

32

3
Prioritization of Code Anomalies

By implementing a mechanism for detecting architecturally relevant code

anomalies, we are already able to outline to developers which anomalies should

be dealt with first. However, such mechanism is still insufficient for helping

developers prioritize their refactorings for three main reasons: first, it could still

result in unmanageable lists of anomalies, especially in large systems. Second,

architecture problems are usually related to multiple occurrences of code

anomalies. Therefore, in order to solve an architecture problem, developers should

be able to identify and remove all of the anomalies causing it. Third, analyzing

code anomaly patterns as indicators of architecture problems might produce many

false positives. For example, classes that implement the Façade pattern might be

classified as God Classes, even though they are not architecturally relevant – as

they could be naturally related to several concerns. When analyzing the PDP

system (MACIA et al., 2012b), we detected a God Class infected with both Large

Class and Shotgun Surgery anomalies (FOWLER et al., 1999); this co-occurrence

pattern is known as a good indicator of architecture problems, but in this case,

developers did not consider this class architecturally relevant because it was fairly

stable. That shows us that there might be other characteristics (in this case,

number of changes) that affect the relevance of code anomalies. For this particular

case, if we combine historic information regarding how many times this class was

changed, we might improve the prioritization effectiveness.

In order to help developers in identifying and ranking architecturally

relevant code anomalies, we propose a series of different prioritization heuristics.

Those heuristics are based on four characteristics – or factors – that could indicate

how critical an anomaly is with respect to architecture degradation. Thus, those

heuristics analyze the code those relevant anomalies infect, in order to prioritize

better candidates for refactoring. In this context, the prioritization mechanism

works by granting scores to each code anomaly, according to the heuristic under

analysis; using the example above, the detected God Class would have a low score

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

33

under the change-proneness heuristic, decreasing its position on the final

prioritization ranking.

3.1.
Prioritization Heuristics

Many factors could indicate how harmful an anomaly really is to the

system’s architecture. These factors are exploited by the prioritization heuristics

we propose. The choice of the factors was based on the definition of a set of

desirable properties each of them should have. Therefore, our prioritization

heuristics had to adhere to the following criteria:

1) Relation to architecture problems: previous studies in the literature have

investigated the relation between the candidate characteristic and

architecture problems. For example, the manifestation of errors on

systems with architecture problems has been investigated by Weißgerber

and Diehl (2006). Thus, the number of errors observed on a system is a

good candidate characteristic for prioritization heuristics.

2) Information availability: in order to evaluate the prioritization heuristics,

the characteristics they explore should be available on most systems we

analyzed, regardless of their architecture designs.

3) Automation: the heuristics should have an algorithmic definition, in

order to be eligible for automation. Therefore, only heuristics that could

be automated should be considered.

We defined four prioritization heuristics, according to the aforementioned

criteria. Those heuristics are described next.

3.1.1.
Change-proneness Heuristic

When a code element suffers multiple changes through the systems’

evolution, we call it unstable (KELLY, 2006). This heuristic is based on the idea

that anomalies infecting unstable code elements are more likely to be

architecturally relevant.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

34

Definition. This heuristic calculates its ranking results according to the

number of changes made to anomalous code elements. In this sense, given a code

element c, this heuristic will look for every revision in the software evolution path

where c has been modified. The number of different revisions is the number of

changes the element underwent – and, the higher that number, the higher the

element’s priority.

Inputs. In order to calculate the results for this heuristic, the only required

input is the change sets that occurred through the systems’ evolution. That is, the

list of existing revisions and the code elements that were modified on each

revision.

Motivation. Previous studies have investigated the relations between code

anomalies and software change proneness. Khom et al. (2009) observed that the

presence of code anomalies increases the number of changes that classes undergo.

Changes to anomalous classes tend to trigger ripple effects through classes they

are coupled to. Therefore, these changes might be dispersed through many classes,

whereby increasing the likelihood of affecting architecturally relevant elements.

