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3
Prioritization of Code Anomalies

By implementing a mechanism for detecting architesdty relevant code
anomalies, we are already able to outline to dgexkwhich anomalies should
be dealt with first. However, such mechanism ifl stsufficient for helping
developers prioritize their refactorings for thmeain reasons: first, it could still
result in unmanageable lists of anomalies, espgdiallarge systems. Second,
architecture problems are usually related to migltipccurrences of code
anomalies. Therefore, in order to solve an architeqproblem, developers should
be able to identify and remove all of the anomatiagsing it. Third, analyzing
code anomaly patterns as indicators of architegitwblems might produce many
false positives. For example, classes that impléntenFacade pattern might be
classified as God Classes, even though they aramcbitecturally relevant — as
they could be naturally related to several conceWben analyzing the PDP
system (MACIAet al., 2012b), we detected a God Class infected with hatlye
Class and Shotgun Surgery anomalies (FOWEER., 1999); this co-occurrence
pattern is known as a good indicator of architectfproblems, but in this case,
developers did not consider this class architettyuralevant because it was fairly
stable. That shows us that there might be otheractexistics (in this case,
number of changes) that affect the relevance oé @bmalies. For this particular
case, if we combine historic information regardifayv many times this class was
changed, we might improve the prioritization effeehess.

In order to help developers in identifying and rnagk architecturally
relevant code anomalies, we propose a series fefelift prioritization heuristics.
Those heuristics are based on four characteristarsfactors — that could indicate
how critical an anomaly is with respect to architee degradation. Thus, those
heuristics analyze the code those relevant anosnalfect, in order to prioritize
better candidates for refactoring. In this contdkg prioritization mechanism
works by granting scores to each code anomaly,rdicapto the heuristic under

analysis; using the example above, the detectedGkass would have a low score
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under the change-proneness heuristic, decreassgoasition on the final

prioritization ranking.

3.1.
Prioritization Heuristics

Many factors could indicate how harmful an anomedally is to the
system’s architecture. These factors are expldiethe prioritization heuristics
we propose. The choice of the factors was basetherdefinition of a set of
desirable properties each of them should have. eéftwe, our prioritization
heuristics had to adhere to the following criteria:

1) Relation to architecture problems: previous studies in the literature have
investigated the relation between the candidaterackexistic and
architecture problems. For example, the manifestatf errors on
systems with architecture problems has been irgastl by Weil3gerber
and Diehl (2006). Thus, the number of errors obs@ion a system is a
good candidate characteristic for prioritizatiomhstics.

2) Information availability: in order to evaluate the prioritization heuristic
the characteristics they explore should be availall most systems we
analyzed, regardless of their architecture designs.

3) Automation: the heuristics should have an algorithmic deabnit in
order to be eligible for automation. Therefore,yoméuristics that could

be automated should be considered.

We defined four prioritization heuristics, accomlito the aforementioned
criteria. Those heuristics are described next.

3.1.1.
Change-proneness Heuristic

When a code element suffers multiple changes tlirothge systems’
evolution, we call itunstable (KELLY, 2006). This heuristic is based on the idea
that anomalies infecting unstable code elements ragre likely to be

architecturally relevant.
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Definition. This heuristic calculates its ranking results adouy to the
number of changes made to anomalous code elentertkss sense, given a code
elementc, this heuristic will look for every revision in trsftware evolution path
wherec has been modified. The number of different revisisnthe number of
changes the element underwent — and, the highérntimaber, the higher the
element’s priority.

Inputs. In order to calculate the results for this heutisthe only required
input is the change sets that occurred througlsystems’ evolution. That is, the
list of existing revisions and the code elementst twere modified on each
revision.

Motivation. Previous studies have investigated the relatiorie/dsn code
anomalies and software change proneness. Kétaah (2009) observed that the
presence of code anomalies increases the numisbanges that classes undergo.
Changes to anomalous classes tend to trigger rgffdets through classes they
are coupled to. Therefore, these changes mighisperded through many classes,
whereby increasing the likelihood of affecting atetturally relevant elements.

