better represented the main sources of 

maintainability problems from the perspective of the architecture of those 

systems. We did not provide any specific criteria for guiding them to choose the 

most critical classes. In particular, we did not mention any of the factors explored 

by the prioritization heuristics (Section 3.1), such as number of changes or faults 

per module. Our intention was not influence the results at all towards a better 

performance of any of the heuristics. 

In some cases, like for the HealthWatcher system, architects claimed it was 

not possible to fit only 10 classes into the ranking, as many of them were 

considered equally problematic. For this particular case, the ranking representing 

the ground truth had 14 elements, and our analyses were performed on 14-sized 

rankings. 

Besides informing the lists of high priority elements, we also asked 

developers and architects to provide information regarding the architecture design 

of the analyzed systems. More specifically, we asked for a list of architecture roles 

that were present in each analyzed system, as well as their order of relevance from 

the architecture perspective. They also provided traces between architecture 

elements and code elements, which were essential for computing the architecture 

role heuristic. It is worth mentioning that this data was only requested after the 

architects had already provided their ground truth rankings, in order to avoid the 

influence of the leveraged architecture information against the rankings. 

 

4.2.3.3. 
Calculating Scores 

The second phase of our study involved the calculation of scores for each 

code anomaly, in the context of the proposed heuristics. As the mechanics of each 

heuristic are fairly different (Section 3.2.1), we detail below the steps followed for 

each of them separately. 
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Change-proneness heuristic. As explained in Section 3.2.1, the change-

proneness heuristic computes its scores based on the number of changes made to a 

given code element. In the context of this study, we computed file changes only, 

i.e, different code elements modified within a single file are not distinguished.  

In order to correctly compute the scores for this heuristic, we first had to 

extract the change log from the version control systems for each of the target 

applications. We then processed the resulting log files, counting the number of 

times each resource was changed. This extraction was first performed in the root 

directory for each system, retrieving all the file changes in a single command. 

Once the number of changes was computed, we ordered the list of resources and 

their respective number of changes, thus producing our final ranking. 

Error-proneness heuristic. For computing the error-proneness heuristic 

scores, we used two different techniques: the first one is based on change log 

inspection, looking for common terms like bug or fix. Once those terms are found 

on commit messages, we increment the scores for the classes involved in that 

change. Such technique has been recently applied on many relevant studies 

(FISCHER et al., 2003; KIM et al., 2011). However, as we could not rely on it for 

all of the analyzed systems – as only the PDP system had high quality and well-

formatted commit messages – we also used a bug detection tool on MobileMedia 

and HealthWatcher. As both systems were implemented in Java, we chose the 

findBugs tool (AYEWAH et al., 2008) for automatically detecting blocks of code 

that could be related to bugs. The fingBugs tool uses static analysis to detect 

potential bugs, such as security violations (SQL injection), runtime errors 

(dereferencing a null pointer) and logical inconsistencies (a conditional test that 

can't possibly be true). Once those possible bugs are identified, we collect the 

code elements causing them and increment their scores. 

Anomaly density heuristic. Computing the scores for this heuristic was 

rather straightforward. In this phase, we verified which code elements 

concentrated the highest number of code anomalies. Those anomalies had already 

been detected in the first phase of our study, as described on Section 4.2.3.1. 

Architecture role heuristic. The architecture role heuristic depends on two 

kinds of information, regarding the system’s design: first, which roles each class 

plays in the architecture and second, how relevant those roles are towards 

architecture maintainability. For example, consider an application following the 
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MVC pattern (BUSCHMANN et al., 2007). Code anomalies found on classes that 

implement Views might not be considered as relevant as those infecting classes 

that implement the Model, as Views are not supposed to implement complex 

behaviors or business rules. 

For this study setting, when analyzing this heuristic, we first had to leverage 

architecture design information in order to map code elements to their architecture 

roles, as explained in Section 4.2.3.3. Part of this information extraction had 

already been performed in our previous studies (MACIA et al., 2012a, MACIA et 

al., 2012b). Then, we asked the architects to assign different levels of importance 

to those roles, according to the architecture patterns implemented (e.g., MVC, 3-

layers, Page Controller).  

Finally, we defined score levels to each architecture role. For doing so, we 

considered the number of roles identified by the architects, and distributed them 

according to a fixed interval from 0 to 10. Code anomalies that infected elements 

playing critical architecture roles were assigned to the highest score – namely, 10. 

On the other hand, when the code anomaly affected elements related to less 

critical architecture roles, they would be assigned to lower scores, according to the 

number of existing roles and the classification provided by the architects. For 

example, in PDP, which implemented the Page Controller pattern, the architects 

identified 4 different architecture roles. Hence, the scores for each architecture 

role could assume the values 0, 2.5, 5, 7.5 or 10 (as 10/4 is 2.5, which we used as 

the default interval). We assigned a 10-value score to anomalies found on 

communication classes or interfaces; business classes received a 7.5 scores; and 

finally, anomalies found on data classes were given a 2.5 score. 