For instance, when analyzing previous systems looking for code anomaly

patterns (MACIA et al., 2012b), we realized that several anomalous code

elements were related to either communication–related modules (like Façades and

Proxies) or interfaces. We also observed that anomalies infecting those elements

are perceived as more harmful than those found on private methods or classes that

do not communicate with other modules (ARCOVERDE et al., 2011). Moreover,

through the system evolution, classes responsible for implementing APIs and

Facades are more likely to change, as functionalities are added or modified.

Many types of code anomalies – such as God Class, Long Methods and

Long Classes (FOWLER et al., 1999) – are related to code elements that

concentrate too many responsibilities, violating the Single Responsibility

Principle (MARTIN, 2002). When that happens, the code is susceptible to change

whenever any of the implemented responsibilities requires modifications. These

responsibilities might be related to those realized by architecturally relevant

elements, as the ones mentioned above. Therefore, intuitively, those code

elements are more subject to changes through the evolution of the system

implementation.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

35

3.1.2.
Error-proneness Heuristic

This heuristic is based on the idea that code elements that presented more

errors through the evolution of a system might be considered high-priority.

Definition. Given a resolved bug b, this solution will look for code elements

c that were modified in order to solve b. The higher the number of errors solved as

a consequence of changes on c, the higher the position of c in the prioritization

ranking.

Inputs. There are two necessary inputs for this heuristic: first, the set of

bugs reported for the software under analysis; second, the list of code elements

that were changed in order to solve each of the reported bugs.

Motivation. Recent studies have shown that software measures are strongly

related to errors, and might be useful indicators for bug prediction (COUTO et al.,

2012). D’Ambros et al. (D’AMBROS et al., 2010) studied the impact of code

anomalies on software errors. They found that there is a correlation between the

number of errors and occurrences of code anomalies. Moreover, there is empirical

evidence that code anomalies and architecture problems are strongly related

(MACIA et al., 2012b). Thus, the occurrence of errors on anomalous elements

might be related with architecture problems. For instance, complex elements are

more likely to present a high number of errors (MACCABE, 1976). That can be

an architecture problem when those complex elements are implementing modules

interfaces. In this case, the errors can be propagated to several client modules.

Furthermore, Kim and Kim (2010) studied the role of refactoring on

software evolution, investigating to what extent it was related to errors. The

authors found that the number of bug fixes often increases after refactorings,

whilst the time to fix them decreases. Moreover, their results show a relevant

relation between incomplete or incorrect refactorings and bugs. Weißgerber and

Diehl (2006) found that, following some revisions where refactoring took place,

there was an increasing ratio of bugs reported. Those findings motivated us into

analyzing to what extent bugs and code anomalies could be related.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

36

3.1.3.
Anomaly Density Heuristic

Another factor we take into consideration in the prioritization anomalies is

the number of anomalies found per code element. For this heuristic, elements with

more anomalies are considered high-priority targets for refactoring.

Definition. Given a code element c, we detect the number of code

anomalies that c contains. The higher the number of anomalies found, the higher c

will rank in the prioritization heuristic result.

Inputs. The only input needed for this heuristic is the set of detected code

anomalies for the system under analysis.

Motivation. Our previous studies have shown that code anomalies and

architecture problems are deeply related (MACIA et al., 2012b). Frequently, a

high number of anomalous elements concentrated in a single component indicates

a deeper maintainability problem. Therefore, the classes internal to this

component with a high number of anomalies should be prioritized. For example,

multiple occurrences of Long Methods and Feature Envy (FOWLER et al., 1999)

in a single class are a recurring anomaly pattern that frequently indicates

architecture problems. This heuristic would identify those elements as high-

priority, as they present a high number of anomalies.