For instance, when analyzing previous systems fgpkor code anomaly
patterns (MACIA et al., 2012b), we realized that several anomalous code
elements were related to either communication-edlatodules (like Facades and
Proxies) or interfaces. We also observed that ahesnmfecting those elements
are perceived as more harmful than those foundigatp methods or classes that
do not communicate with other modules (ARCOVER&HI., 2011). Moreover,
through the system evolution, classes responsileiniplementing APIs and
Facades are more likely to change, as functioealdre added or modified.

Many types of code anomalies — such as God Classg IMethods and
Long Classes (FOWLERet al., 1999) — are related to code elements that
concentrate too many responsibilities, violatinge tBingle Responsibility
Principle (MARTIN, 2002). When that happens, the code isspsble to change
whenever any of the implemented responsibilitiepuires modifications. These
responsibilities might be related to those realizsd architecturally relevant
elements, as the ones mentioned above. Therefateitively, those code
elements are more subject to changes through té&ut®mn of the system

implementation.
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3.1.2.
Error-proneness Heuristic

This heuristic is based on the idea that code el&snhat presented more
errors through the evolution of a system might @esalered high-priority.

Definition. Given a resolved buig this solution will look for code elements
c that were modified in order to soleThe higher the number of errors solved as
a consequence of changes®rthe higher the position af in the prioritization
ranking.

Inputs. There are two necessary inputs for this heuridtist, the set of
bugs reported for the software under analysis; recthe list of code elements
that were changed in order to solve each of therteg bugs.

Motivation. Recent studies have shown that software measurestrangly
related to errors, and might be useful indicatorsolug prediction (COUTE@t al.,
2012). D’Ambroset al. (D’AMBROS et al., 2010) studied the impact of code
anomalies on software errors. They found that tieeie correlation between the
number of errors and occurrences of code anoméalieseover, there is empirical
evidence that code anomalies and architecture gmoblare strongly related
(MACIA et al., 2012b). Thus, the occurrence of errors on anamsaklements
might be related with architecture problems. Fatance, complex elements are
more likely to present a high number of errors (MMBE, 1976). That can be
an architecture problem when those complex elenmaetémplementing modules
interfaces. In this case, the errors can be prdpdda several client modules.

Furthermore, Kim and Kim (2010) studied the role refactoring on
software evolution, investigating to what extentwias related to errors. The
authors found that the number of bug fixes oftecraases after refactorings,
whilst the time to fix them decreases. Moreoveeirtliesults show a relevant
relation between incomplete or incorrect refacigsimnd bugs. Weil3gerber and
Diehl (2006) found that, following some revisionseve refactoring took place,
there was an increasing ratio of bugs reportedsé&Hmdings motivated us into

analyzing to what extent bugs and code anomaliekl dxe related.
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3.1.3.
Anomaly Density Heuristic

Another factor we take into consideration in th@sgtization anomalies is
the number of anomalies found per code elementtti®heuristic, elements with
more anomalies are considered high-priority tarfgtsefactoring.

Definition. Given a code element, we detect the number of code
anomalies that contains. The higher the number of anomalies fothrelhigherc
will rank in the prioritization heuristic result.

Inputs. The only input needed for this heuristic is the cfetietected code
anomalies for the system under analysis.

Motivation. Our previous studies have shown that code anomalnes
architecture problems are deeply related (MA@Aal., 2012b). Frequently, a
high number of anomalous elements concentratedsingée component indicates
a deeper maintainability problem. Therefore, thassks internal to this
component with a high number of anomalies shoulgri@itized. For example,
multiple occurrences of Long Methods and FeatureyEROWLERE€t al., 1999)
in a single class are a recurring anomaly pattéwat frequently indicates
architecture problems. This heuristic would idgntithose elements as high-
priority, as they present a high number of anorsalie

Furthermore, it is known that developers seem te l&ss about classes that
present too many code anomalies (Broken Window MheldARTIN, 2008),
when they need to modify them. Thus, anomaloussetagend to remain
anomalous or get worse as the systems evolve. @heimalous structure might
also be the cause of increased complexity of #lignt classes, for instance, if the
former ones are the sources of Feature Envy inssaand method signatures are
complex. Prioritizing classes with many anomalieswd avoid this perpetuation
and propagation of problems. This heuristic wousib grobably be worthy when
classes have become brittle and hard to maintantadhe number of anomalies
infecting them.
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3.1.4.
Architecture Role Heuristic

When architecture information is available, theh#@scture role a class
plays on the overall architecture model influenitegpriority level. For example,
on systems that follow the MVC pattern (BUSCHMAN®Nal., 2007), a class
might play three different roles — Model, View oor@roller.