 

4.2.4. 
Analysis Method for Comparing Rankings 

In the third and last phase of our study, we compared the rankings produced 

by each of the heuristics with those representing the ground truth – provided by 

the developers or maintainers of the analyzed systems. We decided to analyze 

only the top ten code anomalies ranked, for three main reasons: first, asking 

developers to rank an extensive list of anomalies would be unviable and 

counterproductive. Second, we wanted to evaluate our prioritization heuristics 
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mainly for their abilities to improve refactoring effectiveness – that is, improving 

the chances developers will prioritize the removal of relevant code anomalies. In 

this context, the top ten code anomalies represent a significant sample of 

anomalies that could possibly cause architecture problems. Third, we focused on 

analyzing the top 10 anomalies for assessing whether they already represent a 

useful subset of architecturally relevant anomalies. Otherwise, the need to look 

beyond those top 10 anomalies to find something useful could discourage 

developers when using our prioritization heuristics. 

For comparing such rankings, we considered three different measures: the 

size of the overlap, Spearman’s footrule (DIACONIS et al., 1977) and Fagin’s 

extension to the Spearman’s footrule for disjoint lists (FAGIN et al., 2003). The 

first and simplest one was the size of the overlap between the two top ten lists. We 

chose this measure mainly because (i) it is fairly simple and (ii) it tells us whether 

the prioritization heuristics are accurately distinguishing the top k items from the 

others. This measure has some disadvantages, as it does not consider permutations 

between two lists. For example, lists containing the same elements in different 

orders (or with different ranks) would have the same similarity measure, 

becoming indistinguishable from lists that present a perfect match.  

The second measure we considered was Spearman’s footrule (DIACONIS et 

al., 1977), a well-known metric for permutations – or full rankings. It measures 

the distance between two ranked lists by computing the differences in the rankings 

of each item. That is, given two lists a and b, Spearman’s footrule is defined as 

F(a, b) = Σ i ϵ U |a(i) – b(i)|. Therefore, when the lists are identical, Spearman’s 

result is 0. The maximum value of F(a,b) is n2/2 when n is even and (n + 1) (n – 

1) / 2 when n is odd – where n represents the size of the lists. We chose this 

measure mainly because it is a classic, well-known metric on permutations (or full 

rankings), along with Kendall tau (KENDALL and GIBBONS, 1990) – a metric 

based on the number of permutations needed to turn one list into the other. We did 

not measure the Kendall tau distance for our study, as it belongs to the same 

equivalence class as Spearman’s footrule (FAGIN et al., 2003). 

A clear limitation of Spearman’s footrule is the fact that it cannot be applied 

to disjoint rankings; however, in our context, the top 10 code anomalies identified 

by developers and the results of our heuristics are not necessarily identical. Thus, 

in order to use Spearman’s footrule for measuring similarity, we needed to 
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transform the obtained lists, eliminating items that did not overlap and re-ranking 

the remaining items. This approach has been previously documented by (BAR-

ILLAN, 2006) when comparing search engine results. 

Finally, the third measure used in this work was proposed by (FAGIN, 

2003) as an extension to Spearman’s footrule for top k lists. A top k list is a list r 

with |r| = k, and all other items i ∉ r are assumed to be ranked below every item in 

r. Although the rankings produced by our prioritization heuristics are complete 

rankings – in the sense that all elements are associated with a score – we are only 

comparing the top ten items. Therefore, the use of measures for top k lists is 

appropriate, especially considering that such lists might contain different 

elements. 

Fagin extended Spearman’s footrule by assigning an arbitrary placement to 

elements that belong to one of the lists but not to the other. Such placement 

represents the position in the resulting ranking for all of the items that do not 

overlap when comparing both lists. For example, when comparing lists of size k, 

this placement can be k+1 for all missing items in each list. This extension 

rationale is that items appearing only in one of the lists must have k+1 ranks, or 

higher. Fagin’s extended metric is defined below: 

F(a, b)k = 2(k - |Z|)(k + 1) + Σi ϵ z | a(i) – b(i) | - Σi ϵ s a(i) – Σi ϵ t b(i) 

In this equation, Z is the set of overlapping items, S is the set of items that 

belong to a but not to b and T is the set of items that belong to b but not to a. 

In order to compare the results obtained from Spearman’s footrule and 

Fagin’s equation, we conveniently used normalized versions of both measures, by 

dividing each measure by its maximum value. The normalized versions lie in the 

interval [0,1] – where 0 means the rankings were identical and 1 means they were 

reversed. For Fagin’s extension, considering k = 10 (as we are comparing top 10 

rankings), the normalization factor is the maximum value F(a,b)10 can assume. 

This situation happens when the overlap between the lists is 0 (i.e., when the lists 

have no elements in common). Thus, Z is an empty set, S is equivalent to a and T 

is equivalent to b. Therefore: 

F(S,T)10 = 2 (10 – |Z|)(10 + 1) + 0 – Σi = 1, 10 i - Σi = 1, 10 i 

F(S,T)10 = 2 (10 – 0)(11)  – 55 – 55 

F(S,T)10 = 220 – 110 
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F(S,T)10 = 110 

Using 110 as the normalization factor for k =  10, we can calculate the 

normalized value for Fagin’s extension as: 

Fn(a,b) = F(a,b) / 110 

Such normalizations were discussed and proven equivalent on (FAGIN, 

2003). 

It is important to notice the main differences between the three measures: 

the number of overlaps indicates how effectively our prioritization heuristics are 

capable of identifying a set of k relevant code elements, disregarding the 

differences between them. This measure becomes more important as the number 

of elements under analysis grows. Clearly, a high number of overlaps for top 10 

items in a list of 1000 items is much harder to obtain than in a list of 100 items. 

Therefore, the number of overlaps might give us a good hint on the heuristics 

capability for identifying good refactoring candidates, disregarding the differences 

between them. 