Furthermore, it is known that developers seem to care less about classes that

present too many code anomalies (Broken Window Theory, MARTIN, 2008),

when they need to modify them. Thus, anomalous classes tend to remain

anomalous or get worse as the systems evolve. Their anomalous structure might

also be the cause of increased complexity of their client classes, for instance, if the

former ones are the sources of Feature Envy instances and method signatures are

complex. Prioritizing classes with many anomalies should avoid this perpetuation

and propagation of problems. This heuristic would also probably be worthy when

classes have become brittle and hard to maintain due to the number of anomalies

infecting them.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

37

3.1.4.
Architecture Role Heuristic

When architecture information is available, the architecture role a class

plays on the overall architecture model influences its priority level. For example,

on systems that follow the MVC pattern (BUSCHMANN et al., 2007), a class

might play three different roles – Model, View or Controller.

Definition. Given a code element c, this heuristic works by examining the

architecture role r played by c. The relevance of r in the systems’ architecture

represents the rank of c. That is, if r is defined as a relevant architecture role, c

will be ranked as high-priority.

Inputs. There are three essential inputs that the architecture role heuristic

requires in order to calculate its results: first, the set of existing architecture roles

in the software under analysis. Second, the traces between code elements and the

architecture roles they play. Third, the level of relevance each architecture role

should have.

Motivation. We saw in previous studies that high-level refactorings are

commonly neglected, whereas refactoring of private members is often prioritized

(ARCOVERDE et al., 2011; MURPHY-HILL et al., 2009). This happens because

private members have no impact on external classes; thus, any changes on those

methods will not be propagated to other code elements. Moreover, developers find

high-level members harder to refactor, since they cannot predict the impact on

client code (ARCOVERDE et al., 2011). Therefore, the role played by a code

element influences how and when developers apply refactorings.

3.2.
Heuristics Scoring System

The aforementioned heuristics represent different ways to sort detected

anomalies, according to their architecture relevance. In this context, the

prioritization mechanism requires a scoring system for assigning concrete values

to the code anomalies under analysis. Those scores represent the level of

relevance those anomalies have according to each heuristic. For example, in the

change-proneness heuristic, classes that suffered several changes will have higher

scores than those that remained unchanged through the system’s evolution.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

38

All of the proposed heuristics are complementary; depending on the

developer’s need, different heuristics may be more suitable for refactoring

prioritization than others. Therefore, although they all work independently, we

also provide a mechanism for combining the heuristics results, producing a single

prioritization ranking. That combination may be weighted according to the user’s

needs.

Section 3.2.1 details the scoring mechanism, in terms of how they are

computed and represented. Section 3.2.2 describes a mechanism for combining

heuristics results, which allows developers to apply all of the implemented

heuristics at once, choosing different weights for each of them.

3.2.1.
Computing Scores

The heuristics scores are numerical values associated with each code

anomaly that represent how relevant that anomaly is with regard to the heuristic.

That score is computed and assigned to the code anomalies by the heuristics

themselves, through a scoring function. The set of code anomalies is sorted based

on this numeric value in descending order.

The scoring functions inputs vary according to the heuristic that implements

them. Nonetheless, as their purpose is to assign numeric values to code anomalies,

they must all produce a standard well-formatted output. That output is a collection

of pairs <element, score>. The element might be each anomaly within the project

under analysis. That allows users to visualize their prioritization results from two

different perspectives: i) from the most to the least harmful code anomalies and ii)

from the most to the least degenerated classes, in terms of the anomalies that

infect them.

It is important to notice that our current implementation is only able to

distinguish priority levels between anomalies in different classes; all the code

anomalies found in a given class will have the same score for all of the four

prioritization heuristics proposed. However, this is a limitation of the current

implementation – as the heuristics do not have such constraints conceptually.

However, such limitation does not invalidate our results, as we shall see in

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

39

Section 4, since most of the architecture problems were related to groups of

methods within the same modules.

We describe below how the scores are computed for each of the

implemented prioritization heuristics.