Definition. Given a code elememf this heuristic works by examining the
architecture role played byc. The relevance of in the systems’ architecture
represents the rank of That is, ifr is defined as a relevant architecture rale,
will be ranked as high-priority.

Inputs. There are three essential inputs that the archieable heuristic
requires in order to calculate its results: fitke set of existing architecture roles
in the software under analysis. Second, the traeéseen code elements and the
architecture roles they play. Third, the level efevance each architecture role
should have.

Motivation. We saw in previous studies that high-level refaotys are
commonly neglected, whereas refactoring of privaeanbers is often prioritized
(ARCOVERDEgEet al., 2011; MURPHY-HILLet al., 2009). This happens because
private members have no impact on external classas; any changes on those
methods will not be propagated to other code el¢sndforeover, developers find
high-level members harder to refactor, since thaynot predict the impact on
client code (ARCOVERDEet al., 2011). Therefore, the role played by a code
element influences how and when developers apfdgt@ings.

3.2.
Heuristics Scoring System

The aforementioned heuristics represent differeayswvto sort detected
anomalies, according to their architecture releganm this context, the
prioritization mechanism requires a scoring systemassigning concrete values
to the code anomalies under analysis. Those scaeesent the level of
relevance those anomalies have according to eaalistie. For example, in the
change-proneness heuristic, classes that sufferetad changes will have higher

scores than those that remained unchanged thrbegdystem’s evolution.
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All of the proposed heuristics are complementargpehding on the
developer’'s need, different heuristics may be msu@able for refactoring
prioritization than others. Therefore, althoughyttedl work independently, we
also provide a mechanism for combining the hegsgstesults, producing a single
prioritization ranking. That combination may be glgied according to the user’s
needs.

Section 3.2.1 details the scoring mechanism, imgeof how they are
computed and represented. Section 3.2.2 descrilmeschanism for combining
heuristics results, which allows developers to ppall of the implemented
heuristics at once, choosing different weightssfach of them.

3.2.1.
Computing Scores

The heuristics scores are numerical values assedciaiith each code
anomaly that represent how relevant that anomaivitis regard to the heuristic.
That score is computed and assigned to the codmali®s by the heuristics
themselves, through a scoring function. The seode anomalies is sorted based
on this numeric value in descending order.

The scoring functions inputs vary according to ltleeristic that implements
them. Nonetheless, as their purpose is to assigrenc values to code anomalies,
they must all produce a standard well-formattegboutThat output is a collection
of pairs<element, score>. The element might be each anomaly within thegmtoj
under analysis. That allows users to visualizer theoritization results from two
different perspectives: i) from the most to thestdaarmful code anomalies and ii)
from the most to the least degenerated classeterins of the anomalies that
infect them.

It is important to notice that our current implertaion is only able to
distinguish priority levels between anomalies iffedtent classes; all the code
anomalies found in a given class will have the sat@e for all of the four
prioritization heuristics proposed. However, thésd limitation of the current
implementation — as the heuristics do not have sumistraints conceptually.

However, such limitation does not invalidate ousutes, as we shall see in
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Section 4, since most of the architecture problemese related to groups of
methods within the same modules.

We describe below how the scores are computed &mh eof the
implemented prioritization heuristics.

Change-Proneness HeuristicAs we are only able to compute changes
made to an entire file, for this scoring mechanisth,of the code anomalies
within a single file receive the same score. Howgewe can still differentiate two
different classes (as long as they belong to diffefiles), ranking those that have
changed the most as high-priority. The scores amapated according to the
following algorithm:

changedFiles = repository.retrieveChanges(1,HEAD)
sortByDescendingOrder(changedFiles)

FOR EACH class IN changedFiles DO
anomalies = class.getAnomalies()
FOR EACH anomaly IN anomalies DO
anomaly.setScore(class.getNumberOfChanges())

END FOR
END FOR

In this heuristic, the score for each code anoniglassigned from the
number of changes that occurred in the infectedscléin the example above,
changedFiles represents an intermediary data gteuttat relates each file to the
number of times they were changed in a given remigiterval (e.g, from revision
1 to the head revision).

