PUC-RIo - Certificacdo Digital N° 1021808/CA

51

4
Evaluation

Chapter 3 detailed our heuristics for supporting ghioritization of code
anomalies according to their relevance to a systerhitecture. Those heuristics
were based on the assumption that by analyzingifsp@baracteristics of a
software project, it is possible to identify andhkaarchitecturally relevant code
anomalies. Such ranking could then help developewsitize their refactorings
while aiming to solve deeper maintainability probke i.e. architecture design
problems.

In order to verify whether those heuristics werdeied useful for ranking
code anomalies, we conducted an empirical studydeduby the following
questions:

1) Is it possible to accurately rank code anomaliesethtaon their

architecture relevance?

2) Which characteristics help accurately ranking cademalies based on

their architecture relevance?

Given that this is a first study in the field onking code anomalies, our
evaluation is of exploratory nature (KITCHENHABt al, 2002) and focused on
a detailed analysis of four software projects. ddeo to make the purpose of our
evaluation clearer, we have defined a set of hygssth (Section 4.2.1). However,
it was not our goal to rely on a large data setcardy out statistical tests over this
set. In other words, our aim here was to perfornirgt identification and
evaluation of project factors that are likely to beful to rank architecturally
relevant code anomalies. Our evaluation is intenttedlerive some lessons
learned related to the usefulness of these prdpmibrs. These lessons will
provide insights for the conception of more specifypotheses that need to be
rigorously tested in further studies.

This chapter presents the evaluation of the pization heuristics. Section

4.1 describes the selection criteria and the cheniatics of four target

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

52

applications we used for evaluating the prioriiiat heuristics. Section 4.2
describes our study setting, including our hypatsegprocedures and analysis
methods. We discuss our results for each priotiimaheuristic in Section 4.3.

Finally, we present the threats to our study vglith Section 4.4.

4.1.
Selection Criteria and Target Applications

In order to be feasible for the evaluation of thenitization heuristics, the
selected target applications had to adhere toi@ssef characteristics.

First, either the architecture specification or tréginal developers and
architects had to be available. By analyzing suymdtiication, or consulting the
developers and architects, we are able to verifyethvdr the ranked code
anomalies are indeed architecturally relevantlsib &ielps us to better analyze the
architecture roles played by each code elementh 8dormation is essential to
the application of tharchitecture role heuristiqSection 3.1.4), which directly
depends on architecture information to computedh&ing of code anomalies.

Second, the source version control systems of #hected applications
should be available, in order to enable the apjinaof the change-proneness
heuristic(Section 3.1.1). In fact, the selected systemsilshaiso ideally present a
high number of changes (or revisions) through teealutions.

Third, an available issue tracking system, althomgh mandatory, was
highly recommendable for providing input to theror-proneness heuristicAs
explained on Section 3.4.1.2, however, such hetmsight also use information
from commit messages for inferring bug fixes reMisi. However, in this case,
the source version control system should not oelavrilable, as required by our
second criterion, but also contain templates foli-feematted commit messages.
Such templates are essential for the retrievahfafrmation regarding bug fixes
and their corresponding code elements.

Finally, the applications should present differdasign and implementation
structures. Such restriction helps us to betteretstdnd the impact of the
proposed heuristics for diverse sets of code anemaémerging on different
architecture designs. Moreover, it minimizes thestlity of bias for the results
of a particular architecture design.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

53

Based on these criteria, we selected the lastoresf 4 software projects
from different application domains: HealthWatch@REENWOODet al.,2007),
MobileMedia (FIGUEIREDOet al., 2008), MIDAS (MALEK et al., 2007) and
PDP — an acronym for an industry application, gelxaheld by an entertainment
company. The table below summarizes the main ctarsiics of the selected
software projects.

Table 1 — Characteristics of target software projets

MIDAS HW MM PDP

Application Middleware V_/eb_ Softwar_e V_/eb_
Type application | Product Line| application
Erogrammlng C++ Java/AspectJava/Aspect) C#

anguage
Archltectural Layers MVC Layers PC &
Design Layers
of CE 21 137 82 97
of AE 9 19 24 15
KLOC 72 46 51 22
of CA 178 273 176 175
of AP 29 112 90 28
#of 1 10 10 409
Revisions

HW — HealthWatcher, MM — MobileMedia, CE — codenetmts, AE —
architecture elements (modules and interfaces)-@Ade anomalies, PC — Page
Controller, AP — Architecture Problems

HealthWatcher (HW) is a web software system used rimistering
complaints about health issues in public instingioMobile Media (MM) is a
software product line that manages different typesiedia on mobile devices.
MIDAS is a lightweight middleware for distributedrssor applications (GARCIA
et al.,, 2009). PDP is a web application for managing sgeaghic sets in
television productions. These projects were prugstp analyzed in studies of
architectural degradation and refactoring (GARG@IAal, 2009; DANTASet al,
2011; MACIA et al, 2012b). Therefore, part of the needed information
performing our evaluation had already been preWoullected, without
introducing bias with respect to our specific reskajuestions. More specifically,
the code anomalies for all of these systems haghdyr been collected in a
previous study (MACIAet al, 2012b), in the context of this dissertation. The

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

54

detected code anomalies were also classified regartheir architectural
relevance in the aforementioned study.

It is important to mention the difficulty in findgnsoftware projects that
adhered to all of the defined selection criteriafdct, such difficulty led us to
choose projects that only contained a subset othlagacteristics we needed for
evaluating all of the prioritization heuristics. rFexample, the MIDAS project
was not suitable for thehange-proneness heuristas only one revision of it was
available. However, as we had already studied iithit@cture problems and
detected its code anomalies for previous studiesas reasonable to consider it
when analyzing thearchitecture role (Section 3.1.4) andanomalies density

(Section 3.1.3) heuristics.

4.2.
Study Setting

Our study aims at analyzing whether the proposedfsbeuristics might
help developers to identify architecturally relevaaode anomalies that should be
prioritized. It is expected that the use of the pm®ed heuristics will help
developers to early detect architecture probleni®dein the implementation, so
that architecture degradation can be avoided. @alysis is carried out in terms
of the accuracy(Section 4.2.1) of the prioritization heuristicsvards ranking
code anomalies correctly. Following the recommeaondafrom Wohlin et al

(2000), we defined our study and its goals usirgG@M format, as follows:
Analyze: the proposed set of prioritization heuristics

For the purpose of: understanding their accuracy for ranking code

anomalies based on their architecture relevance

With respect to: rankings previously defined by developers or

maintainers of each analyzed system
From the viewpoint of: the researcher

In the context of: 4 software systems from different domains and with

different architectural and implementation detailed designs

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

55

The study was conducted in three phases: firsd, @soritization approach
for ranking code anomalies, we needed to detectctambify those anomalies
regarding their architecture relevance, in eachthef target systems (Section
4.2.3.1). Second, we computed the scores for eatbctd code anomaly,
according to the heuristic under analysis, prodycan resulting ordered list
(Section 4.2.3.4). In the third phase, we comparled heuristics results with
rankings previously defined by developers or maneia of each analyzed
system, calculating their similarities (Section.4)2 Those rankings provided by

developers represent the “ground truth” data inamalysis.