The two remaining measures’ purpose is to analyze the similarity between 

two rankings. Therefore, unlike the number of overlaps, they take into 

consideration the positions each item has in the compared rankings. It is important 

to mention the main differences between those two measures: when calculating 

Spearman’s footrule, we are only considering the overlapping items. When the 

lists are disjoint, the original ranks are lost, and a new ranking is produced - 

respecting the order among the overlapping elements. On the other hand, Fagin’s 

measure takes into consideration the positions of the overlapping elements in the 

original lists.  

Finally, we used the measures results to calculate the similarity accuracy – 

as defined in our hypotheses. We obtained the accuracy percentage for each 

measure as described below: 

Table 2 – Calculating similarity accuracy level 

 Overlap NSF NF 

Accuracy % k * 10 (1 – n) * 100 (1 – n) * 100 

NSF – normalized Spearman’s footrule measure, NF – normalized Fagin’s 

extension to Spearman’s footrule measure 
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Assuming that there are always at most 10 overlaps, the number of overlaps 

measure will present 100% of accuracy when k = 10. In this context, k  represents 

the number of overlaps between the rankings.  

For the NSF and NF measures, the rankings are perfect matches when they 

evaluate to 0; therefore, (1 – 0) * 100 = 100%. In this context, n represents the 

value obtained for NSF and NF, as previously defined by their equations. 

Furthermore, a high number of overlaps increases the precision of both 

Spearman’s footrule and Fagin’s measures. When that number is smaller than 5, 

for example, Spearman’s footrule measure can only assume at most 5 different 

values – e.g., for 4 overlaps, 0, 2,4,6 and 8 (i.e., 0, 25%, 50%, 75% or 100% of 

accuracy). A small number of overlaps also affects Fagin’s measure – although 

not as severely: as Fagin’s measure assigns a default value (k+1) to all missing 

elements, the number of possible results is not affected. However, missing 

elements belonging to top positions will have a greater impact in the final measure 

– as the distance between their original ranks and the default value of (k+1) will 

be large. 

 

4.2.5. 
Code Anomaly Rankings and Actual Architecture Problems 

We used the ground truth ranking provided by architects to analyze the 

accuracy of our prioritization heuristics. However, that analysis only takes into 

consideration the point of view of the architects, regarding the most 

architecturally relevant anomalies. Although that point of view provides 

interesting insights on how architecture problems are perceived, we also wanted to 

investigate the actual architecture problems that occurred through the systems’ 

history. For doing so, we compared the results of the prioritization heuristics 

rankings to previously identified architecture problems. In this context, we 

investigated the proportion of architecturally relevant code anomalies among the 

top ten rankings produced by each heuristic.  

This analysis was motivated by our previous studies (MACIA et al., 2012b), 

where we investigated the correlations between code anomalies and architecture 

problems. In this context, we wanted to understand whether – and to what extent - 

our prioritization heuristics’ top results comprehend actual architecturally relevant 
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code anomalies. This analysis may provide insights into which characteristics, or 

combined characteristics, explored by our heuristics are more helpful towards 

finding architecture problems. Moreover, it adds another source of information for 

evaluating our results, in addition to the rankings provided by developers.  

For performing this investigation, we relied on the lists of architecture 

problems detected in the aforementioned study. For each problem reported in 

those lists, we identified the code anomalies that caused it, if pertinent, and the 

code elements related to it. Next, we were able to look for those elements in the 

rankings produced by our prioritization heuristics. If a ranked code element was 

related to at least one architecture problem, we considered it architecturally 

relevant. Table 3 summarizes the information regarding architecture problems and 

architecturally relevant elements for each analyzed system. 

Table 3 – Architecturally relevant code elements 

 # of CE # of AP # of architecturally relevant CE 
HW 137 112 39 (28%) 
MM  82 90 30 (36%) 
PDP 97 28 37 (38%) 

MIDAS 21 29 6 (28%) 
CE – code elements, AP – architecture problems 

We can observe from Table 3 that part of the existing code elements are 

responsible for every architecture problem found. Thus, in all systems, there are 

code elements that were not related to any architecture problem. Our goal is to 

analyze whether the prioritization heuristics are able to outline code elements that 

are in fact related to at least one architecture problem. 

 

4.3. 
Heuristics Evaluation 

This section presents the results of our heuristics evaluation. We evaluated 

each heuristic separately, as they exploit different project characteristics in order 

to determine the architecture relevance of anomalous elements in the 

implementation. Such evaluation was performed in two separate phases: first, we 

conducted a quantitative analysis on the similarity results; then, we perform a 

qualitative evaluation of the results, regarding their relations to actual architecture 

problems (Section 4.2.5), discussing them in detail.  
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4.3.1. 
Evaluation of the Change-Proneness Heuristic 

The Change-Proneness Heuristic was applied to three out of the four target 

systems. We did not analyze MIDAS under this heuristic as only one version of 

this application was available. Our evaluation was based on the analysis of 10 

different versions of HealthWatcher, 8 versions of MobileMedia and 409 versions 

of PDP. We have selected software projects with different history sizes on 

purpose. We wanted to check whether the heuristic performed well or not on 

systems with shorter and longer longevity. In addition, it was not a requirement to 

only embrace projects with long histories, as we wanted to better analyze whether 

the heuristics would be effective in preliminary versions of a software system, 

when there is more opportunity for architecture-wide refactorings. 