Error-Proneness Heuristic. For theerror-proneness heuristic, scores are
calculated similarly to thechange-proneness heuristic; however, instead of
assigning a number directly to the anomaly scans, iteratively calculated from
the number of times a given class appears on bimgfrevisions. The heuristic

for identifying those revisions was explained irct8e 3.1.2.

revisions = repository.retrieveRevisions(1,HEAD)
bugsFixingRevisions = filterBugFixingRevisions(revi sions)

FOR EACH revision IN bugsFixingRevisions DO
changedClasses = revision.getChangedClasses()
FOR EACH class IN changedClasses DO
FOR EACH anomaly IN class.getAnomalies() DO

result.incrementScoreFor(anomaly)
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END FOR
END FOR
END FOR

First, we retrieve those revisions where bugs wixed. We then iterate
over all the classes changed on those revisiorsjramement the score for the
anomalies that infect those classes. Therefor@, given class was related to
several bug fixes, their code anomalies will havégh score.

Anomaly Density Heuristic. The following pseudocode summarizes the
algorithm for computing this heuristic’s results:

FOR EACH class IN project DO
anomalies = class.getAnomalies()
FOR EACH anomaly IN anomalies DO
result.incrementScoreFor(anomaly)

END FOR
END FOR

A variation to this approach only computes the aalgen that are classified

as architecturally relevant. The pseudocode fdrithaation is shown below.

FOR EACH class IN project DO
anomalies = class.getAnomalies()
FOR EACH anomaly IN anomalies DO
IF (anomaly.isRelevant()) THEN
result.incrementScoreFor(anomaly)
END IF

END FOR
END FOR

For determining whether an anomaly is relevant at; mwe rely on the
SCOOP detection mechanism, as explained on Sett®A. That mechanism
separates the detected code anomalies into thaseurh architecturally relevant
(either by belonging to some code anomaly patternidentified through
SCOOP’s detection strategies).

Architecture Role Heuristic. The architecture role heuristic computes its
scores by simply analyzing the components infedigdeach identified code
anomaly. For example, if the anomaly belongs ttcali architecture components,

its score is increased. The mechanics are desdrided:
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FOR EACH class IN project DO
IF (class.getArchitectureRole().isCritical()) THEN
anomalies = class.getAnomalies()
FOR EACH anomaly IN anomalies DO
result.incrementScoreFor(anomaly)
END FOR

END IF
END FOR

Currently, SCOOP is able to analyze projects tt@tlow the MVC
architecture pattern, classifying as critical dlk telements that belong to the

Model component.

3.2.2.
Combining Heuristics

Each of the proposed heuristics results in a rankih code anomalies,
based on specific scores. However, there might &ses where combining
different heuristics gives us a better resultemmms of its correspondence to which
anomalies should be prioritized. For example, ali@ndelonging to classes that
were never related to bug fixes will have the s@walue score under the fault-
proneness heuristic; therefore, the results of rotteuristics are crucial for a
correct prioritization output.

For combining different heuristics, they must alimply with the same
scoring rules: in that sense, all of them will gihe anomalies a numeric score,
which will be multiplied by the heuristic weight. lAof the available
aforementioned heuristics follow these rules.

The configuration of weights for each heuristiagsto the user, as different
projects might have different prioritization neefls example, projects without
an issue tracking system should not use the ermremess heuristic, which is the
equivalent of assigning a 0-value weight for indtly, the weighted sum of the
combined heuristics score results in the final irzation score, as shown in the

following function:

P(a) = (h1(a) * whi + h2(a) * wh2 + ... + hn(a) hm) / wh1 + wh2 + ... + whn

Where P(a) is the final prioritization score fogigen anomaly, hx(a) is the

score for a heuristic hx and wx is the weight assigto each heuristic.
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3.3. Use Case Scenarios

A common use case scenario for a code anomaliest@ation mechanism
would assist developers in finding out which andealare causing more
problems than others, giving them a prioritizedwief the detected anomalies.
They could choose a combination of different heiessfor identifying harmful
anomalies, such as change-proneness and numbeoroffes found per module.
In an integrated development environment, such @gpde, the prioritization
result would open a View with a list of all the rdiéied anomalies and their
scores.