4.2.1.
Hypotheses

In order to evaluate the accuracy of the proposedlistics for ranking code
anomalies based on their architecture relevancdirsieestablished thresholds of
acceptable accuracy. Such thresholds, in this stuese defined in three different
levels:

0%-40% - low accuracy

40%-80% - acceptable accuracy

80%-100% - high accuracy

We chose to analyze those three levels of rankmegracy for analyzing to
what extent the prioritization heuristics mighthegpful — qualifying the results in
three possible ranges. For example, an accuraey &évb0% means the rankings
produced by the proposed heuristics should betahidentify at least half of the
most architecturally relevant code anomalies oedtlity the developers, in the
right order of priority. We performed our analyser top ten rankings, as
explained on Section 4.2.4.

In this context, we defined the following null hypeses:

H1l,. The change-proneness heuristic cannot accuratédentify
architecturally relevant code anomalies ranked@sten

H2,. The error-proneness heuristic cannot accuratelyentify

architecturally relevant code anomalies ranked @s ten

H3,. The anomaly density heuristic cannot accuratelgientify
architecturally relevant code anomalies ranked @s ten

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

56

H4,. The architecture role heuristic cannot accurateligentify
architecturally relevant code anomalies ranked @s ten

We also defined the following alternative hypotrsese

H1,. The change-proneness heuristic can accuratelytityearchitecturally

relevant code anomalies ranked as top ten

H2,. The error-proneness heuristic can accurately tdgrarchitecturally

relevant code anomalies ranked as top ten

H3,.. The anomaly density heuristic can accurately fidgrarchitecturally

relevant code anomalies ranked as top ten

H4,. The architecture role heuristic can accuratelgntify architecturally

relevant code anomalies ranked as top ten

In the context of the hypotheses defined abaeeuratelymeans that the
heuristic was able to identify architecturally relat code anomalies with, at least,

acceptable accuracy. Therefore, the accuracy saild reach 40% or more.

4.2.2.
Variable Selection

In order to test our hypotheses, we have definedfahowing dependent
and independent variables.

Independent variables.There are five independent variables in this study:
the rankings produced by each of the prioritizatienristics and the ranking that
represents the ground truth. Those rankings aesedfscode anomalies, ordered by
their respective scores. The ranking representiegground truth was produced
by the original architects of each system.

Dependent variables.There are as many dependent variables as there are
similarity measures between the rankings produgetihd proposed prioritization
heuristics and the rankings representing the growath. We selected three
different similarity measures: number of overlapSpearman’s Footrule
(DIACONIS et al, 1977) and Fagin’s extension to Speaman’s Foo{feAesIN

et al, 2003). Those measures are defined in Sectioa.4.2.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

57

4.2.3.
Data Collection

The data collection process of our study involvatfecent activities,
including: detecting code anomalies, identifying trankings representing the
ground truth and collecting the scores for eachralp under the perspectives of

each prioritization heuristic. These activities described next.

4.2.3.1.
Detecting Code Anomalies

As a first step, code anomalies were automaticakntified using well
known detection strategies and thresholds (KHE&NI, 2009; OLBRICHet al,
2010). These strategies and thresholds were afstady applied in other studies
based on the same systems we analyzed (FIGUEIR&DAD 2008; MACIA et
al., 2012a, 2012b). The analysis and validation ohgletection strategies are out
of the scope of this dissertation; neverthelessy tire detailed and discussed by
previous works (MACIAet al, 2012a). The metrics required by detection
strategies were mostly collected with current todsch as: Together
(TOGETHER, 2012), NDepend (NDEPEND, 2012) and Usided
(UNDERSTAND, 2012). These tools are complement@ipgether analyzes Java
programs, while NDepend and Understand analyze &HC# programs.

As a second step, the list of code anomaly suspextschecked and refined
by the developers and architects. This validaticas van important step and
motivated by the fact that strategies presenteddoguracy rates when detecting
architecturally relevant code anomalies (MACKX al, 2012a). By mixing
automatic with manual detection, we aimed at amadya more reliable set of

code anomalies.

4.2.3.2.
Rankings Representing the Ground Truth

The ground truth ranking,in the context of this dissertation, is a list of
anomalous elements, ordered by their architectleyance. For this analysis, we
chose to consider only classes as the analyzedertenSuch ranking was defined
by the architects of the target systems. We andlytee accuracy of our

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

58

prioritization heuristics by comparing the simitgrbetween the rankings each
heuristic produced with the ground truth ranking.

For collecting the rankings representing the grotrath, we contacted the
architects of the analyzed systems. They were askpdovide an ordered list of
the top 10 classes they believed better represettied main sources of
maintainability problems from the perspective of tlarchitecture of those
systems. We did not provide any specific critedaduiding them to choose the
most critical classes. In particular, we did nothtien any of the factors explored
by the prioritization heuristics (Section 3.1), Bues number of changes or faults
per module. Our intention was not influence theultssat all towards a better
performance of any of the heuristics.

In some cases, like for the HealthWatcher systeahitects claimed it was
not possible to fit only 10 classes into the ragkias many of them were
considered equally problematic. For this partic@iase, the ranking representing
the ground truth had 14 elements, and our analyses performed on 14-sized
rankings.

Besides informing the lists of high priority elemenwe also asked
developers and architects to provide informatiagarding the architecture design
of the analyzed systems. More specifically, we dgke a list of architecture roles
that were present in each analyzed system, asawéfleir order of relevance from
the architecture perspective. They also providedes between architecture
elements and code elements, which were essentiabfoputing therchitecture
role heuristic It is worth mentioning that this data was onlguested after the
architects had already provided their ground trathkings, in order to avoid the

influence of the leveraged architecture informaagainst the rankings.

4.2.3.3.
Calculating Scores

The second phase of our study involved the calioulatf scores for each
code anomaly, in the context of the proposed hicsisAs the mechanics of each
heuristic are fairly different (Section 3.2.1), detail below the steps followed for

each of them separately.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

59

Change-proneness heuristicAs explained in Section 3.2.1, the change-
proneness heuristic computes its scores basedearuthber of changes made to a
given code element. In the context of this studg,a@mputed file changes only,
i.e, different code elements modified within a $nfjje are not distinguished.

