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3 
Prioritization of Code Anomalies 

By implementing a mechanism for detecting architecturally relevant code 

anomalies, we are already able to outline to developers which anomalies should 

be dealt with first. However, such mechanism is still insufficient for helping 

developers prioritize their refactorings for three main reasons: first, it could still 

result in unmanageable lists of anomalies, especially in large systems. Second, 

architecture problems are usually related to multiple occurrences of code 

anomalies. Therefore, in order to solve an architecture problem, developers should 

be able to identify and remove all of the anomalies causing it. Third, analyzing 

code anomaly patterns as indicators of architecture problems might produce many 

false positives. For example, classes that implement the Façade pattern might be 

classified as God Classes, even though they are not architecturally relevant – as 

they could be naturally related to several concerns. When analyzing the PDP 

system (MACIA et al., 2012b), we detected a God Class infected with both Large 

Class and Shotgun Surgery anomalies (FOWLER et al., 1999); this co-occurrence 

pattern is known as a good indicator of architecture problems, but in this case, 

developers did not consider this class architecturally relevant because it was fairly 

stable. That shows us that there might be other characteristics (in this case, 

number of changes) that affect the relevance of code anomalies. For this particular 

case, if we combine historic information regarding how many times this class was 

changed, we might improve the prioritization effectiveness.  

In order to help developers in identifying and ranking architecturally 

relevant code anomalies, we propose a series of different prioritization heuristics. 

Those heuristics are based on four characteristics – or factors – that could indicate 

how critical an anomaly is with respect to architecture degradation. Thus, those 

heuristics analyze the code those relevant anomalies infect, in order to prioritize 

better candidates for refactoring. In this context, the prioritization mechanism 

works by granting scores to each code anomaly, according to the heuristic under 

analysis; using the example above, the detected God Class would have a low score 
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under the change-proneness heuristic, decreasing its position on the final 

prioritization ranking.  

 

3.1. 
Prioritization Heuristics 

Many factors could indicate how harmful an anomaly really is to the 

system’s architecture. These factors are exploited by the prioritization heuristics 

we propose. The choice of the factors was based on the definition of a set of 

desirable properties each of them should have. Therefore, our prioritization 

heuristics had to adhere to the following criteria: 

1) Relation to architecture problems: previous studies in the literature have 

investigated the relation between the candidate characteristic and 

architecture problems. For example, the manifestation of errors on 

systems with architecture problems has been investigated by Weißgerber 

and Diehl (2006). Thus, the number of errors observed on a system is a 

good candidate characteristic for prioritization heuristics. 

2) Information availability: in order to evaluate the prioritization heuristics, 

the characteristics they explore should be available on most systems we 

analyzed, regardless of their architecture designs.  

3) Automation: the heuristics should have an algorithmic definition, in 

order to be eligible for automation. Therefore, only heuristics that could 

be automated should be considered. 

 

We defined four prioritization heuristics, according to the aforementioned 

criteria. Those heuristics are described next. 

 

3.1.1. 
Change-proneness Heuristic 

When a code element suffers multiple changes through the systems’ 

evolution, we call it unstable (KELLY, 2006). This heuristic is based on the idea 

that anomalies infecting unstable code elements are more likely to be 

architecturally relevant.  
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Definition. This heuristic calculates its ranking results according to the 

number of changes made to anomalous code elements. In this sense, given a code 

element c, this heuristic will look for every revision in the software evolution path 

where c has been modified. The number of different revisions is the number of 

changes the element underwent – and, the higher that number, the higher the 

element’s priority. 

Inputs. In order to calculate the results for this heuristic, the only required 

input is the change sets that occurred through the systems’ evolution. That is, the 

list of existing revisions and the code elements that were modified on each 

revision. 

Motivation. Previous studies have investigated the relations between code 

anomalies and software change proneness. Khom et al. (2009) observed that the 

presence of code anomalies increases the number of changes that classes undergo. 

Changes to anomalous classes tend to trigger ripple effects through classes they 

are coupled to. Therefore, these changes might be dispersed through many classes, 

whereby increasing the likelihood of affecting architecturally relevant elements.  