Other use case scenario examples are:

1. The project has a huge number of bugs, and it igortant to
analyze which changes to the architecture are wefedeliminishing
the error-proneness of the system as a whole;

2. Few classes are responsible for most of the acthie problems,
containing a huge number of anomalies and the dpuent team
must concentrate refactoring efforts in a limited of classes per
revision;

3. Co-occurrences anomaly patterns are found on ddlaé represent
a key role in the architecture design. For examplke
Overgeneralized Code Anomaly pattern may occur wae@God
Class has lots of outgoing relationships (or depaniks).

4. Another possible use case scenario happens wheglogevs are
dealing with an unknown code base, or assigned rieva project.
The code anomalies prioritization mechanism couidws them
which are the major problems of that system, andrev/they should

invest more time when learning how to evolve tlyatem.

3.4.
The SCOOP Tool

The previous sections introduced the prioritizatibauristics concepts,
including their scoring scheme. This section déssihow those elements are put
together into a prioritization engine that extel ®3OO0P (Section 1.4.2), and its
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implementation details. Section 3.4.1 describesptheritization engine’s main

components, and how it was integrated into the SEQdbchitecture. Our

prioritization engine was implemented in Java, gsihe Plugin Development

Environment (PDE).

3.4.1.
Architecture

The implementation of our ranking mechanism is enity attached to

SCOOP, as it receives the detected anomalies ampan for applying the

prioritization heuristics. Our engine processeslisteof anomalies identified by

SCOOP, running each of the configured heuristies tvem.

The illustration below summarizes the main architeccomponents added

to SCOOP:

<<control>>

CodeStructureLoader

<<boundary>> <<control=>

<<entity>>

DecoratedAST

i

/

<<boundary>>
PrioritizationView

<<entity=>

77777 3 PrioritizationResult

SCOOPContextMenu

<<control>>

SmellsPatternsCollecto|

AV

<<control>>
MetricsLoader

<<control>>
RuleChecker

<<entity>>
Smell

<<control>>

PrioritizationEngine

<<interface>>
Lo PrioritizationHeuristic

Vi

<<entity>>
Metric

<<boundary=>
RuleDSLParser

<<gntity=>
Rule

l

Fay

<<entity=>

ConfigurationSettings

ChangePronenessHeuristic |

2

/

Figure 3 - Prioritization components over SCOOP

The PrioritizationView implements the Eclipse View Part Extension — a

graphical component that shows the prioritizati@sults. These results are

encapsulated

in an entity calle@rioritizationResult;

every heuristic is

implemented as a realization of therioritizationHeuristic interface. The

PrioritizationEngine is a composition of heuristics, and controls thergization

flow.

It runs each heuristic and combines theirultss consulting the

ConfigurationSettings class. Finally, the entry point for the prioritian process

is attached to th@nalysisDispatcher control, after the execution of SCOOP main
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workflow. We next describe the implementation dstafor each of the

prioritization heuristics.

3.4.1.1. Change-proneness Heuristic

Currently, mainstream version control systems offis for connecting to
their databases and querying relevant informatiiée, change sets and commit
messages. There are, however, significant diff@ernmetween the approaches
adopted by centralized and distributed version robrstystems. Using Git (GIT,
2012), for instance, it is possible to download andlyze the entire repository,
along with its change history. The analysis in ttése is much simpler, as the
changes can be locally retrieved. By using theBH#ittool, it is possible to track
file changes and even rename/move operations. i$hesmuch harder task on
centralized version control systems, such as Ssmre(SUBVERSION, 2012),
as they work with deltas between file changes,xedédy their names, instead of
checksums.

Two mainstream source version control systems anesiatly supported by
SCOOP’s prioritization mechanism: Git and Subvarsiblone of them has a
specific API for identifying which code elements eve changed the most
throughout the system evolution. Therefore, we enmnted a component that
retrieves this information from log files generatedboth systems. For example,
a log file for the SCOOP repository is shown inting 3.