In order to correctly compute the scores for thesiristic, we first had to
extract the change log from the version controltesys for each of the target
applications. We then processed the resulting ileg,fcounting the number of
times each resource was changed. This extractienfivgd performed in the root
directory for each system, retrieving all the fdeanges in a single command.
Once the number of changes was computed, we ordeeeldst of resources and
their respective number of changes, thus produmimdinal ranking.

Error-proneness heuristic. For computing the error-proneness heuristic
scores, we used two different techniques: the brs¢ is based on change log
inspection, looking for common terms likeig or fix. Once those terms are found
on commit messages, we increment the scores focldsses involved in that
change. Such technique has been recently appliednamy relevant studies
(FISCHERet al, 2003; KIMet al, 2011). However, as we could not rely on it for
all of the analyzed systems — as only the PDP sysi&d high quality and well-
formatted commit messages — we also used a bugtidetéool on MobileMedia
and HealthWatcher. As both systems were implememtethva, we chose the
findBugstool (AYEWAH et al, 2008) for automatically detecting blocks of code
that could be related to bugs. ThegBugstool uses static analysis to detect
potential bugs, such as security violations (SQiedtion), runtime errors
(dereferencing a null pointer) and logical incotesisies (a conditional test that
can't possibly be true). Once those possible bugsdentified, we collect the
code elements causing them and increment theiescor

Anomaly density heuristic. Computing the scores for this heuristic was
rather straightforward. In this phase, we verifi@thich code elements
concentrated the highest number of code anomdlfesse anomalies had already
been detected in the first phase of our studygeasrthed on Section 4.2.3.1.

Architecture role heuristic. The architecture role heuristic depends on two
kinds of information, regarding the system’s desiiinst, which roles each class
plays in the architecture and second, how releihose roles are towards

architecture maintainability=or example, consider an application following the

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

60

MVC pattern (BUSCHMANNet al.,2007). Code anomalies found on classes that
implement Views might not be considered as relewsnthose infecting classes
that implement the Model, as Views are not suppdsednplement complex
behaviors or business rules.

For this study setting, when analyzing this heigjste first had to leverage
architecture design information in order to mapecetéments to their architecture
roles, as explained in Section 4.2.3.3. Part of thformation extraction had
already been performed in our previous studies (MMAEX al, 2012a, MACIAet
al., 2012b). Then, we asked the architects to assftgreht levels of importance
to those roles, according to the architecture pattenplemented (e.g., MVC, 3-
layers, Page Controller).

Finally, we defined score levels to each architectole. For doing so, we
considered the number of roles identified by thehiéects, and distributed them
according to a fixed interval from 0 to 10. Cod@malies that infected elements
playing critical architecture roles were assignethe highest score — namely, 10.
On the other hand, when the code anomaly affectexhents related to less
critical architecture roles, they would be assigtetbwer scores, according to the
number of existing roles and the classificationvgted by the architects. For
example, in PDP, which implemented the Page Cdatrphttern, the architects
identified 4 different architecture roles. Hendee tscores for each architecture
role could assume the values 0, 2.5, 5, 7.5 0a&@.0/4 is 2.5, which we used as
the default interval). We assigned a 10-value sdoreanomalies found on
communication classes or interfaces; businessedasceived a 7.5 scores; and

finally, anomalies found on data classes were gav@rb score.

4.2.4.
Analysis Method for Comparing Rankings

In the third and last phase of our study, we comgbaéine rankings produced
by each of the heuristics with those representiregground truth — provided by
the developers or maintainers of the analyzed systé&Ve decided to analyze
only the top ten code anomalies ranked, for thregnmeasons: first, asking
developers to rank an extensive list of anomaliesuldh be unviable and

counterproductive. Second, we wanted to evaluatepooritization heuristics

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

61

mainly for their abilities to improve refactorindfectiveness — that is, improving
the chances developers will prioritize the remayMatelevant code anomalies. In
this context, the top ten code anomalies represergignificant sample of
anomalies that could possibly cause architectunblems. Third, we focused on
analyzing the top 10 anomalies for assessing whdtiey already represent a
useful subset of architecturally relevant anomal@therwise, the need to look
beyond those top 10 anomalies to find somethingulssould discourage
developers when using our prioritization heuristics

For comparing such rankings, we considered thréerent measures: the
size of the overlap, Spearman’s footrule (DIACONiSal, 1977) and Fagin’s
extension to the Spearman’s footrule for disjoistsl (FAGIN et al, 2003). The
first and simplest one was the size of the ovebkeiveen the two top ten lists. We
chose this measure mainly because (i) it is fanhyple and (ii) it tells us whether
the prioritization heuristics are accurately digtirshing the togk items from the
others. This measure has some disadvantagesj@ssinot consider permutations
between two lists. For example, lists containing #ame elements in different
orders (or with different ranks) would have the esamimilarity measure,
becoming indistinguishable from lists that preseperfect match.

The second measure we considered was Spearmatrisléo@®IACONISet
al., 1977), a well-known metric for permutations —folf rankings. It measures
the distance between two ranked lists by compuheglifferences in the rankings
of each item. That is, given two lisssandb, Spearman’s footrule is defined as
F(a, b)=X i € U |a(i) — b(i)|. Therefore, when the lists arenitileal, Spearman’s
result is 0. The maximum value Bfa,b)is n/2 whenn is even andn(+ 1) (1 —

1) / 2 whenn is odd — wheren represents the size of the lists. We chose this
measure mainly because it is a classic, well-knowtric on permutations (or full

rankings), along with Kendall tau (KENDALL and GIBBS, 1990) — a metric

based on the number of permutations needed tanegtist into the other. We did

not measure the Kendall tau distance for our stadyjt belongs to the same
equivalence class as Spearman'’s footrule (FA&AI, 2003).

A clear limitation of Spearman’s footrule is thetf#hat it cannot be applied
to disjoint rankings; however, in our context, tbp 10 code anomalies identified
by developers and the results of our heuristicsnatenecessarily identical. Thus,

in order to use Spearman’s footrule for measurimgilarity, we needed to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

62

transform the obtained lists, eliminating itemst tthia not overlap and re-ranking
the remaining items. This approach has been prsliacocumented by (BAR-
ILLAN, 2006) when comparing search engine results.

Finally, the third measure used in this work waeppsed by (FAGIN,

2003) as an extension to Spearman’s footrule foktosts. A topk list is a listr

with |r] =k, and all other itemise¢ r are assumed to be ranked below every item in

r. Although the rankings produced by our prioritizatibeuristics areomplete
rankings —in the sense that all elements are associatedanstiore — we are only
comparing the top ten items. Therefore, the useneésures for tojx lists is
appropriate, especially considering that such listgght contain different
elements.