Change-Proneness Heuristic. As we are only able to compute changes

made to an entire file, for this scoring mechanism, all of the code anomalies

within a single file receive the same score. However, we can still differentiate two

different classes (as long as they belong to different files), ranking those that have

changed the most as high-priority. The scores are computed according to the

following algorithm:

changedFiles = repository.retrieveChanges(1,HEAD)
sortByDescendingOrder(changedFiles)

FOR EACH class IN changedFiles DO

 anomalies = class.getAnomalies()

 FOR EACH anomaly IN anomalies DO

 anomaly.setScore(class.getNumberOfChanges())

 END FOR
END FOR

In this heuristic, the score for each code anomaly is assigned from the

number of changes that occurred in the infected class. In the example above,

changedFiles represents an intermediary data structure that relates each file to the

number of times they were changed in a given revision interval (e.g, from revision

1 to the head revision).

Error-Proneness Heuristic. For the error-proneness heuristic, scores are

calculated similarly to the change-proneness heuristic; however, instead of

assigning a number directly to the anomaly score, it is iteratively calculated from

the number of times a given class appears on bug fixing revisions. The heuristic

for identifying those revisions was explained in Section 3.1.2.

revisions = repository.retrieveRevisions(1,HEAD)
bugsFixingRevisions = filterBugFixingRevisions(revi sions)

FOR EACH revision IN bugsFixingRevisions DO

 changedClasses = revision.getChangedClasses()

 FOR EACH class IN changedClasses DO

 FOR EACH anomaly IN class.getAnomalies() DO

 result.incrementScoreFor(anomaly)

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

40

 END FOR
 END FOR
END FOR

First, we retrieve those revisions where bugs were fixed. We then iterate

over all the classes changed on those revisions, and increment the score for the

anomalies that infect those classes. Therefore, if a given class was related to

several bug fixes, their code anomalies will have a high score.

Anomaly Density Heuristic. The following pseudocode summarizes the

algorithm for computing this heuristic’s results:

FOR EACH class IN project DO

 anomalies = class.getAnomalies()

 FOR EACH anomaly IN anomalies DO

 result.incrementScoreFor(anomaly)

END FOR
END FOR

A variation to this approach only computes the anomalies that are classified

as architecturally relevant. The pseudocode for that variation is shown below.

FOR EACH class IN project DO

 anomalies = class.getAnomalies()

 FOR EACH anomaly IN anomalies DO

 IF (anomaly.isRelevant()) THEN

 result.incrementScoreFor(anomaly)

 END IF

END FOR
END FOR

For determining whether an anomaly is relevant or not, we rely on the

SCOOP detection mechanism, as explained on Section 1.3.2. That mechanism

separates the detected code anomalies into those that are architecturally relevant

(either by belonging to some code anomaly pattern or identified through

SCOOP’s detection strategies).

Architecture Role Heuristic. The architecture role heuristic computes its

scores by simply analyzing the components infected by each identified code

anomaly. For example, if the anomaly belongs to critical architecture components,

its score is increased. The mechanics are described below:

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

41

FOR EACH class IN project DO

 IF (class.getArchitectureRole().isCritical()) THEN

 anomalies = class.getAnomalies()

 FOR EACH anomaly IN anomalies DO

 result.incrementScoreFor(anomaly)

 END FOR

END IF
END FOR

Currently, SCOOP is able to analyze projects that follow the MVC

architecture pattern, classifying as critical all the elements that belong to the

Model component.

3.2.2.
Combining Heuristics

Each of the proposed heuristics results in a ranking of code anomalies,

based on specific scores. However, there might be cases where combining

different heuristics gives us a better result, in terms of its correspondence to which

anomalies should be prioritized. For example, anomalies belonging to classes that

were never related to bug fixes will have the same 0-value score under the fault-

proneness heuristic; therefore, the results of other heuristics are crucial for a

correct prioritization output.

For combining different heuristics, they must all comply with the same

scoring rules: in that sense, all of them will give the anomalies a numeric score,

which will be multiplied by the heuristic weight. All of the available

aforementioned heuristics follow these rules.