Listing 3 — Example of Subversion log file

ro3 | Roberta | 2012-01-13 02:09:00 -0200 (sex, 13 jan 2012)
Changed paths:

M fbrfpucriofﬁnff1esfgeniusfmetricsfMetrﬁcsLoader.1ava

M /br/pucrio/inf/les/genius/metrics/OtherMetricsCollector. java

M /br/pucrio/inf/les/genius/metrics/TogetherCsvMetricsCollector. java
rod4 | Isela | 2012-01-22 21:49:17 -0200 (dom, 22 jan 2012)
Changed paths:

M /br/pucrio/inf/les/genius/patterns /CodeanomalyPatternCollector. java
ras | Isela | 2012-01-22 21:49:30 -0200 (dom, 22 jan 2012)
Changed paths:
fbrfpucriofﬁnff1e5fgen1usfarchdesignfproW0giPr01ogC0nstants.java
Sbr/pucrio/inf/les/genius,/gui/analysisbpispatcher. java
Jbr /pucrio/inf/les/genius/qui/CodeAnomalyPatternPerspectiveFactory. java
/br/pucrio/inf/les/genius/gui/ConfigurationPage. java
/br/pucrio/inf/les/genius,/metrics/CommonMetricsCollector. java
Jbr /pucrio/inf/les/genius/metrics /MetricsLoader. java
Sbr/pucrio/inf/les /genius /metrics/Togethercswmetricscollector. java
/br/pucrio/inf/les/genius/metrics/classes/NumberofusedeEnsemblesPerclass. java
/br/pucrio/inf/les/genius/metrics/classes/NumberofusedExternalClasses. java
JSbr/pucrio/inf/les/genius/patterns/CodeanomalyFPattern. java
Sbr/pucrio/inf/les /genius /patterns /codeanonalyPatternLoader. java
/br/pucrio/inf/les/genius/utils/Prologutil. java

EEQEEEEEg=E=EE=E
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This log lists all the files changed for a givesvision interval — in this
example, for space constraints, we only show tlsellt® from revision 93 to
revision 95. For identifying which files changedetimost, we parse such log,
counting the number of times each file appeardlinfahe listed revisions. The
results are them sorted in descending order, ftunfiles that appear the most to
those that appear the Ileastt For the example abovke
Together CsvMetricsCollector.java file would be the one with the highest score for
this heuristic, as it appears in the log file 9dén

Our implementation of the change-proneness heuristilimited to the
analysis of changes that occurred to an entire Tileat means that it is not
possible to analyze change-proneness for distirethoas inside the same file.
For example, it could be interesting to analyze tiwbecertain methods are more
subject to change than others, through more speeaifid detailed change-
proneness reports. This could be achieved by maesml analyzing change sets
generated by the version control systems.

The implementation of the change-proneness heufisiows the diagram
illustrated in Figure 4. Th&€hangePronenessHeuristic class is responsible for
executing the heuristic ranking mechanism. For gl®o, it is connected to a
version control repository, represented byRepository interface.

The Repository interface is realized by two concrete implementegi —
GitRepository and SubversionRepository, responsible for retrieving information
from Git and Subversion, respectively

br.pucrio.inf.les.scoop.prioritization.util

1

SubversionRepository

GitRepository

br.pucrio.inf.les.scoop.prioritization.heuristics

<<interface==>
PrioritizationHeuristic

+execule() - PrioritizationResult

7AN

=

r

A e

<<interface>>
Repository

+ refrieveChanges(start - inf, end . int) . HashMap

= /N

RepositoryFactory

ChangePronenessHeuristic | —

+ createRepository(p : Preferences)

- Repository

Figure 4 - Change-proneness heuristic implementatio
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Besides connecting to the version control systeseh instance of
Repository is also responsible for retrieving the changegsfiior a given range of
revisions. That information is passed to t@bangePronenessHeuristic class
which calculates the scores for each element.

The RepositoryFactory implements the Factory design pattern (GAMMA
al., 1995). This class is responsible for creatingaimses of theRepository
interface, according to the user’s preferences.

Although we have only implemented tool support Sbversion and Git,
the change-proneness heuristic mechanism can lig easended through the
Repository interface.

3.4.1.2. Error-proneness Heuristic

In order to work properly, this heuristic dependstioe correct use of issue
tracking systems, such as Bugzilla (BUGZILLA, 201®) Trac (TRAC, 2012).
All of those systems provide APIs for querying thegports. Integration with
source control systems is also needed, as mostiroént bug reports systems
work with tags and unique identification keys foousce control commit
operations. For example, when committing a bugfixTrac, the developer may
specify the bug ID being solved. The source versiontrol system triggers
events that connect that commit operation to thg beport, closing it and
establishing traceability between the modifiedsfiéend the bug.