Fagin extended Spearman’s footrule by assigningrbitrary placement to
elements that belong to one of the lists but noth® other. Such placement
represents the position in the resulting ranking &b of the items that do not
overlap when comparing both lists. For example, wb@mparing lists of sizk,
this placement can bk+1 for all missing items in each list. This extension
rationale is that items appearing only in one @f lists must hav&+1 ranks, or
higher. Fagin’'s extended metric is defined below:

F(a, bf = 2 - Z))(k + 1) +Zi . |a(i) — b(i) | - =i sa(i) — Zi ¢ b(i)

In this equationZ is the set of overlapping itemS,is the set of items that
belong toa but not tob andT is the set of items that belonglidut not toa.

In order to compare the results obtained from Spaais footrule and
Fagin’s equation, we conveniently used normalizexsions of both measures, by
dividing each measure by its maximum value. Thenatized versions lie in the
interval [0,1] — where 0 means the rankings weemniital and 1 means they were
reversed. For Fagin’s extension, considekng 10 (as we are comparingp 10
rankings), the normalization factor is the maximuaiue F(a,b)"° can assume.
This situation happens when the overlap betweetlidtseis 0 (i.e., when the lists
have no elements in common). Thdds an empty seis equivalent ta andT
is equivalent td. Therefore:

F(S,T°=2 (10— |Z|)(10 + 1) + O &= 1 10i - Zi= 1, 10i

F(S,T}°=2 (10 - 0)(11) —55-55

F(S,TY°=220-110

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

63

F(S,T}°= 110

Using 110 as the normalization factor for= 10, we can calculate the
normalized value for Fagin’s extension as:

Fn(a,b) = F(a,b) / 110

Such normalizations were discussed and proven algmt/ on (FAGIN,
2003).

It is important to notice the main differences betw the three measures:
the number of overlaps indicates how effectively puoritization heuristics are
capable of identifying a set ok relevant code elements, disregarding the
differences between them. This measure becomes impeatant as the number
of elements under analysis grows. Clearly, a higimlmer of overlaps for top 10
items in a list of 1000 items is much harder toagbthan in a list of 100 items.
Therefore, the number of overlaps might give usoadghint on the heuristics
capability for identifying good refactoring candids, disregarding the differences
between them.

The two remaining measures’ purpose is to anallggesimilarity between
two rankings. Therefore, unlike the number of capes, they take into
consideration the positions each item has in tmepawed rankings. It is important
to mention the main differences between those tveasures: when calculating
Spearman’s footrule, we are only considering therlapping items. When the
lists are disjoint, the original ranks are lostdam new ranking is produced -
respecting the order among the overlapping elem@righe other hand, Fagin’'s
measure takes into consideration the positionsi®folverlapping elements in the
original lists.

Finally, we used the measures results to calctieesimilarity accuracy —
as defined in our hypotheses. We obtained the acgupercentage for each
measure as described below:

Table 2 — Calculating similarity accuracy level

Overlap NSF NF

Accuracy % k*10 (1-n)*100 (1-n)*100

NSF — normalized Spearman’s footrule measure, Miermalized Fagin’'s

extension to Spearman’s footrule measure

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

64

Assuming that there are always at most 10 overtsnumber of overlaps
measure will present 100% of accuracy when k 9ri€his contextk represents
the number of overlaps between the rankings.

For the NSF and NF measures, the rankings aregberf@ches when they
evaluate to 0; therefore, (1 — 0) * 100 = 100%tHis context,n represents the
value obtained for NSF and NF, as previously defir®y their equations.
Furthermore, a high number of overlaps increases phecision of both
Spearman’s footrule and Fagin’s measures. Whenntlnaber is smaller than 5,
for example, Spearman’s footrule measure can osdyrae at most 5 different
values — e.g., for 4 overlaps, 0, 2,4,6 and 8, @e25%, 50%, 75% or 100% of
accuracy). A small number of overlaps also affé&gin’s measure — although
not as severely: as Fagin’s measure assigns aldeéuwe +1) to all missing
elements, the number of possible results is notctdtl. However, missing
elements belonging to top positions will have aatgeimpact in the final measure
— as the distance between their original ranksthadlefault value ofkf1) will

be large.

4.2.5.
Code Anomaly Rankings and Actual Architecture Problems

We used the ground truth ranking provided by aedtst to analyze the
accuracy of our prioritization heuristics. Howevdrat analysis only takes into
consideration the point of view of the architectegarding the most
architecturally relevant anomalies. Although thabinp of view provides
interesting insights on how architecture problenespeerceived, we also wanted to
investigate the actual architecture problems tleauwed through the systems’
history. For doing so, we compared the resultshef prioritization heuristics
rankings to previously identified architecture deshs. In this context, we
investigated the proportion of architecturally xelet code anomalies among the
top ten rankings produced by each heuristic.

This analysis was motivated by our previous stu(v&CIA et al, 2012b),
where we investigated the correlations between emdenalies and architecture
problems. In this context, we wanted to understahdther — and to what extent -

our prioritization heuristics’ top results compralleactual architecturally relevant

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

65

code anomalies. This analysis may provide insigitts which characteristics, or
combined characteristics, explored by our heusstice more helpful towards
finding architecture problems. Moreover, it addstaer source of information for
evaluating our results, in addition to the rankipgsvided by developers.

For performing this investigation, we relied on th&ts of architecture
problems detected in the aforementioned study. damh problem reported in
those lists, we identified the code anomalies t@atsed it, if pertinent, and the
code elements related to it. Next, we were ablea& for those elements in the
rankings produced by our prioritization heuristitfsa ranked code element was
related to at least one architecture problem, wesidered it architecturally
relevant. Table 3 summarizes the information reggrdrchitecture problems and

architecturally relevant elements for each analyzetem.

Table 3 — Architecturally relevant code elements

of CE # of AP # of architecturally relevant CE
HW 137 112 39 (28%)
MM 82 90 30 (36%)
PDP 97 28 37 (38%)
MIDAS 21 29 6 (28%)

CE - code elements, AP — architecture problems

We can observe from Table 3 that part of the exgstiode elements are
responsible for every architecture problem founkugl in all systems, there are
code elements that were not related to any ar¢hite@roblem. Our goal is to
analyze whether the prioritization heuristics drkedo outline code elements that

are in fact related to at least one architectuoblem.

4.3.
Heuristics Evaluation

This section presents the results of our heurigti@duation. We evaluated
each heuristic separately, as they exploit diffepgnject characteristics in order
to determine the architecture relevance of anonsal@ements in the
implementation. Such evaluation was performed io $@parate phases: first, we
conducted a quantitative analysis on the similarggults; then, we perform a
gualitative evaluation of the results, regardingiitimelations to actual architecture
problems (Section 4.2.5), discussing them in detail

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

66

4.3.1.
Evaluation of the Change-Proneness Heuristic

The Change-Proneness Heuristic was applied to thueef the four target
systems. We did not analyze MIDAS under this héiarss only one version of
this application was available. Our evaluation wased on the analysis of 10
different versions of HealthWatcher, 8 versiond/ohbileMedia and 409 versions
of PDP. We have selected software projects withediht history sizes on
purpose. We wanted to check whether the heurigrfopned well or not on
systems with shorter and longer longevity. In additit was not a requirement to
only embrace projects with long histories, as wated to better analyze whether
the heuristics would be effective in preliminaryrsiens of a software system,
when there is more opportunity for architectureevidfactorings.