The configuration of weights for each heuristic is up to the user, as different

projects might have different prioritization needs: for example, projects without

an issue tracking system should not use the error-proneness heuristic, which is the

equivalent of assigning a 0-value weight for it. Finally, the weighted sum of the

combined heuristics score results in the final prioritization score, as shown in the

following function:

P(a) = (h1(a) * wh1 + h2(a) * wh2 + ... + hn(a) * whn) / wh1 + wh2 + ... + whn

Where P(a) is the final prioritization score for a given anomaly, hx(a) is the

score for a heuristic hx and wx is the weight assigned to each heuristic.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

42

3.3. Use Case Scenarios

A common use case scenario for a code anomalies prioritization mechanism

would assist developers in finding out which anomalies are causing more

problems than others, giving them a prioritized view of the detected anomalies.

They could choose a combination of different heuristics for identifying harmful

anomalies, such as change-proneness and number of anomalies found per module.

In an integrated development environment, such as Eclipse, the prioritization

result would open a View with a list of all the identified anomalies and their

scores.

Other use case scenario examples are:

1. The project has a huge number of bugs, and it is important to

analyze which changes to the architecture are needed for diminishing

the error-proneness of the system as a whole;

2. Few classes are responsible for most of the architecture problems,

containing a huge number of anomalies and the development team

must concentrate refactoring efforts in a limited set of classes per

revision;

3. Co-occurrences anomaly patterns are found on classes that represent

a key role in the architecture design. For example, the

Overgeneralized Code Anomaly pattern may occur when a God

Class has lots of outgoing relationships (or dependencies).

4. Another possible use case scenario happens when developers are

dealing with an unknown code base, or assigned to a new project.

The code anomalies prioritization mechanism could show them

which are the major problems of that system, and where they should

invest more time when learning how to evolve that system.

3.4.
The SCOOP Tool

The previous sections introduced the prioritization heuristics concepts,

including their scoring scheme. This section describes how those elements are put

together into a prioritization engine that extends SCOOP (Section 1.4.2), and its

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

43

implementation details. Section 3.4.1 describes the prioritization engine’s main

components, and how it was integrated into the SCOOP architecture. Our

prioritization engine was implemented in Java, using the Plugin Development

Environment (PDE).

3.4.1.
Architecture

The implementation of our ranking mechanism is currently attached to

SCOOP, as it receives the detected anomalies as an input for applying the

prioritization heuristics. Our engine processes the list of anomalies identified by

SCOOP, running each of the configured heuristics over them.

The illustration below summarizes the main architecture components added

to SCOOP:

Figure 3 - Prioritization components over SCOOP

The PrioritizationView implements the Eclipse View Part Extension – a

graphical component that shows the prioritization results. These results are

encapsulated in an entity called PrioritizationResult; every heuristic is

implemented as a realization of the PrioritizationHeuristic interface. The

PrioritizationEngine is a composition of heuristics, and controls the prioritization

flow. It runs each heuristic and combines their results, consulting the

ConfigurationSettings class. Finally, the entry point for the prioritization process

is attached to the AnalysisDispatcher control, after the execution of SCOOP main

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

44

workflow. We next describe the implementation details for each of the

prioritization heuristics.

3.4.1.1. Change-proneness Heuristic

Currently, mainstream version control systems offer APIs for connecting to

their databases and querying relevant information, like change sets and commit

messages. There are, however, significant differences between the approaches

adopted by centralized and distributed version control systems. Using Git (GIT,

2012), for instance, it is possible to download and analyze the entire repository,

along with its change history. The analysis in this case is much simpler, as the

changes can be locally retrieved. By using the Git Diff tool, it is possible to track

file changes and even rename/move operations. This is a much harder task on

centralized version control systems, such as Subversion (SUBVERSION, 2012),

as they work with deltas between file changes, indexed by their names, instead of

checksums.

Two mainstream source version control systems are currently supported by

SCOOP’s prioritization mechanism: Git and Subversion. None of them has a

specific API for identifying which code elements where changed the most

throughout the system evolution. Therefore, we implemented a component that

retrieves this information from log files generated by both systems. For example,

a log file for the SCOOP repository is shown in Listing 3.