For instance, when analyzing previous systems looking for code anomaly 

patterns (MACIA et al., 2012b), we realized that several anomalous code 

elements were related to either communication–related modules (like Façades and 

Proxies) or interfaces. We also observed that anomalies infecting those elements 

are perceived as more harmful than those found on private methods or classes that 

do not communicate with other modules (ARCOVERDE et al., 2011). Moreover, 

through the system evolution, classes responsible for implementing APIs and 

Facades are more likely to change, as functionalities are added or modified.  

Many types of code anomalies – such as God Class, Long Methods and 

Long Classes (FOWLER et al., 1999) – are related to code elements that 

concentrate too many responsibilities, violating the Single Responsibility 

Principle (MARTIN, 2002). When that happens, the code is susceptible to change 

whenever any of the implemented responsibilities requires modifications. These 

responsibilities might be related to those realized by architecturally relevant 

elements, as the ones mentioned above. Therefore, intuitively, those code 

elements are more subject to changes through the evolution of the system 

implementation. 
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3.1.2. 
Error-proneness Heuristic 

This heuristic is based on the idea that code elements that presented more 

errors through the evolution of a system might be considered high-priority. 

Definition. Given a resolved bug b, this solution will look for code elements 

c that were modified in order to solve b. The higher the number of errors solved as 

a consequence of changes on c, the higher the position of c in the prioritization 

ranking. 

Inputs. There are two necessary inputs for this heuristic: first, the set of 

bugs reported for the software under analysis; second, the list of code elements 

that were changed in order to solve each of the reported bugs. 

Motivation. Recent studies have shown that software measures are strongly 

related to errors, and might be useful indicators for bug prediction (COUTO et al., 

2012). D’Ambros et al. (D’AMBROS et al., 2010) studied the impact of code 

anomalies on software errors. They found that there is a correlation between the 

number of errors and occurrences of code anomalies. Moreover, there is empirical 

evidence that code anomalies and architecture problems are strongly related 

(MACIA et al., 2012b). Thus, the occurrence of errors on anomalous elements 

might be related with architecture problems. For instance, complex elements are 

more likely to present a high number of errors (MACCABE, 1976). That can be 

an architecture problem when those complex elements are implementing modules 

interfaces. In this case, the errors can be propagated to several client modules. 

Furthermore, Kim and Kim (2010) studied the role of refactoring on 

software evolution, investigating to what extent it was related to errors. The 

authors found that the number of bug fixes often increases after refactorings, 

whilst the time to fix them decreases. Moreover, their results show a relevant 

relation between incomplete or incorrect refactorings and bugs. Weißgerber and 

Diehl (2006) found that, following some revisions where refactoring took place, 

there was an increasing ratio of bugs reported. Those findings motivated us into 

analyzing to what extent bugs and code anomalies could be related. 
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3.1.3. 
Anomaly Density Heuristic 

Another factor we take into consideration in the prioritization anomalies is 

the number of anomalies found per code element. For this heuristic, elements with 

more anomalies are considered high-priority targets for refactoring. 

Definition. Given a code element c, we detect the number of code 

anomalies that c contains. The higher the number of anomalies found, the higher c 

will rank in the prioritization heuristic result. 

Inputs. The only input needed for this heuristic is the set of detected code 

anomalies for the system under analysis. 

Motivation. Our previous studies have shown that code anomalies and 

architecture problems are deeply related (MACIA et al., 2012b). Frequently, a 

high number of anomalous elements concentrated in a single component indicates 

a deeper maintainability problem. Therefore, the classes internal to this 

component with a high number of anomalies should be prioritized. For example, 

multiple occurrences of Long Methods and Feature Envy (FOWLER et al., 1999) 

in a single class are a recurring anomaly pattern that frequently indicates 

architecture problems. This heuristic would identify those elements as high-

priority, as they present a high number of anomalies.  

Furthermore, it is known that developers seem to care less about classes that 

present too many code anomalies (Broken Window Theory, MARTIN, 2008), 

when they need to modify them. Thus, anomalous classes tend to remain 

anomalous or get worse as the systems evolve. Their anomalous structure might 

also be the cause of increased complexity of their client classes, for instance, if the 

former ones are the sources of Feature Envy instances and method signatures are 

complex. Prioritizing classes with many anomalies should avoid this perpetuation 

and propagation of problems. This heuristic would also probably be worthy when 

classes have become brittle and hard to maintain due to the number of anomalies 

infecting them. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

37

 

3.1.4. 
Architecture Role Heuristic 

When architecture information is available, the architecture role a class 

plays on the overall architecture model influences its priority level. For example, 

on systems that follow the MVC pattern (BUSCHMANN et al., 2007), a class 

might play three different roles – Model, View or Controller. 