The evolution characteristics of the analyzed systare summarized on
Table 4. Those characteristics comprehend the mhot@ber of code elements per
system, the maximum number of revisions per fild #me average number of
revisions per file. As PDP is the system with tighkst number of revisions, its
files were also changed the most, with up to 7Agka in a single file — namely,
I nicial.aspx.cs. The second most changed file was also part of,PDP
having 40 different versions. The reason for suiglerdpancy relies on the fact
that the most changed file acted as a controlleadi®, concentrating all the

request handling methods.

Table 4 — Change characteristics for each system

of revisions # of CE max revisions | avg revisions
HW 10 137 9 1,5
MM 9 82 8 2,6
PDP 409 97 74 8,8

CE - code elements, avg — average

As we can see, HealthWatcher (HW) and MobileMet&§ had similar
evolution behaviors. As the maximum number of revis for a single file is
limited to the total number of revisions for a ®yst neither HealthWatcher nor
MobileMedia could have 10 or more versions of aecadement. Although
HealthWatcher had more revisions than MobileMedlagse changes were

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

67

scattered between more files. Therefore, changesMuabileMedia were
concentrated in a smaller number of code elemeessiting in a higher average
number of changes per file.

Because of the reduced number of revisions avail&n HealthWatcher
and MobileMedia, we had to establish a criteriondelecting items when there
were ties in our top 10 rankings. For example, &ablillustrates the change-
proneness ranking for MobileMedia. In this rankimge used alphabetical order
for breaking ties. That approach was only posdieleause there were 9 elements
in the ground truth ranked as equally harmful. €fme, we sorted the elements
alphabetically to avoid inconsistencies when calitad) the scores, as we also
sorted alphabetically the elements on the rankprgsluced by our heuristics.
Another approach would be to rank files with thmeanumber of changes so that

they co-occupied the same ranking position.

Table 5 — Top 10 change-proneness ranking for MM

Rank File # of
changes

ubc.midp.mobilephoto.core.ui.datamodel.AloumData 8

ubc.midp.mobilephoto.core.ui.MainUIMidlet 8

ubc.midp.mobilephoto.core.ui.screens.AlbumLis¢8ar

ubc.midp.mobilephoto.core.ui.controller.Base Calfer

ubc.midp.mobilephoto.core.ui.controller.Photo\Vigamtroller

8
7
ubc.midp.mobilephoto.core.ui.screens.PhotoVieeStr 6
5
5

ubc.midp.mobilephoto.core.ui.datamodel.ImageAsaes

ubc.midp.mobilephoto.core.util. Constants 5

ubc.midp.mobilephoto.core.util.ImageUtil 5

Bcooo\lovm.hool\np

ubc.midp.mobilephoto.sms.SmsSenderThread 4

Finally, Table 6 shows the results for each measwren analyzing the

change-proneness heuristic.

Table 6 — Results for the change-proneness heuristi

Overlap NSF NF
value | accuracy | value | accuracy | value | accuracy
HW 8 57% 0,62 38% 0,87 13%
MM 5 50% 1 0% 0,89 11%
PDP 6 60% 0,44 56% 0,54 46%

NSF — normalized Spearman’s footrule measure, Miermalized Fagin’'s
extension to Spearman’s footrule measure

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

68

We can see that for the change-proneness heuriséchighest absolute
overlap was obtained for HealthWatcher — with 8rlapmping items. The main
reason why this happened is that HealthWatcherrhaady files with the same
number of changes. Therefore, for computing therlapemeasure, we did not
consider only the 10 most changed files, as thatcgezh would discard files with
as many changes as the ones selected. Instead|egted 14 files, where the last
5 had exactly the same number of changes. It © iaiportant to notice that
HealthWatcher was the system with the highest nurobeode elements (classes,
interfaces or abstract classes) — having a totdl3@fitems that could appear on
our rankings.

However, although the number of overlapping itemsHealthWatcher is
high, the similarity measures for this system shiwir rankings were quite
mismatched. The NSF measure of 0,75 was obtainedube, from the 7
overlapping items, only 2 were ranked in the sawstipn (#2 and #5). The NF
measure was also high due to the amount of norlapeng items (7) and the
fact that their ranks were relatively high (i.eere positioned in the top of the
ranking - for example, items #2, #4 and #5).

Another interesting finding was regarding the MeMkEkdia system:
although this heuristic identified 5 overlaps bedgwéhe generated ranking and the
ground truth, all of them were shifted by exactlyptpositions — resulting in the 1
value for the NSF measure. However, when we coreidéhe non-overlaps, the
position for one item matched - resulting in alslig smaller distance measure for
NF. Moreover, this result shows us that the NSFsuesis not adequate when the
number of overlaps is small: there were similasitieetween the compared
rankings that could be inferred from the resultiadue. For example, the ranking
order for elements #1, #2 and #3 was preservedthegsappeared in the #3, #4
and #5 positions, respectively.

When comparing the results of MobileMedia and Ha&llhtcher to those
obtained by PDP, we realize there is a significhfierence between them: all of
PDP measures performed above our acceptable stgnithresholds (> 45%
similarity). In this case, we found that the simtlawas related to a set of classes
that were deeply coupled: an interface acting Bagade (PDPServices) and three
realizations of this interface, implementing awtienodule, a Proxy and the server

module. As changes in the interface triggered chsmg those three classes, they

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

69

suffered many modifications through the system’sl@won. Moreover, such
design was considered a serious architecture proioi¢his system.

Furthermore, the nature of the changes that thgsteras underwent is
fairly different: most changes on HealthWatcher aveerfective, intending to
improve the overall system quality, without addingw features. Therefore,
classes that were top ranked by the change-promdmasistic were probably
refactored many times throughout the system ewmiutAs those classes were
repeatedly refactored, they no longer represertathrto the systems’ architecture,
which explains why they did not appear on the gdodruth ranking. Most
changes performed on MobileMedia, on the other hamere related to the
addition of new functionalities, which was also tbase for PDP. However,
MobileMedia also had low accuracy rates. Thereftive,different results for this
heuristic might also be associated with the difiees between the evolution
histories of the analyzed systems: while MobileNednd HealthWatcher had
around 10 analyzed revisions, PDP had 409.