Mining bug systems is, however, far from trivialra€, for example,
provides a querying API that allows programmatitegmation with its tickets
database. However, for using such API, a plug-irstnfoe installed on the Trac
server, a requirement that was not possible fosyis¢ems we analyzed. In order
to overcome such challenges, we implemented ardifteapproach for identifying
code elements related to errors. SCOOP looks fomments on source control
commit messages that possibly indicate the occoereof bug fixes. This
approach has been used on several studies @1, 2011), and uses a simple
text processing heuristic that looks for commomtesuch as “bug”, “fixed” and
“defect”, as well as integration tags in issue kiag systems. For example, Trac
tickets are commonly referred on commit messaggw&fyxing the message with

a ticket number, enclosed by “[#” and “]”, as showrthe example below.
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Listing 4 — Commit messages integrated to Trac

rig2 | renato.godinho | 2012-05-28 20:12:29 -0300 (seg, 28 mai 2012) | 1 line
Changed paths:

M Jtrunk/src/PCA/Controllers/PainelController.cs

M /trunk/src/PCA/Pages/Painel. htm]

M JStrunk/src/PCA/Uti]/WCFDispatcher.cs

[#51] adding a popup for updating customers in the main screen

ri63 | renato.godinho | 2012-05-29 15:39:41 -0300 (ter, 29 mai 2012) | 1 line
Changed paths:

M /trunk/src/PCA/Entities /order.cs

M /trunk/src/pca/controllers/Painelcontroller. cs

M Jtrunk/src/Pca/scripts/orders /Networkutil. js

M /trunk/src/PCA/scripts/orders/PCa/Painel. js

[#48] [#49] Fixing orders update error

In this example, the changes made on revision 1&® wiassified as a bug
fix, from the comments left on the commit messagéxing orders update
error”). Such assumption could be validated by étsipg the issues tagged in the
message (#48 and #49) in the issue tracking sydtemhis context, the classes

modified in such change would be candidates foethar-proneness heuristic.

br.pucrio.inf.les.scoop.prioritization.util

PrioritizationHeuristic

+eaxecute() : PrioritizationResult

—I SubversionRepository GitRepository
br.pucrio.inf.les.scoop.prioritization.heuristics - -
A e
ol [X
; <<interface>>
<<interface=>> .
Repository

+ refrieveChanges(start - int, end - int) - HashMap
+ refrieveRevisions(start . inf, end  int) : ArrayList

AN ,—‘? ™

- RepositoryFactory

ErrorPronenessHeuristic

+ createRepository(p - Preferences) : Repository

Figure 5 - Error-proneness heuristic implementation

The design for the error-proneness heuristic isvshio Figure 5. Similarly
to the change-proneness heuristic, the implementation integrates with version
control repositories for mining bug fixes and cksgelated to them.The
ErrorPronenessHeuristic class is responsible for executing the heuristikiray
mechanism, calculating the scores for each anomafler analysis. First, it
retrieves the revisions for the project under asialyas well as the files changed
at each revision and the commit message assocwtdd it. Them, the
ErrorPronenessHeuristic class is responsible for filtering the revisioesrieved,
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looking for the following terms on commit messagdisig”, “fixed”, “defect” and

“error”.

3.4.1.3. Anomaly Density Heuristic

This heuristic was implemented as an extensiontdis COOP. Once the
individual anomalies are detected, they can be reddedoy the number of
occurrences on each class or component.