Definition. Given a code element c, this heuristic works by examining the 

architecture role r played by c. The relevance of r in the systems’ architecture 

represents the rank of c. That is, if r is defined as a relevant architecture role, c 

will be ranked as high-priority. 

Inputs. There are three essential inputs that the architecture role heuristic 

requires in order to calculate its results: first, the set of existing architecture roles 

in the software under analysis. Second, the traces between code elements and the 

architecture roles they play. Third, the level of relevance each architecture role 

should have. 

Motivation. We saw in previous studies that high-level refactorings are 

commonly neglected, whereas refactoring of private members is often prioritized 

(ARCOVERDE et al., 2011; MURPHY-HILL et al., 2009). This happens because 

private members have no impact on external classes; thus, any changes on those 

methods will not be propagated to other code elements. Moreover, developers find 

high-level members harder to refactor, since they cannot predict the impact on 

client code (ARCOVERDE et al., 2011). Therefore, the role played by a code 

element influences how and when developers apply refactorings. 

 

3.2. 
Heuristics Scoring System 

The aforementioned heuristics represent different ways to sort detected 

anomalies, according to their architecture relevance. In this context, the 

prioritization mechanism requires a scoring system for assigning concrete values 

to the code anomalies under analysis. Those scores represent the level of 

relevance those anomalies have according to each heuristic. For example, in the 

change-proneness heuristic, classes that suffered several changes will have higher 

scores than those that remained unchanged through the system’s evolution. 
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All of the proposed heuristics are complementary; depending on the 

developer’s need, different heuristics may be more suitable for refactoring 

prioritization than others. Therefore, although they all work independently, we 

also provide a mechanism for combining the heuristics results, producing a single 

prioritization ranking. That combination may be weighted according to the user’s 

needs. 

Section 3.2.1 details the scoring mechanism, in terms of how they are 

computed and represented. Section 3.2.2 describes a mechanism for combining 

heuristics results, which allows developers to apply all of the implemented 

heuristics at once, choosing different weights for each of them. 

 

3.2.1. 
Computing Scores 

The heuristics scores are numerical values associated with each code 

anomaly that represent how relevant that anomaly is with regard to the heuristic. 

That score is computed and assigned to the code anomalies by the heuristics 

themselves, through a scoring function. The set of code anomalies is sorted based 

on this numeric value in descending order. 

The scoring functions inputs vary according to the heuristic that implements 

them. Nonetheless, as their purpose is to assign numeric values to code anomalies, 

they must all produce a standard well-formatted output. That output is a collection 

of pairs <element, score>. The element might be each anomaly within the project 

under analysis. That allows users to visualize their prioritization results from two 

different perspectives: i) from the most to the least harmful code anomalies and ii) 

from the most to the least degenerated classes, in terms of the anomalies that 

infect them.  

It is important to notice that our current implementation is only able to 

distinguish priority levels between anomalies in different classes; all the code 

anomalies found in a given class will have the same score for all of the four 

prioritization heuristics proposed. However, this is a limitation of the current 

implementation – as the heuristics do not have such constraints conceptually. 

However, such limitation does not invalidate our results, as we shall see in 
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Section 4, since most of the architecture problems were related to groups of 

methods within the same modules. 

We describe below how the scores are computed for each of the 

implemented prioritization heuristics. 

Change-Proneness Heuristic. As we are only able to compute changes 

made to an entire file, for this scoring mechanism, all of the code anomalies 

within a single file receive the same score. However, we can still differentiate two 

different classes (as long as they belong to different files), ranking those that have 

changed the most as high-priority. The scores are computed according to the 

following algorithm: 

changedFiles = repository.retrieveChanges(1,HEAD) 
sortByDescendingOrder(changedFiles) 
 
FOR EACH class IN changedFiles DO 
  
    anomalies = class.getAnomalies() 
 
 FOR EACH anomaly IN anomalies DO 
 
  anomaly.setScore(class.getNumberOfChanges()) 
    
    END FOR  
END FOR  

In this heuristic, the score for each code anomaly is assigned from the 

number of changes that occurred in the infected class. In the example above, 

changedFiles represents an intermediary data structure that relates each file to the 

number of times they were changed in a given revision interval (e.g, from revision 

1 to the head revision). 