In conclusion, the results for this heuristic shasmhat it would be probably
useful for detecting and ranking architecturalllevant anomalies when: (i) there
are architecture problems involving groups of aasthat change together; (ii)
there are architecture problems related to Facade®smmunication classes, as
changes to those classes might trigger changdgem components; (iii) changes
were not predominantly perfective, i.e., the ma&joof the changes performed on
the system were not refactorings.

The results we obtained in this analysis also hiklpe to reject the null
hypothesis H3— as the Change-Proneness Heuristic was able tugeaankings
for PDP with at least acceptable accuracy in allhef analyzed measures (60%,
56% and 46%).

Correlation with Actual Architecture Problems

When analyzing the correlation of thhange-proneness heuristiankings
with actual architecture problems for each syste@malso had interesting results,
confirming the usefulness of the prioritization.cBuanalysis was performed by
observing which of the ranked elements were reldtedactual architecture

problems. Table 7 summarizes our results.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

70

Table 7 — Change-proneness and actual architectupgroblems

of ranked CE | architecturally % of architecturally
relevant relevant
HW 14 10 71%
MM 10 7 70%
PDP 10 10 100%

CE — code elements

It can be observed on Table 7 that elements contpiarchitecturally
relevant anomalies were very likely to be changmer In fact, for the PDP
system, all of the top 10 most changed element® welated to architecture
problems. Considering that PDP has 97 code elemamis37 of them are related
to architecture problems, this can give us a Hiat thange-proneness is a good

heuristic for identifying them.

4.3.2.
Evaluation of the Error-Proneness Heuristic

The error-proneness heuristiis based on the assessment of bugs that were
introduced by a given code element. The highentimaber of bugs found on that
element, the higher its priority. Therefore, in@rdb correctly evaluate the results
for this heuristic, a reliable set of detected bsigsuld be available. This was the
case for one of the analyzed systems — namel\Rie system. However, for the
remaining target systems, there was no such dodairem of detected bugs and
the code elements that caused them. As explain8edtion 4.2.3, for such case,
we relied on the analysis of bug detection toolsictvindicate code elements that
could possibly introduce bugs.

The results for therror-proneness heuristiare summarized on Table 8.

Table 8 — Results for the Error-Proneness Heuristic

overlap NSF NF
value | accuracy | value | accuracy | value | accuracy
HW 10 71% 0 100% 0,74 26%
MM 3 30% 0 100% 0,76 24%
PDP 5 50% 0,83 17% 0,74 26%

It is important to mention that for the HealthWadclsystem, exceptionally,

there were 14 ranked items, instead of 10, dueet between some of them.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

71

Nonetheless, HealthWatcher presented the highestlapyv — achieving an
accuracy of 71%. The reason why that happenedaisttie detected bugs were
related to a behavior found on every class implemgnthe Command role.
Furthermore, every Command class was listed bydéwelopers as high-priority
in the ground truth ranking — meaning they represskma top rated architecture
problem. Therefore, the overlaps between the rgskiere all related to classes
that implemented commands on HealthWatcher.

Besides the high number of overlaps, we also obsetiiat the priority
order for the overlapping elements was exactlystmae as the one pointed out in
the ground truth — hence, the accuracy obtained®¥ was 100%. However, the
4 remaining non-overlapping elements were exadty top 4 elements in the
ground truth ranking. The fact that the top 4 eletmedid not appear in the
ranking produced by therror-proneness heuristicesulted in a low accuracy for
the NF measure — 26%.

We applied the same strategy for bugs mining in iMdbedia. However,
for this system, all of the measures presenteddoguracies. In fact, because of
the small number of overlaps, the results for NSty mot confidently represent
the heuristics’ accuracy, as explained in Secti@w4

For PDP, the results may be evaluated from a éiffeperspective, as we
considered manually detected bugs, reported osste tracking system, instead
of automatically detected ones. However, even dansig a reliable set of bugs
for performing our analysis, the overall resulteganted low accuracy. From the
5 non-overlapping items, 4 of them were relatedbugs on utilitarian classes —
mainly related to data conversion and validatiorthoés. As those classes were
neither related to any particular architectural eyolnor implementing an
architecture component, they were not consideretitacturally relevant. The
other non-overlapping element was a presentatiassciwhich presented a bug
related to the graphical user interface.

Those results indicate that teeror-proneness heuristicould benefit from
architecture information for discarding elementsttlare not related to any
architecture role. By itself, this heuristic migiiso not be able to identify the
most relevant code anomalies, as bugs can be firmadghout the systems code

elements, regardless of their architecture relevamberefore, by combining it

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

72

with other heuristics, such as tlaechitecture role heuristicwe can possibly

improve its results.

Correlation with Actual Architecture Problems

The analysis of correlation with actual architeetproblems for therror-
proneness heuristipresented better results towards detecting relemaminalies.
As we can observe on Table 9, at least 80% ofahked elements were related to

architecture problems, for all of the systems walyared.

Table 9 — Error-proneness and actual architecture pblems

of ranked CE | architecturally % of architecturally
relevant relevant
HW 14 12 85%
MM 10 8 80%
PDP 10 8 80%

CE - code elements

The most significant results were obtained for HealthWatcher system,
with 85% of the ranked elements related to architecproblems. That number is
even more significant when we consider that th&irgnfor HealthWatcher was
composed of 14 elements, instead of only 10. Furtbee, it is important to
mention that the rankings for HealthWatcher and idbedia were built over
automatically detected bugs. This shows us that exeen formal bug reports are
not available, the use of static analysis toolgadicting possible bugs might be
useful.

Regarding the PDP system, which was the only onereviactual bug
reports were considered, the results were also ipiogn from the top 10 ranked
elements, 8 were related to architecture problé€dassidering that PDP had 97
code elements, with 37 of them related to architecproblems, that means the
remaining 29 were distributed among the 87 bottanked elements. When we
extended the analysis over the top 20 elements,foued an even better
correlation factor: 17, or 85% of the top 20 mosteprone elements were

related to architecture problems.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

73

4.3.3.
Evaluation of the Anomaly Density Heuristic

The Anomaly Density heuristic was applied to albof target systems. We
analyzed 178 code anomalies from MIDAS, 273 fronalth&Vatcher, 176 from
MobileMedia and 175 from PDP - totaling 802 coderaalies. The results for

this heuristic are shown on Table 10:

Table 10 — Results for the Anomaly Density Heuristi

Overlap NSF NF
Value | accuracy| Value | Accuracy | Value | accuracy
HW 5 50% 0,66 34% 0,54 46%
MM 7 70% 0,41 59% 0,70 30%
PDP 8 80% 0,37 63% 0,36 64%
MIDAS 9 90% 0,4 60% 0,2 80%

As we can see, this heuristic had many good resultsrms of accurately
ranking architecturally relevant anomalous elemelmsfact, good results were
obtained not only when correctly selecting the 16(as evidenced by the number
of overlaps) but also when defining their rankingsitions: only 2 out of 8
measures had low accuracies, according to our acglevel thresholds (Section
4.2.1).