Listing 3 – Example of Subversion log file

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

45

 This log lists all the files changed for a given revision interval – in this

example, for space constraints, we only show the results from revision 93 to

revision 95. For identifying which files changed the most, we parse such log,

counting the number of times each file appears in all of the listed revisions. The

results are them sorted in descending order, from the files that appear the most to

those that appear the least. For the example above, the

TogetherCsvMetricsCollector.java file would be the one with the highest score for

this heuristic, as it appears in the log file 9 times.

Our implementation of the change-proneness heuristic is limited to the

analysis of changes that occurred to an entire file. That means that it is not

possible to analyze change-proneness for distinct methods inside the same file.

For example, it could be interesting to analyze whether certain methods are more

subject to change than others, through more specific and detailed change-

proneness reports. This could be achieved by parsing and analyzing change sets

generated by the version control systems.

The implementation of the change-proneness heuristic follows the diagram

illustrated in Figure 4. The ChangePronenessHeuristic class is responsible for

executing the heuristic ranking mechanism. For doing so, it is connected to a

version control repository, represented by the Repository interface.

The Repository interface is realized by two concrete implementations –

GitRepository and SubversionRepository, responsible for retrieving information

from Git and Subversion, respectively.

Figure 4 - Change-proneness heuristic implementation

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

46

Besides connecting to the version control systems, each instance of

Repository is also responsible for retrieving the changed files for a given range of

revisions. That information is passed to the ChangePronenessHeuristic class,

which calculates the scores for each element.

The RepositoryFactory implements the Factory design pattern (GAMMA et

al., 1995). This class is responsible for creating instances of the Repository

interface, according to the user’s preferences.

Although we have only implemented tool support for Subversion and Git,

the change-proneness heuristic mechanism can be easily extended through the

Repository interface.

3.4.1.2. Error-proneness Heuristic

In order to work properly, this heuristic depends on the correct use of issue

tracking systems, such as Bugzilla (BUGZILLA, 2012) or Trac (TRAC, 2012).

All of those systems provide APIs for querying their reports. Integration with

source control systems is also needed, as most of current bug reports systems

work with tags and unique identification keys for source control commit

operations. For example, when committing a bug fix on Trac, the developer may

specify the bug ID being solved. The source version control system triggers

events that connect that commit operation to the bug report, closing it and

establishing traceability between the modified files and the bug.

Mining bug systems is, however, far from trivial. Trac, for example,

provides a querying API that allows programmatic integration with its tickets

database. However, for using such API, a plug-in must be installed on the Trac

server, a requirement that was not possible for the systems we analyzed. In order

to overcome such challenges, we implemented a different approach for identifying

code elements related to errors. SCOOP looks for comments on source control

commit messages that possibly indicate the occurrence of bug fixes. This

approach has been used on several studies (KIM et al., 2011), and uses a simple

text processing heuristic that looks for common terms such as “bug”, “fixed” and

“defect”, as well as integration tags in issue tracking systems. For example, Trac

tickets are commonly referred on commit messages by prefixing the message with

a ticket number, enclosed by “[#” and “]”, as shown in the example below.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

47

Listing 4 – Commit messages integrated to Trac

In this example, the changes made on revision 163 were classified as a bug

fix, from the comments left on the commit message (“Fixing orders update

error”). Such assumption could be validated by inspecting the issues tagged in the

message (#48 and #49) in the issue tracking system. In this context, the classes

modified in such change would be candidates for the error-proneness heuristic.

Figure 5 - Error-proneness heuristic implementation

The design for the error-proneness heuristic is shown in Figure 5. Similarly

to the change-proneness heuristic, the implementation integrates with version

control repositories for mining bug fixes and classes related to them. The

ErrorPronenessHeuristic class is responsible for executing the heuristic ranking

mechanism, calculating the scores for each anomaly under analysis. First, it

retrieves the revisions for the project under analysis, as well as the files changed

at each revision and the commit message associated with it. Them, the

ErrorPronenessHeuristic class is responsible for filtering the revisions retrieved,

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

48

looking for the following terms on commit messages: “bug”, “fixed”, “defect” and

“error”.