Error-Proneness Heuristic. For the error-proneness heuristic, scores are 

calculated similarly to the change-proneness heuristic; however, instead of 

assigning a number directly to the anomaly score, it is iteratively calculated from 

the number of times a given class appears on bug fixing revisions. The heuristic 

for identifying those revisions was explained in Section 3.1.2. 

revisions = repository.retrieveRevisions(1,HEAD) 
bugsFixingRevisions = filterBugFixingRevisions(revi sions) 
 
FOR EACH revision IN bugsFixingRevisions DO 
  
 changedClasses = revision.getChangedClasses() 
 
 FOR EACH class IN changedClasses DO 
 
  FOR EACH anomaly IN class.getAnomalies() DO 
 
   result.incrementScoreFor(anomaly) 
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  END FOR  
 END FOR 
END FOR  

First, we retrieve those revisions where bugs were fixed. We then iterate 

over all the classes changed on those revisions, and increment the score for the 

anomalies that infect those classes. Therefore, if a given class was related to 

several bug fixes, their code anomalies will have a high score. 

Anomaly Density Heuristic. The following pseudocode summarizes the 

algorithm for computing this heuristic’s results: 

FOR EACH class IN project DO 
 
 anomalies = class.getAnomalies() 
 
 FOR EACH anomaly IN anomalies DO 
 
  result.incrementScoreFor(anomaly) 
    

END FOR  
END FOR  

A variation to this approach only computes the anomalies that are classified 

as architecturally relevant. The pseudocode for that variation is shown below. 

FOR EACH class IN project DO 
 
 anomalies = class.getAnomalies() 
 
 FOR EACH anomaly IN anomalies DO 
 
  IF (anomaly.isRelevant()) THEN 
 
   result.incrementScoreFor(anomaly) 
 
   END IF   

END FOR  
END FOR  

For determining whether an anomaly is relevant or not, we rely on the 

SCOOP detection mechanism, as explained on Section 1.3.2. That mechanism 

separates the detected code anomalies into those that are architecturally relevant 

(either by belonging to some code anomaly pattern or identified through 

SCOOP’s detection strategies). 

Architecture Role Heuristic. The architecture role heuristic computes its 

scores by simply analyzing the components infected by each identified code 

anomaly. For example, if the anomaly belongs to critical architecture components, 

its score is increased. The mechanics are described below: 
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FOR EACH class IN project DO 
 
 IF (class.getArchitectureRole().isCritical()) THEN  
 
     anomalies = class.getAnomalies() 
 
     FOR EACH anomaly IN anomalies DO 
 
    result.incrementScoreFor(anomaly) 
    
     END FOR  

END IF 
END FOR  

Currently, SCOOP is able to analyze projects that follow the MVC 

architecture pattern, classifying as critical all the elements that belong to the 

Model component. 

 

3.2.2. 
Combining Heuristics 

Each of the proposed heuristics results in a ranking of code anomalies, 

based on specific scores. However, there might be cases where combining 

different heuristics gives us a better result, in terms of its correspondence to which 

anomalies should be prioritized. For example, anomalies belonging to classes that 

were never related to bug fixes will have the same 0-value score under the fault-

proneness heuristic; therefore, the results of other heuristics are crucial for a 

correct prioritization output. 

For combining different heuristics, they must all comply with the same 

scoring rules: in that sense, all of them will give the anomalies a numeric score, 

which will be multiplied by the heuristic weight. All of the available 

aforementioned heuristics follow these rules. 