The number of overlaps in this heuristic was coer@d highly accurate in 3
out of the 4 analyzed systems. This is an indioath@t code elements infected by
multiple code anomalies are often perceived as hrgirity by maintainers. The
only system where this did not occur was HealthWatc which had only 5
overlaps. When analyzing the number of anomaligsefich element on the
ranking representing the ground truth, we found thany of them had exactly the
same number of code anomalies, namely 8. Howeveund 40 classes in the
entire system (or 30%) had at least 8 anomaliegshnib why those elements did
not appear in the top 10 ranking. In fact, th& Hlement in the ranking was
infected by 13 anomalies. It is important to memtitat for this heuristic, in
contrast to thechange-pronenessand error-pronenessheuristics, we only
considered the top 10 elements for the HealthWatsygtem, as there were not
ties to be taken into consideration.

MIDAS had a significant number of overlaps — 9 @it 10 elements

appeared in both rankings. However, this was highlyected, as this system was

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

74

composed of 21 code elements only. Nonetheless\8teand NF measures also
presented a high accuracy — meaning that the rgekuere similarly ordered. The
NF measure had a better result, influenced by dloe that the only mismatched
element was ranked as #10 — a low position. Asaéxetl on Section 4.2.4,
missing items appearing in low positions have atpeseffect on the NF measure
—I.e., they decrease the distance between thengmlkand increase the accuracy.

MobileMedia had the most discrepant results regardhe two ranking
measures: 59% accuracy for the NSF measure, and@0¥e NF measure. Such
difference was also related to the position ofrtba-overlapping elements in the
ranking generated by the prioritization heuristite elements ranked as #1, #3
and #4 were all missing from the ranking providgdibvelopers. Therefore, their
ranks were assigned totl in the developers list, which resulted in a huge
distance from their original positions. Those elataecomprehended a data model
class (core.ui.datamodel.lImageMediaAccessor), a litaatn class
(core.util.MediaUtil) and a base class for contdl
(core.ui.controller.BaseController). Intuitivelytilidiarian classes are not cohesive
and often contain multiple methods — charactesstiat favor the presence of
code anomalies. The ImageMediaAccessor class wasted with 23 code
anomalies — mostly long methods — and was alsolvedowith architecture
problems. However, it was not mentioned by devetpetheir rankings. Finally,
the BaseController class, although missing fromahginal ranking, is the base
class for all the other controllers in the Mobiledite architecture, which
correspond to 9 out of the top 10 elements rankedklelopers.

By analyzing the results for this heuristic, we eved that code elements
infected by multiple code anomalies are often peeckas high priority. This
could be an indication that automatic detectioncofle anomaly patterns is
desirable (ARCOVERDEet al, 2012; MACIA et al, 2012c), as those groups of
code anomalies could be identified together. We aentified that many false
positives (i.e., classes that are infected by mlgltcode anomalies, but are not
related to architecture problems) could arise frotititarian classes, as those
classes are often large and not cohesive. By cantpitinis heuristic with the
architecture role heuristicwe could help discarding such results.

Finally, the results obtained in this analysis distped us rejecting the null

hypothesis Hg— as theanomaly density heuristiwas able to produce rankings

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

75

with at least acceptable accuracy in all of theesys we analyzed for at least one
measure. Furthermore, we obtained a high accuedeyfor the MIDAS project in
2 out of 3 measures (90% for the overlaps and &% F).

Correlation with Actual Architecture Problems

When analyzing the rankings produced by #m®maly density heuristic
comparing them to the actual architecture problethg results were not
consistent through all the analyzed systems. FoHialthWatcher system, only 5
out of the 10 top ranked elements were relateddbitecture problems, as shown
on Table 11. Those results are similar to the doaad when comparing the
ranking to the ground truth provided by the ardigeln fact, we the 5 elements
related to actual architecture problems are exatttey 5 overlapping items
between the compared rankings (Table 10). The readty that happened for
HealthWatcher is related to the high number of aalas, concentrated in a small
number of elements, that were not architecturalgvant. In this context, all of
the 5 elements not related to architecture problerese data access classes,

responsible for communicating with the database.

Table 11 — Anomaly density and actual architectur@roblems

of ranked CE | architecturally % of architecturally
relevant relevant
HW 10 5 50%
MM 10 9 90%
PDP 10 8 80%
MIDAS 10 6* 60%*

CE - code elements

Another interesting result for this analysis emdrgeom the MIDAS
system. From the top 10 elements with the highenber of anomalies, 6 were
architecturally relevant - or 60% of them. Howevidre MIDAS system has
exactly 6 elements that contribute to the occueeat architecture problems.
Thus, theanomaly density heuristicorrectly outlined all of them in the top 10

ranking. For that reason, those results are higtddyjon Table 11.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

4.3.4.

Evaluation of the Architecture Role Heuristic

76

For evaluating the architecture role heuristic, amalyzed three systems:
HealthWatcher, MobileMedia and PDP. We consultesl dhginal architects of
those systems for gathering information on theitecture roles. Table 12 depicts

our results.

Table 12 — Results for the Architecture Role Heurisic

Overlap NSF NF
value | accuracy | Value | accuracy | Value | Accuracy
HW 4 40% 0,5 50% 0,72 28%
MM 6 60% 0,22 78% 0,41 59%
PDP 6 60% 0,33 67% 0,41 59%

PDP held the most consistent results across tiee gimilarity measures,
having around 60% of accuracy when comparing timeilaiity between the
rankings. It was also the only system where we calivide the classes and
interfaces in more than three levels when analytheg architecture roles. In this
context, we divided classes and interfaces from RDRur different roles, as
detailed below, in Table 13:

Table 13 — Architecture roles for PDP

Architecture roles Priority Score # of CE
Utilitarian and internal classes 1 23
Presentation and data access classes 2 28
Domain model, business classes 4 24
Public interfaces, communication 8 6
classes, facades

CE - code elements (classes and interfaces)

From this classification, we were able to draw t#rehitecture role
heuristic ranking for PDP, containing all of thee@ments from the highest
category (public interfaces, communication classes facades) and 4 elements
from the domain model and business classes. Ircésis, we ordered the elements
alphabetically for breaking ties. Therefore, althlou24 classes had the same

score, we only compared the first 4 of them. Howegeme of the elements

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

77

ranked by developers belonged to that group ofadisd elements. Had we
chosen a different approach, such as consideririgeaties as one item, we would
turn our top 10 ranking into a list of 30 items drale a 100% overlap rate — as
all of the non-overlapping items belonged to themdim model category.