The evolution characteristics of the analyzed systems are summarized on 

Table 4. Those characteristics comprehend the total number of code elements per 

system, the maximum number of revisions per file and the average number of 

revisions per file. As PDP is the system with the highest number of revisions, its 

files were also changed the most, with up to 74 changes in a single file – namely, 

Inicial.aspx.cs. The second most changed file was also part of PDP, 

having 40 different versions. The reason for such discrepancy relies on the fact 

that the most changed file acted as a controller Façade, concentrating all the 

request handling methods. 

Table 4 – Change characteristics for each system 

 # of revisions # of CE max revisions avg revisions 
HW 10 137 9 1,5 
MM  9 82 8 2,6 
PDP 409 97 74 8,8 

CE – code elements, avg – average 

 

As we can see, HealthWatcher (HW) and MobileMedia (MM) had similar 

evolution behaviors. As the maximum number of revisions for a single file is 

limited to the total number of revisions for a system, neither HealthWatcher nor 

MobileMedia could have 10 or more versions of a code element. Although 

HealthWatcher had more revisions than MobileMedia, those changes were 
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scattered between more files. Therefore, changes to MobileMedia were 

concentrated in a smaller number of code elements, resulting in a higher average 

number of changes per file. 

Because of the reduced number of revisions available for HealthWatcher 

and MobileMedia, we had to establish a criterion for selecting items when there 

were ties in our top 10 rankings. For example, Table 5 illustrates the change-

proneness ranking for MobileMedia. In this ranking, we used alphabetical order 

for breaking ties. That approach was only possible because there were 9 elements 

in the ground truth ranked as equally harmful. Therefore, we sorted the elements 

alphabetically to avoid inconsistencies when calculating the scores, as we also 

sorted alphabetically the elements on the rankings produced by our heuristics. 

Another approach would be to rank files with the same number of changes so that 

they co-occupied the same ranking position.  

Table 5 – Top 10 change-proneness ranking for MM 

Rank File # of 
changes 

1 ubc.midp.mobilephoto.core.ui.datamodel.AlbumData  8 
2 ubc.midp.mobilephoto.core.ui.MainUIMidlet 8 
3 ubc.midp.mobilephoto.core.ui.screens.AlbumListScreen 8 
4 ubc.midp.mobilephoto.core.ui.controller.BaseController 7 
5 ubc.midp.mobilephoto.core.ui.screens.PhotoViewScreen 6 
6 ubc.midp.mobilephoto.core.ui.controller.PhotoViewController 5 
7 ubc.midp.mobilephoto.core.ui.datamodel.ImageAccessor 5 
8 ubc.midp.mobilephoto.core.util.Constants  5 
9 ubc.midp.mobilephoto.core.util.ImageUtil  5 
10 ubc.midp.mobilephoto.sms.SmsSenderThread 4 

 

Finally, Table 6 shows the results for each measure when analyzing the 

change-proneness heuristic. 

Table 6 – Results for the change-proneness heuristic 

 Overlap NSF NF 
value accuracy value accuracy value accuracy 

HW 8 57% 0,62 38% 0,87 13% 
MM  5 50% 1 0% 0,89 11% 
PDP 6 60% 0,44 56% 0,54 46% 

NSF – normalized Spearman’s footrule measure, NF – normalized Fagin’s 
extension to Spearman’s footrule measure 
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We can see that for the change-proneness heuristic, the highest absolute 

overlap was obtained for HealthWatcher – with 8 overlapping items. The main 

reason why this happened is that HealthWatcher had many files with the same 

number of changes. Therefore, for computing the overlap measure, we did not 

consider only the 10 most changed files, as that approach would discard files with 

as many changes as the ones selected. Instead, we selected 14 files, where the last 

5 had exactly the same number of changes. It is also important to notice that 

HealthWatcher was the system with the highest number of code elements (classes, 

interfaces or abstract classes) – having a total of 137 items that could appear on 

our rankings.  

However, although the number of overlapping items for HealthWatcher is 

high, the similarity measures for this system show their rankings were quite 

mismatched. The NSF measure of 0,75 was obtained because, from the 7 

overlapping items, only 2 were ranked in the same position (#2 and #5). The NF 

measure was also high due to the amount of non-overlapping items (7) and the 

fact that their ranks were relatively high (i.e., were positioned in the top of the 

ranking - for example, items #2, #4 and #5).  

Another interesting finding was regarding the MobileMedia system: 

although this heuristic identified 5 overlaps between the generated ranking and the 

ground truth, all of them were shifted by exactly two positions  – resulting in the 1 

value for the NSF measure. However, when we considered the non-overlaps, the 

position for one item matched - resulting in a slightly smaller distance measure for 

NF. Moreover, this result shows us that the NSF measure is not adequate when the 

number of overlaps is small: there were similarities between the compared 

rankings that could be inferred from the resulting value. For example, the ranking 

order for elements #1, #2 and #3 was preserved – as they appeared in the #3, #4 

and #5 positions, respectively. 

When comparing the results of MobileMedia and HealthWatcher to those 

obtained by PDP, we realize there is a significant difference between them: all of 

PDP measures performed above our acceptable similarity thresholds (> 45% 

similarity). In this case, we found that the similarity was related to a set of classes 

that were deeply coupled: an interface acting as a Façade (PDPServices) and three 

realizations of this interface, implementing a client module, a Proxy and the server 

module. As changes in the interface triggered changes in those three classes, they 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

69

 

suffered many modifications through the system’s evolution. Moreover, such 

design was considered a serious architecture problem in this system.  