The configuration of weights for each heuristic is up to the user, as different 

projects might have different prioritization needs: for example, projects without 

an issue tracking system should not use the error-proneness heuristic, which is the 

equivalent of assigning a 0-value weight for it. Finally, the weighted sum of the 

combined heuristics score results in the final prioritization score, as shown in the 

following function: 

P(a) = (h1(a) * wh1 + h2(a) * wh2 + ... + hn(a) * whn) / wh1 + wh2 + ... + whn 

Where P(a) is the final prioritization score for a given anomaly, hx(a) is the 

score for a heuristic hx and wx is the weight assigned to each heuristic. 
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3.3. Use Case Scenarios 

A common use case scenario for a code anomalies prioritization mechanism 

would assist developers in finding out which anomalies are causing more 

problems than others, giving them a prioritized view of the detected anomalies. 

They could choose a combination of different heuristics for identifying harmful 

anomalies, such as change-proneness and number of anomalies found per module. 

In an integrated development environment, such as Eclipse, the prioritization 

result would open a View with a list of all the identified anomalies and their 

scores. 

Other use case scenario examples are: 

1. The project has a huge number of bugs, and it is important to 

analyze which changes to the architecture are needed for diminishing 

the error-proneness of the system as a whole; 

2. Few classes are responsible for most of the architecture problems, 

containing a huge number of anomalies and the development team 

must concentrate refactoring efforts in a limited set of classes per 

revision; 

3. Co-occurrences anomaly patterns are found on classes that represent 

a key role in the architecture design. For example, the 

Overgeneralized Code Anomaly pattern may occur when a God 

Class has lots of outgoing relationships (or dependencies).  

4. Another possible use case scenario happens when developers are 

dealing with an unknown code base, or assigned to a new project. 

The code anomalies prioritization mechanism could show them 

which are the major problems of that system, and where they should 

invest more time when learning how to evolve that system. 

 

3.4. 
The SCOOP Tool 

The previous sections introduced the prioritization heuristics concepts, 

including their scoring scheme. This section describes how those elements are put 

together into a prioritization engine that extends SCOOP (Section 1.4.2), and its 
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implementation details. Section 3.4.1 describes the prioritization engine’s main 

components, and how it was integrated into the SCOOP architecture. Our 

prioritization engine was implemented in Java, using the Plugin Development 

Environment (PDE). 

 

3.4.1. 
Architecture 

The implementation of our ranking mechanism is currently attached to 

SCOOP, as it receives the detected anomalies as an input for applying the 

prioritization heuristics. Our engine processes the list of anomalies identified by 

SCOOP, running each of the configured heuristics over them.  

The illustration below summarizes the main architecture components added 

to SCOOP: 

 

Figure 3 - Prioritization components over SCOOP 

The PrioritizationView implements the Eclipse View Part Extension – a 

graphical component that shows the prioritization results. These results are 

encapsulated in an entity called PrioritizationResult; every heuristic is 

implemented as a realization of the PrioritizationHeuristic interface. The 

PrioritizationEngine is a composition of heuristics, and controls the prioritization 

flow. It runs each heuristic and combines their results, consulting the 

ConfigurationSettings class. Finally, the entry point for the prioritization process 

is attached to the AnalysisDispatcher control, after the execution of SCOOP main 
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workflow. We next describe the implementation details for each of the 

prioritization heuristics. 

 

3.4.1.1. Change-proneness Heuristic 

Currently, mainstream version control systems offer APIs for connecting to 

their databases and querying relevant information, like change sets and commit 

messages. There are, however, significant differences between the approaches 

adopted by centralized and distributed version control systems. Using Git (GIT, 

2012), for instance, it is possible to download and analyze the entire repository, 

along with its change history. The analysis in this case is much simpler, as the 

changes can be locally retrieved. By using the Git Diff tool, it is possible to track 

file changes and even rename/move operations. This is a much harder task on 

centralized version control systems, such as Subversion (SUBVERSION, 2012), 

as they work with deltas between file changes, indexed by their names, instead of 

checksums. 

Two mainstream source version control systems are currently supported by 

SCOOP’s prioritization mechanism: Git and Subversion. None of them has a 

specific API for identifying which code elements where changed the most 

throughout the system evolution. Therefore, we implemented a component that 

retrieves this information from log files generated by both systems. For example, 

a log file for the SCOOP repository is shown in Listing 3. 