For HealthWatcher and MobileMedia, we followed iffedent scoring
approach, by consulting the original architects éach system directly. They
informed us the existing architecture roles, ararthespective relevance on the
systems’ architectures. This procedure is descrdre®ection 4.2.3.3. Once we
identified which classes were directly implementimigich roles, we were able to
produce the rankings for this heuristic.

HealthWatcher presented the worst results amongiadyzed systems.
However, when producing the ranking for the aratitee role heuristic, almost
20 elements were tied with the same scores. Weditly selected the top 10
elements, and broke the ties according the alpltalmetier of the ranked
elements. That led us to an unreal low number drlaps, as some of the
discarded items were present in the ground trutking. In fact, because of the
low number of overlaps, it would not be fair to kexde the NSF measure as well
— since it is calculated over the overlapping eletm®nly. We then performed a
second analysis, considering the top 20 items adsté the top 10, for analyzing
the whole set of elements that had the same sltoseich analysis, the number of
overlaps went up to 6, but the accuracy for the N&fasure decreased to 17% —
indicating a larger distance between the compaae#tings. This shows us that
the 50% accuracy for NSF obtained in the first cargon round was misleading,
as expected, due to the low number of overlaps. NlRaneasure, on the other
hand, considers missing elements as part of thiandise measure. In fact, it
computes the non-overlapping items as a mismatthkelea the rankings — thus,
resulting in a more reliable similarity index. RdealthWatcher, that index was
.72 — or 28% of accuracy. This number was, nonesisehighly influenced by the
low number of overlapping items — as that indicatdsg mismatch between the
compared rankings.

As for MobileMedia, high accuracy rates were fofimdboth the NSF and
NF measures. We observed when analyzing its aothree documentation that
many elements reported as high priority by deve®peere implementing

architecture components. More specifically, theezen8 architecture components

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

78

described in the document directly related to 9 @iuthe top 10 high priority

classes, according to the developers’ ranking. heamore, we identified one
architecture component (SMSController) that waslémented by two classes
(SMSReceiverController and SMSSenderController) tiiey were related to the
same architecture role, they were both presenhénranking produced by the
heuristic. However, only one of them appeared enttp 10 ranking representing
the ground truth.

The results for this heuristic are highly dependentthe quality of the
architecture roles defined. More specifically, weserved that the best results
were obtained for the PDP system, with had multgoighitecture roles defined,
and with different levels of relevance. Furthermattds heuristic is probably
better when combined to other heuristics, in otdetiscard elements that do not
represent an important architecture role from thal results.

Finally, the results obtained in this analysis dlstped us to reject the null
hypothesis H4— as thearchitecture role heuristiavas able to produce rankings
with at least acceptable accuracy in all of théesys we analyzed for at least one

measure.

Correlation with Actual Architecture Problems
The analysis of correlation between #rehitecture role heuristicankings

and actual architecture problems for each systesurremarized on Table 14.

Table 14 — Architecture role and actual architectue problems

of ranked CE | architecturally % of architecturally
relevant relevant
HW 10 4 40%
MM 10 9 90%
PDP 10 10 100%

CE - code elements

Again, the results are quite discrepant betweerth&atcher and the two
remaining systems. However, for this analysis, fineblem resided on the
analyzed data. We identified two different groupsuehitecture roles among the
top 10 elements for HealthWatcher, ranked as egualévant: 6 of the related
elements were playing the role of repository irstegls; the remaining 4 elements
were Facades (GAMMALt al, 1994) or elements responsible for communicating

different architecture components. We then askesl dhginal architects to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

79

elaborate on the relevance of those roles, as wpested they were unequal.
They decided to differentiate the relevance betwiwm, and considered the
repository role less relevant. That refinement teda completely different
ranking, which went up from 4 to 7 elements reldatedrchitecture problems.

The results obtained for HealthWatcher show usrttportance of correctly
identifying the architecture roles and their relesias for improving the accuracy
of this heuristic. However, this also constitutedrawback, as we cannot evaluate
the heuristic without some input from the origirethitects, who might not be
available or give imprecise information. When th@#@brmation is accurate, the
results for this heuristic are highly positive. tharmore, the other proposed
prioritization heuristics could benefit from infoation regarding architecture
roles in order to minimize the number of false puess, like utilitarian classes.
This indicates the need to further analyze diffe@mbinations of prioritization

heuristics.

4.4,
Threats to Validity

This section describes the main threats to validityour studies and the
mitigations we considered.

Validity of detected code anomaliesA threat to construct validity is
related to possible errors in the detection of cademalies in each selected
system. As our approach consists of ranking preslyodetected code anomalies,
the method for detecting them must be trustworfftyere are several kinds of
detection strategies documented on literature; kewanany have been proved
inefficient for detecting relevant anomalies in\poais studies (MACIAet al,
2012a). We mitigated the risk of imprecision whestedting code anomalies by
() involving the original developers and archigeat this process and (ii) using
well-known metrics and thresholds, previously amdiependently evaluated
elsewhere, for constructing our detection strageegigHOM et al, 2009;
OLBRICH et al, 2010).

Identification of errors. Another threat to construct validity is related to
how we identified errors for applying therror-pronenessheuristic. We first
relied on commit messages for identifying classdated to bug fixes, which

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

80

means some errors might be missing. We tried tagaté such threat by also
investigating issue tracking systems, looking fopereports and traces between
those errors and the code that was changed tohém.t Moreover, we also

investigated test reports, when available, in ortteridentify the causes for

eventual broken tests. When that information waavaitable, we relied on the

use of static analysis methods for identifying b(§8EWAH et al, 2008).

Identification of architecture roles. The architecture role heuristic is based
on identifying the relevance of a given code elemmgarding the system’s
architecture design. Therefore, in order to comjitstecores, we needed to assess
the roles each code element plays on the overetlitacture. This information
was extracted differently depending on the projaatier analysis, which we
considered a threat to construct validity. For eplenfor HealthWatcher and
MobileMedia, we studied the architecture documématiooking for classes that
implemented described interfaces or componentsPBd?, on the other hand, as
the architecture documentation was absent, wevietged the original architects
for identifying those classes. Nonetheless, we istded that the absence of
architecture documentation reflects a common sanatand may be inevitable
when analyzing real world systems.

Choice of the target applications.The choice of the target applications is
related to a threat to external validity. As in gvempirical study, our results are
limited to the scope of these applications. Howewer tried to minimize such
threat by selecting systems developed by diffeprogrammers, with different
domains, programming languages, environment @@demy and industry) and
architecture styles. Nonetheless, in order to bgaeralize the obtained results,
our study should be replicated with other applmadi from different domains —

as long as the selection criteria described ini@edt1 are respected.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