3.4.1.3. Anomaly Density Heuristic

This heuristic was implemented as an extension point of SCOOP. Once the

individual anomalies are detected, they can be ordered by the number of

occurrences on each class or component.

Figure 6 depicts the main classes involved in the implementation of the

anomaly density heuristic. As shown in Figure 6, this heuristic was implemented

by the AnomalyDensityHeuristic class. That class is responsible for triggering the

code anomalies detection mechanism implemented on SCOOP. The entry point

for such mechanism is implemented by the AnalysisDispatcher class. Therefore,

the AnomalyDensityHeuristic class first obtains the Java Project currently under

analysis, passing its compilation units to the AnalysisDispatcher. The

CompilationUnit class is part of the Eclipse Java Development Tool (JDT), a

framework that provides an API for base manipulating Java abstract syntax trees

(ASTs).

Figure 6 - Anomaly density heuristic implementation

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

49

Once the code anomalies are detected, the AnalysisDispatcher returns an

instance of the DecoratedAST class. That class implements the Decorator pattern

(GAMMA et al., 1995), adding the detected code anomalies to each node on the

program AST.

Finally, the DecoratedAST is processed by the AnomaliesDensityHeuristic

class. For each node, the class calculates the number of anomalies infecting it. The

prioritization result will then be produced, containing the nodes with the highest

numbers of anomalies found.

3.4.1.4. Architecture Role Heuristic

The architecture role heuristic mechanism ranks code anomalies based on

the architecture role played by the elements they infect. In this context, it requires

three inputs: (i) the existing architecture roles in the software project under

analysis, (ii) a mapping between architecture roles and code elements and (iii) the

relevance, or priority level, of each architecture role. The first two inputs could

exploit the artifacts generated by architecture recovery tools (EICHBERG et al.,

2008; UNDERSTAND, 2012). For the heuristic implementation in SCOOP, users

can use the Vespucci system (EICHBERG et al., 2008) for providing that

information. Alternatively, the architecture roles and elements related to them

could be manually informed through SCOOP’s API, as illustrated below.

model = new ArchitectureRolesModel()

model.addRole(“Business”, Priority.HIGH)
model.addRole(“Data”, Priority.LOW)
model.addRole(“ExceptionHandling”, Priority.LOW)

model.setRole(“Business”).toPackage(“br.pucrio.inf. scoop.business”)
model.setRole(“ExceptionHandling”).toClass(“util.Ba seException”)

ArchitectureRoleHeuristic.setRolesModel(model)

As a default strategy, we implemented automatic ranking of architecture

roles for projects that follow the Model View Controller architecture. Projects that

do not follow this architecture pattern should have its architecture roles, and their

relevancies, manually informed, through SCOOP’s API.

For the MVC architecture, classes that implement the Model are considered

as having higher priority than classes that implement Views and Controllers. For

this implementation, we analyzed two different properties for categorizing classes

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

50

as Views, Models or Controllers. First, we analyzed the hierarchy tree of each

analyzed classes, looking for base implementations for those architecture roles.

For example, the Spring MVC framework (SPRING, 2012) provides an abstract

class named AbstractController that is the parent class for each controller

implementation. The second property SCOOP observes is the name of the class

under analysis; we looked for common suffixes, such as View or Controller, in

order to identify the classes that played one of these roles. For example, a class

named UpdateClientView would be categorized as playing the View role.

Figure 7 illustrates the main classes involved in the implementation of this

heuristic. The ArchitectureRolesModel class is responsible for encapsulating the

existing architecture roles, their relevance and the mappings between them and the

code elements. As exemplified above, this class can also be manually instantiated,

so that developers can inform their own architecture roles for the project under

analysis. The ArchitectureRoleHeuristic implements the heuristic itself. It has a

single instance of the ArchitectureRolesModel class, which is used for calculating

the heuristic scores.

Figure 7 - Architecture role heuristic implementation

This chapter described the prioritization heuristics we propose for ranking

code anomalies according to their architectural relevancies. In the next chapter,

we describe the evaluation of those heuristics.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