Listing 3 – Example of Subversion log file  
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 This log lists all the files changed for a given revision interval – in this 

example, for space constraints, we only show the results from revision 93 to 

revision 95. For identifying which files changed the most, we parse such log, 

counting the number of times each file appears in all of the listed revisions. The 

results are them sorted in descending order, from the files that appear the most to 

those that appear the least. For the example above, the 

TogetherCsvMetricsCollector.java file would be the one with the highest score for 

this heuristic, as it appears in the log file 9 times.  

Our implementation of the change-proneness heuristic is limited to the 

analysis of changes that occurred to an entire file. That means that it is not 

possible to analyze change-proneness for distinct methods inside the same file. 

For example, it could be interesting to analyze whether certain methods are more 

subject to change than others, through more specific and detailed change-

proneness reports. This could be achieved by parsing and analyzing change sets 

generated by the version control systems. 

The implementation of the change-proneness heuristic follows the diagram 

illustrated in Figure 4. The ChangePronenessHeuristic class is responsible for 

executing the heuristic ranking mechanism. For doing so, it is connected to a 

version control repository, represented by the Repository interface. 

The Repository interface is realized by two concrete implementations – 

GitRepository and SubversionRepository, responsible for retrieving information 

from Git and Subversion, respectively.  

 

Figure 4 - Change-proneness heuristic implementation 
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Besides connecting to the version control systems, each instance of 

Repository is also responsible for retrieving the changed files for a given range of 

revisions. That information is passed to the ChangePronenessHeuristic class, 

which calculates the scores for each element. 

The RepositoryFactory implements the Factory design pattern (GAMMA et 

al., 1995). This class is responsible for creating instances of the Repository 

interface, according to the user’s preferences. 

Although we have only implemented tool support for Subversion and Git, 

the change-proneness heuristic mechanism can be easily extended through the 

Repository interface. 

 

3.4.1.2. Error-proneness Heuristic 

In order to work properly, this heuristic depends on the correct use of issue 

tracking systems, such as Bugzilla (BUGZILLA, 2012) or Trac (TRAC, 2012). 

All of those systems provide APIs for querying their reports. Integration with 

source control systems is also needed, as most of current bug reports systems 

work with tags and unique identification keys for source control commit 

operations. For example, when committing a bug fix on Trac, the developer may 

specify the bug ID being solved. The source version control system triggers 

events that connect that commit operation to the bug report, closing it and 

establishing traceability between the modified files and the bug.  

Mining bug systems is, however, far from trivial. Trac, for example, 

provides a querying API that allows programmatic integration with its tickets 

database. However, for using such API, a plug-in must be installed on the Trac 

server, a requirement that was not possible for the systems we analyzed. In order 

to overcome such challenges, we implemented a different approach for identifying 

code elements related to errors. SCOOP looks for comments on source control 

commit messages that possibly indicate the occurrence of bug fixes. This 

approach has been used on several studies (KIM et al., 2011), and uses a simple 

text processing heuristic that looks for common terms such as “bug”, “fixed” and 

“defect”, as well as integration tags in issue tracking systems. For example, Trac 

tickets are commonly referred on commit messages by prefixing the message with 

a ticket number, enclosed by “[#” and “]”, as shown in the example below. 
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Listing 4 – Commit messages integrated to Trac 

 

In this example, the changes made on revision 163 were classified as a bug 

fix, from the comments left on the commit message (“Fixing orders update 

error”). Such assumption could be validated by inspecting the issues tagged in the 

message (#48 and #49) in the issue tracking system. In this context, the classes 

modified in such change would be candidates for the error-proneness heuristic. 

 

Figure 5 - Error-proneness heuristic implementation 

The design for the error-proneness heuristic is shown in Figure 5. Similarly 

to the change-proneness heuristic, the implementation integrates with version 

control repositories for mining bug fixes and classes related to them.  The 

ErrorPronenessHeuristic class is responsible for executing the heuristic ranking 

mechanism, calculating the scores for each anomaly under analysis. First, it 

retrieves the revisions for the project under analysis, as well as the files changed 

at each revision and the commit message associated with it. Them, the 

ErrorPronenessHeuristic class is responsible for filtering the revisions retrieved, 
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looking for the following terms on commit messages: “bug”, “fixed”, “defect” and 

“error”.  