Furthermore, the nature of the changes that those systems underwent is 

fairly different: most changes on HealthWatcher were perfective, intending to 

improve the overall system quality, without adding new features. Therefore, 

classes that were top ranked by the change-proneness heuristic were probably 

refactored many times throughout the system evolution. As those classes were 

repeatedly refactored, they no longer represent threats to the systems’ architecture, 

which explains why they did not appear on the ground truth ranking. Most 

changes performed on MobileMedia, on the other hand, were related to the 

addition of new functionalities, which was also the case for PDP. However, 

MobileMedia also had low accuracy rates. Therefore, the different results for this 

heuristic might also be associated with the differences between the evolution 

histories of the analyzed systems: while MobileMedia and HealthWatcher had 

around 10 analyzed revisions, PDP had 409. 

In conclusion, the results for this heuristic show us that it would be probably 

useful for detecting and ranking architecturally relevant anomalies when: (i) there 

are architecture problems involving groups of classes that change together; (ii) 

there are architecture problems related to Façades or communication classes, as 

changes to those classes might trigger changes in client components; (iii) changes 

were not predominantly perfective, i.e., the majority of the changes performed on 

the system were not refactorings. 

The results we obtained in this analysis also helped us to reject the null 

hypothesis H10 – as the Change-Proneness Heuristic was able to produce rankings 

for PDP with at least acceptable accuracy in all of the analyzed measures (60%, 

56% and 46%). 

 

Correlation with Actual Architecture Problems 

When analyzing the correlation of the change-proneness heuristic rankings 

with actual architecture problems for each system, we also had interesting results, 

confirming the usefulness of the prioritization. Such analysis was performed by 

observing which of the ranked elements were related to actual architecture 

problems. Table 7 summarizes our results. 
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Table 7 – Change-proneness and actual architecture problems 

 # of ranked CE architecturally 
relevant 

% of architecturally 
relevant 

HW 14 10 71% 
MM  10 7 70% 
PDP 10 10 100% 

CE – code elements 

 

It can be observed on Table 7 that elements containing architecturally 

relevant anomalies were very likely to be change-prone. In fact, for the PDP 

system, all of the top 10 most changed elements were related to architecture 

problems. Considering that PDP has 97 code elements, and 37 of them are related 

to architecture problems, this can give us a hint that change-proneness is a good 

heuristic for identifying them.  

 

4.3.2. 
Evaluation of the Error-Proneness Heuristic 

The error-proneness heuristic is based on the assessment of bugs that were 

introduced by a given code element. The higher the number of bugs found on that 

element, the higher its priority. Therefore, in order to correctly evaluate the results 

for this heuristic, a reliable set of detected bugs should be available. This was the 

case for one of the analyzed systems – namely, the PDP system. However, for the 

remaining target systems, there was no such documentation of detected bugs and 

the code elements that caused them. As explained in Section 4.2.3, for such case, 

we relied on the analysis of bug detection tools, which indicate code elements that 

could possibly introduce bugs. 

The results for the error-proneness heuristic are summarized on Table 8. 

Table 8 – Results for the Error-Proneness Heuristic 

 overlap NSF NF 
value accuracy value accuracy value accuracy 

HW 10 71% 0 100% 0,74 26% 
MM  3 30% 0 100% 0,76 24% 
PDP 5 50% 0,83 17% 0,74 26% 

 

It is important to mention that for the HealthWatcher system, exceptionally, 

there were 14 ranked items, instead of 10, due to ties between some of them. 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

71

 

Nonetheless, HealthWatcher presented the highest overlap – achieving an 

accuracy of 71%. The reason why that happened is that the detected bugs were 

related to a behavior found on every class implementing the Command role. 

Furthermore, every Command class was listed by the developers as high-priority 

in the ground truth ranking – meaning they represented a top rated architecture 

problem. Therefore, the overlaps between the rankings were all related to classes 

that implemented commands on HealthWatcher. 

Besides the high number of overlaps, we also observed that the priority 

order for the overlapping elements was exactly the same as the one pointed out in 

the ground truth – hence, the accuracy obtained by NSF was 100%. However, the 

4 remaining non-overlapping elements were exactly the top 4 elements in the 

ground truth ranking. The fact that the top 4 elements did not appear in the 

ranking produced by the error-proneness heuristic resulted in a low accuracy for 

the NF measure – 26%. 

We applied the same strategy for bugs mining in MobileMedia. However, 

for this system, all of the measures presented low accuracies. In fact, because of 

the small number of overlaps, the results for NSF may not confidently represent 

the heuristics’ accuracy, as explained in Section 4.2.4. 

For PDP, the results may be evaluated from a different perspective, as we 

considered manually detected bugs, reported on its issue tracking system, instead 

of automatically detected ones. However, even considering a reliable set of bugs 

for performing our analysis, the overall results presented low accuracy. From the 

5 non-overlapping items, 4 of them were related to bugs on utilitarian classes – 

mainly related to data conversion and validation methods. As those classes were 

neither related to any particular architectural role, nor implementing an 

architecture component, they were not considered architecturally relevant. The 

other non-overlapping element was a presentation class, which presented a bug 

related to the graphical user interface. 

Those results indicate that the error-proneness heuristic could benefit from 

architecture information for discarding elements that are not related to any 

architecture role. By itself, this heuristic might also not be able to identify the 

most relevant code anomalies, as bugs can be found throughout the systems code 

elements, regardless of their architecture relevance. Therefore, by combining it 
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with other heuristics, such as the architecture role heuristic, we can possibly 

improve its results. 