Figure 6 depicts the main classes involved in thplementation of the
anomaly density heuristic. As shown in Figure 6, this heuristic was impleteen
by the AnomalyDensityHeuristic class. That class is responsible for triggerirgy th
code anomalies detection mechanism implemented@DCH. The entry point
for such mechanism is implemented by f@lysisDispatcher class. Therefore,
the AnomalyDensityHeuristic class first obtains the Java Project currentlyennd
analysis, passing its compilation units to thAnalysisDispatcher. The
CompilationUnit class is part of the Eclipse Java Development TaDIT), a
framework that provides an API for base maniputatiava abstract syntax trees
(ASTs).

br.pucrio.inf.les.scoop.prioritization.heuristics

br.pucrio.inf.les.scoop

<<interface==
PrioritizationHeuristic DecoratedAST
+execute() : PrioritizationResult - nodes : Arraylist
A
- o A
: _}-- <<cregte>>
: a
AnomaliesDensityHeuristic AnalysisDispatcher
T BB

- detectAnomalies() : DecoratedAST + analyze(j : CompilationUnit]]) : DecoratedAST

I

1

org.ec&/pse.jdt

CompilationUnit

Figure 6 - Anomaly density heuristic implementation
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Once the code anomalies are detected,AfedysisDispatcher returns an
instance of théecoratedAST class. That class implements the Decorator pattern
(GAMMA et al., 1995), adding the detected code anomalies to eadé on the
program AST.

Finally, the DecoratedAST is processed by thA&nomaliesDensityHeuristic
class. For each node, the class calculates theerumhlanomalies infecting it. The
prioritization result will then be produced, comiaig the nodes with the highest

numbers of anomalies found.

3.4.1.4. Architecture Role Heuristic

The architecture role heuristic mechanism ranks code anomalies based on
the architecture role played by the elements thésct. In this context, it requires
three inputs: (i) the existing architecture rolesthe software project under
analysis, (i) a mapping between architecture rales code elements and (iii) the
relevance, or priority level, of each architectooge. The first two inputs could
exploit the artifacts generated by architecturevecy tools (EICHBERG al.,
2008; UNDERSTAND, 2012). For the heuristic implenation in SCOOP, users
can use the Vespucci system (EICHBERGal., 2008) for providing that
information. Alternatively, the architecture rolesd elements related to them

could be manually informed through SCOOP’s APlillastrated below.

model = new ArchitectureRolesModel()
model.addRole(“Business”, Priority.HIGH)
model.addRole(“Data”, Priority.LOW)
model.addRole(“ExceptionHandling”, Priority. LOW)

model.setRole(“Business”).toPackage(“br.pucrio.inf. scoop.business”)
model.setRole(“ExceptionHandling”).toClass(“util.Ba seException”)

ArchitectureRoleHeuristic.setRolesModel(model)

As a default strategy, we implemented automatikirgnof architecture
roles for projects that follow the Model View Cauiter architecture. Projects that
do not follow this architecture pattern should h@searchitecture roles, and their
relevancies, manually informed, through SCOOP’s.API

For the MVC architecture, classes that implemeatNtodel are considered
as having higher priority than classes that implemé&ews and Controllers. For

this implementation, we analyzed two different s for categorizing classes
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as Views, Models or Controllers. First, we analyzlkd hierarchy tree of each
analyzed classes, looking for base implementationshose architecture roles.
For example, the Spring MVC framework (SPRING, 20ffbvides an abstract
class namedAbstractController that is the parent class for each controller
implementation. The second property SCOOP obsesvd®e name of the class
under analysis; we looked for common suffixes, sasNiew or Controller, in
order to identify the classes that played one ekd¢hroles. For example, a class
namedUpdateClientView would be categorized as playing the View role.

Figure 7 illustrates the main classes involvedhia implementation of this
heuristic. TheArchitectureRolesModel class is responsible for encapsulating the
existing architecture roles, their relevance amdnttappings between them and the
code elements. As exemplified above, this classatsmbe manually instantiated,
so that developers can inform their own architectales for the project under
analysis. TheArchitectureRoleHeuristic implements the heuristic itself. It has a
single instance of tharchitectureRolesModel class, which is used for calculating

the heuristic scores.

br.pucrio.inf.les.scoop.prioritization.heuristics

<<interface==
PrioritizationHeuristic

+execute() . PrioritizationResulf

AN

ArchitectureRoleHeuristic

+ setRolesModel{rolesiModel : int) ; void

y

ArchitectureRolesModel

+ addRole(name : String, priority - int) : void
+ setRole(role : String) : ArchitectureRolesModel

Figure 7 - Architecture role heuristic implementation

This chapter described the prioritization heursstiee propose for ranking
code anomalies according to their architecturadvaahcies. In the next chapter,

we describe the evaluation of those heuristics.
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