 

3.4.1.3. Anomaly Density Heuristic 

This heuristic was implemented as an extension point of SCOOP. Once the 

individual anomalies are detected, they can be ordered by the number of 

occurrences on each class or component.  

Figure 6 depicts the main classes involved in the implementation of the 

anomaly density heuristic. As shown in Figure 6, this heuristic was implemented 

by the AnomalyDensityHeuristic class. That class is responsible for triggering the 

code anomalies detection mechanism implemented on SCOOP. The entry point 

for such mechanism is implemented by the AnalysisDispatcher class. Therefore, 

the AnomalyDensityHeuristic class first obtains the Java Project currently under 

analysis, passing its compilation units to the AnalysisDispatcher. The 

CompilationUnit class is part of the Eclipse Java Development Tool (JDT), a 

framework that provides an API for base manipulating Java abstract syntax trees 

(ASTs). 

 

Figure 6 - Anomaly density heuristic implementation 
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Once the code anomalies are detected, the AnalysisDispatcher returns an 

instance of the DecoratedAST class. That class implements the Decorator pattern 

(GAMMA et al., 1995), adding the detected code anomalies to each node on the 

program AST. 

Finally, the DecoratedAST is processed by the AnomaliesDensityHeuristic 

class. For each node, the class calculates the number of anomalies infecting it. The 

prioritization result will then be produced, containing the nodes with the highest 

numbers of anomalies found. 

 

3.4.1.4. Architecture Role Heuristic 

The architecture role heuristic mechanism ranks code anomalies based on 

the architecture role played by the elements they infect. In this context, it requires 

three inputs: (i) the existing architecture roles in the software project under 

analysis, (ii) a mapping between architecture roles and code elements and (iii) the 

relevance, or priority level, of each architecture role. The first two inputs could 

exploit the artifacts generated by architecture recovery tools (EICHBERG et al., 

2008; UNDERSTAND, 2012). For the heuristic implementation in SCOOP, users 

can use the Vespucci system (EICHBERG et al., 2008) for providing that 

information. Alternatively, the architecture roles and elements related to them 

could be manually informed through SCOOP’s API, as illustrated below. 

model = new ArchitectureRolesModel() 
 
model.addRole(“Business”, Priority.HIGH) 
model.addRole(“Data”, Priority.LOW) 
model.addRole(“ExceptionHandling”, Priority.LOW) 
 
model.setRole(“Business”).toPackage(“br.pucrio.inf. scoop.business”) 
model.setRole(“ExceptionHandling”).toClass(“util.Ba seException”) 
 
ArchitectureRoleHeuristic.setRolesModel(model)  

As a default strategy, we implemented automatic ranking of architecture 

roles for projects that follow the Model View Controller architecture. Projects that 

do not follow this architecture pattern should have its architecture roles, and their 

relevancies, manually informed, through SCOOP’s API.  

For the MVC architecture, classes that implement the Model are considered 

as having higher priority than classes that implement Views and Controllers. For 

this implementation, we analyzed two different properties for categorizing classes 
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as Views, Models or Controllers. First, we analyzed the hierarchy tree of each 

analyzed classes, looking for base implementations for those architecture roles. 

For example, the Spring MVC framework (SPRING, 2012) provides an abstract 

class named AbstractController that is the parent class for each controller 

implementation. The second property SCOOP observes is the name of the class 

under analysis; we looked for common suffixes, such as View or Controller, in 

order to identify the classes that played one of these roles. For example, a class 

named UpdateClientView would be categorized as playing the View role. 

Figure 7 illustrates the main classes involved in the implementation of this 

heuristic. The ArchitectureRolesModel class is responsible for encapsulating the 

existing architecture roles, their relevance and the mappings between them and the 

code elements. As exemplified above, this class can also be manually instantiated, 

so that developers can inform their own architecture roles for the project under 

analysis. The ArchitectureRoleHeuristic implements the heuristic itself. It has a 

single instance of the ArchitectureRolesModel class, which is used for calculating 

the heuristic scores. 

 

Figure 7 - Architecture role heuristic implementation 

This chapter described the prioritization heuristics we propose for ranking 

code anomalies according to their architectural relevancies. In the next chapter, 

we describe the evaluation of those heuristics.  
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