 

Correlation with Actual Architecture Problems 

The analysis of correlation with actual architecture problems for the error-

proneness heuristic presented better results towards detecting relevant anomalies. 

As we can observe on Table 9, at least 80% of the ranked elements were related to 

architecture problems, for all of the systems we analyzed. 

Table 9 – Error-proneness and actual architecture problems 

 # of ranked CE architecturally 
relevant 

% of architecturally 
relevant 

HW 14 12 85% 
MM  10 8 80% 
PDP 10 8 80% 

CE – code elements 
 

The most significant results were obtained for the HealthWatcher system, 

with 85% of the ranked elements related to architecture problems. That number is 

even more significant when we consider that the ranking for HealthWatcher was 

composed of 14 elements, instead of only 10. Furthermore, it is important to 

mention that the rankings for HealthWatcher and MobileMedia were built over 

automatically detected bugs. This shows us that even when formal bug reports are 

not available, the use of static analysis tool for predicting possible bugs might be 

useful. 

Regarding the PDP system, which was the only one where actual bug 

reports were considered, the results were also promising: from the top 10 ranked 

elements, 8 were related to architecture problems. Considering that PDP had 97 

code elements, with 37 of them related to architecture problems, that means the 

remaining 29 were distributed among the 87 bottom ranked elements. When we 

extended the analysis over the top 20 elements, we found an even better 

correlation factor: 17, or 85% of the top 20 most error-prone elements were 

related to architecture problems.  
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4.3.3. 
Evaluation of the Anomaly Density Heuristic 

The Anomaly Density heuristic was applied to all of our target systems. We 

analyzed 178 code anomalies from MIDAS, 273 from HealthWatcher, 176 from 

MobileMedia and 175 from PDP – totaling 802 code anomalies. The results for 

this heuristic are shown on Table 10: 

Table 10 – Results for the Anomaly Density Heuristic 

 Overlap NSF NF 
Value accuracy Value Accuracy Value accuracy 

HW 5 50% 0,66 34% 0,54 46% 
MM  7 70% 0,41 59% 0,70 30% 
PDP 8 80% 0,37 63% 0,36 64% 

MIDAS 9 90% 0,4 60% 0,2 80% 
 

As we can see, this heuristic had many good results in terms of accurately 

ranking architecturally relevant anomalous elements. In fact, good results were 

obtained not only when correctly selecting the top 10 (as evidenced by the number 

of overlaps) but also when defining their ranking positions: only 2 out of 8 

measures had low accuracies, according to our accuracy level thresholds (Section 

4.2.1). 

The number of overlaps in this heuristic was considered highly accurate in 3 

out of the 4 analyzed systems. This is an indication that code elements infected by 

multiple code anomalies are often perceived as high priority by maintainers. The 

only system where this did not occur was HealthWatcher, which had only 5 

overlaps. When analyzing the number of anomalies for each element on the 

ranking representing the ground truth, we found that many of them had exactly the 

same number of code anomalies, namely 8. However, around 40 classes in the 

entire system (or 30%) had at least 8 anomalies, which is why those elements did 

not appear in the top 10 ranking. In fact, the 10th element in the ranking was 

infected by 13 anomalies. It is important to mention that for this heuristic, in 

contrast to the change-proneness and error-proneness heuristics, we only 

considered the top 10 elements for the HealthWatcher system, as there were not 

ties to be taken into consideration.  

MIDAS had a significant number of overlaps – 9 out of 10 elements 

appeared in both rankings. However, this was highly expected, as this system was 
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composed of 21 code elements only. Nonetheless, the NSF and NF measures also 

presented a high accuracy – meaning that the rankings were similarly ordered. The 

NF measure had a better result, influenced by the fact that the only mismatched 

element was ranked as #10 – a low position. As explained on Section 4.2.4, 

missing items appearing in low positions have a positive effect on the NF measure 

– i.e., they decrease the distance between the rankings, and increase the accuracy. 

MobileMedia had the most discrepant results regarding the two ranking 

measures: 59% accuracy for the NSF measure, and 30% for the NF measure. Such 

difference was also related to the position of the non-overlapping elements in the 

ranking generated by the prioritization heuristic: the elements ranked as #1, #3 

and #4 were all missing from the ranking provided by developers. Therefore, their 

ranks were assigned to k+1 in the developers list, which resulted in a huge 

distance from their original positions. Those elements comprehended a data model 

class (core.ui.datamodel.ImageMediaAccessor), a utilitarian class 

(core.util.MediaUtil) and a base class for controllers 

(core.ui.controller.BaseController). Intuitively, utilitarian classes are not cohesive 

and often contain multiple methods – characteristics that favor the presence of 

code anomalies. The ImageMediaAccessor class was infected with 23 code 

anomalies – mostly long methods – and was also involved with architecture 

problems. However, it was not mentioned by developers in their rankings. Finally, 

the BaseController class, although missing from the original ranking, is the base 

class for all the other controllers in the MobileMedia architecture, which 

correspond to 9 out of the top 10 elements ranked by developers.  

By analyzing the results for this heuristic, we observed that code elements 

infected by multiple code anomalies are often perceived as high priority. This 

could be an indication that automatic detection of code anomaly patterns is 

desirable (ARCOVERDE et al., 2012; MACIA et al., 2012c), as those groups of 

code anomalies could be identified together. We also identified that many false 

positives (i.e., classes that are infected by multiple code anomalies, but are not 

related to architecture problems) could arise from utilitarian classes, as those 

classes are often large and not cohesive. By combining this heuristic with the 

architecture role heuristic, we could help discarding such results. 

Finally, the results obtained in this analysis also helped us rejecting the null 

hypothesis H30 – as the anomaly density heuristic was able to produce rankings 
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with at least acceptable accuracy in all of the systems we analyzed for at least one 

measure. Furthermore, we obtained a high accuracy rate for the MIDAS project in 

2 out of 3 measures (90% for the overlaps and 80% for NF). 

 

Correlation with Actual Architecture Problems 

When analyzing the rankings produced by the anomaly density heuristic, 

comparing them to the actual architecture problems, the results were not 

consistent through all the analyzed systems. For the HealthWatcher system, only 5 

out of the 10 top ranked elements were related to architecture problems, as shown 

on Table 11. Those results are similar to the ones found when comparing the 

ranking to the ground truth provided by the architects. In fact, we the 5 elements 

related to actual architecture problems are exactly the 5 overlapping items 

between the compared rankings (Table 10). The reason why that happened for 

HealthWatcher is related to the high number of anomalies, concentrated in a small 

number of elements, that were not architecturally relevant. In this context, all of 

the 5 elements not related to architecture problems were data access classes, 

responsible for communicating with the database. 

Table 11 – Anomaly density and actual architecture problems 

 # of ranked CE architecturally 
relevant 

% of architecturally 
relevant 

HW 10 5 50% 
MM  10 9 90% 
PDP 10 8 80% 

MIDAS 10 6* 60%* 
CE – code elements 
 

Another interesting result for this analysis emerged from the MIDAS 

system. From the top 10 elements with the higher number of anomalies, 6 were 

architecturally relevant - or 60% of them. However, the MIDAS system has 

exactly 6 elements that contribute to the occurrence of architecture problems. 

Thus, the anomaly density heuristic correctly outlined all of them in the top 10 

ranking. For that reason, those results are highlighted on Table 11. 
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4.3.4. 
Evaluation of the Architecture Role Heuristic 

For evaluating the architecture role heuristic, we analyzed three systems: 

HealthWatcher, MobileMedia and PDP. We consulted the original architects of 

those systems for gathering information on the architecture roles. Table 12 depicts 

our results. 

Table 12 – Results for the Architecture Role Heuristic 

 Overlap NSF NF 
value accuracy Value accuracy Value Accuracy 

HW 4 40% 0,5 50% 0,72 28% 
MM  6 60% 0,22 78% 0,41 59% 
PDP 6 60% 0,33 67% 0,41 59% 

 

 PDP held the most consistent results across the three similarity measures, 

having around 60% of accuracy when comparing the similarity between the 

rankings. It was also the only system where we could divide the classes and 

interfaces in more than three levels when analyzing their architecture roles. In this 

context, we divided classes and interfaces from PDP in four different roles, as 

detailed below, in Table 13: 

Table 13 – Architecture roles for PDP 

Architecture roles Priority Score # of CE 

Utilitarian and internal classes 1 23 

Presentation and data access classes 2 28 

Domain model, business classes 4 24 

Public interfaces, communication 
classes, façades 

8 6 

CE – code elements (classes and interfaces) 

 

 From this classification, we were able to draw the architecture role 

heuristic ranking for PDP, containing all of the 6 elements from the highest 

category (public interfaces, communication classes and façades) and 4 elements 

from the domain model and business classes. In this case, we ordered the elements 

alphabetically for breaking ties. Therefore, although 24 classes had the same 

score, we only compared the first 4 of them. However, some of the elements 
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ranked by developers belonged to that group of discarded elements. Had we 

chosen a different approach, such as considering all the ties as one item, we would 

turn our top 10 ranking into a list of 30 items and have a 100% overlap rate – as 

all of the non-overlapping items belonged to the domain model category. 

 For HealthWatcher and MobileMedia, we followed a different scoring 

approach, by consulting the original architects for each system directly. They 

informed us the existing architecture roles, and their respective relevance on the 

systems’ architectures. This procedure is described on Section 4.2.3.3. Once we 

identified which classes were directly implementing which roles, we were able to 

produce the rankings for this heuristic. 

HealthWatcher presented the worst results among the analyzed systems.  

However, when producing the ranking for the architecture role heuristic, almost 

20 elements were tied with the same scores. We first only selected the top 10 

elements, and broke the ties according the alphabetic order of the ranked 

elements. That led us to an unreal low number of overlaps, as some of the 

discarded items were present in the ground truth ranking. In fact, because of the 

low number of overlaps, it would not be fair to evaluate the NSF measure as well 

– since it is calculated over the overlapping elements only. We then performed a 

second analysis, considering the top 20 items instead of the top 10, for analyzing 

the whole set of elements that had the same score. In such analysis, the number of 

overlaps went up to 6, but the accuracy for the NSF measure decreased to 17% – 

indicating a larger distance between the compared rankings. This shows us that 

the 50% accuracy for NSF obtained in the first comparison round was misleading, 

as expected, due to the low number of overlaps. The NF measure, on the other 

hand, considers missing elements as part of the distance measure. In fact, it 

computes the non-overlapping items as a mismatch between the rankings – thus, 

resulting in a more reliable similarity index. For HealthWatcher, that index was 

.72 – or 28% of accuracy. This number was, nonetheless, highly influenced by the 

low number of overlapping items – as that indicates a big mismatch between the 

compared rankings. 

As for MobileMedia, high accuracy rates were found for both the NSF and 

NF measures. We observed when analyzing its architecture documentation that 

many elements reported as high priority by developers were implementing 

architecture components. More specifically, there were 8 architecture components 
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described in the document directly related to 9 out of the top 10 high priority 

classes, according to the developers’ ranking. Furthermore, we identified one 

architecture component (SMSController) that was implemented by two classes 

(SMSReceiverController and SMSSenderController). As they were related to the 

same architecture role, they were both present in the ranking produced by the 

heuristic. However, only one of them appeared in the top 10 ranking representing 

the ground truth. 

The results for this heuristic are highly dependent on the quality of the 

architecture roles defined. More specifically, we observed that the best results 

were obtained for the PDP system, with had multiple architecture roles defined, 

and with different levels of relevance. Furthermore, this heuristic is probably 

better when combined to other heuristics, in order to discard elements that do not 

represent an important architecture role from the final results. 

Finally, the results obtained in this analysis also helped us to reject the null 

hypothesis H40 – as the architecture role heuristic was able to produce rankings 

with at least acceptable accuracy in all of the systems we analyzed for at least one 

measure.  

 

Correlation with Actual Architecture Problems 

The analysis of correlation between the architecture role heuristic rankings 

and actual architecture problems for each system is summarized on Table 14. 

Table 14 – Architecture role and actual architecture problems 

 # of ranked CE architecturally 
relevant 

% of architecturally 
relevant 

HW 10 4 40% 
MM  10 9 90% 
PDP 10 10 100% 

CE – code elements 

Again, the results are quite discrepant between HealthWatcher and the two 

remaining systems. However, for this analysis, the problem resided on the 

analyzed data. We identified two different groups of architecture roles among the 

top 10 elements for HealthWatcher, ranked as equally relevant: 6 of the related 

elements were playing the role of repository interfaces; the remaining 4 elements 

were Façades (GAMMA et al., 1994) or elements responsible for communicating 

different architecture components. We then asked the original architects to 
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elaborate on the relevance of those roles, as we suspected they were unequal. 

They decided to differentiate the relevance between them, and considered the 

repository role less relevant. That refinement led to a completely different 

ranking, which went up from 4 to 7 elements related to architecture problems.  

The results obtained for HealthWatcher show us the importance of correctly 

identifying the architecture roles and their relevancies for improving the accuracy 

of this heuristic. However, this also constitutes a drawback, as we cannot evaluate 

the heuristic without some input from the original architects, who might not be 

available or give imprecise information. When that information is accurate, the 

results for this heuristic are highly positive. Furthermore, the other proposed 

prioritization heuristics could benefit from information regarding architecture 

roles in order to minimize the number of false positives, like utilitarian classes. 

This indicates the need to further analyze different combinations of prioritization 

heuristics. 

 

4.4. 
Threats to Validity 

This section describes the main threats to validity of our studies and the 

mitigations we considered. 

Validity of detected code anomalies. A threat to construct validity is 

related to possible errors in the detection of code anomalies in each selected 

system. As our approach consists of ranking previously detected code anomalies, 

the method for detecting them must be trustworthy. There are several kinds of 

detection strategies documented on literature; however, many have been proved 

inefficient for detecting relevant anomalies in previous studies (MACIA et al., 

2012a). We mitigated the risk of imprecision when detecting code anomalies by 

(i) involving the original developers and architects in this process and (ii) using 

well-known metrics and thresholds, previously and independently evaluated 

elsewhere, for constructing our detection strategies (KHOM et al., 2009; 

OLBRICH et al., 2010). 

Identification of errors. Another threat to construct validity is related to 

how we identified errors for applying the error-proneness heuristic. We first 

relied on commit messages for identifying classes related to bug fixes, which 
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means some errors might be missing. We tried to mitigate such threat by also 

investigating issue tracking systems, looking for error reports and traces between 

those errors and the code that was changed to fix them. Moreover, we also 

investigated test reports, when available, in order to identify the causes for 

eventual broken tests. When that information was unavailable, we relied on the 

use of static analysis methods for identifying bugs (AYEWAH et al., 2008). 

Identification of architecture roles. The architecture role heuristic is based 

on identifying the relevance of a given code element regarding the system’s 

architecture design. Therefore, in order to compute its scores, we needed to assess 

the roles each code element plays on the overall architecture. This information 

was extracted differently depending on the project under analysis, which we 

considered a threat to construct validity. For example, for HealthWatcher and 

MobileMedia, we studied the architecture documentation, looking for classes that 

implemented described interfaces or components. For PDP, on the other hand, as 

the architecture documentation was absent, we interviewed the original architects 

for identifying those classes. Nonetheless, we understand that the absence of 

architecture documentation reflects a common situation, and may be inevitable 

when analyzing real world systems. 

Choice of the target applications. The choice of the target applications is 

related to a threat to external validity. As in every empirical study, our results are 

limited to the scope of these applications. However, we tried to minimize such 

threat by selecting systems developed by different programmers, with different 

domains, programming languages, environment (i.e., academy and industry) and 

architecture styles. Nonetheless, in order to better generalize the obtained results, 

our study should be replicated with other applications, from different domains – 

as long as the selection criteria described in Section 4.1 are respected. 
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