

20

2
Background and Related Work

As software systems evolve, their size and complexity grow. In this context,

the progressive manifestation of code anomalies is a key symptom of architecture

quality decline. Furthermore, recent studies have shown that there is a strong

correlation between code anomaly occurrences and architecture problems

(MACIA et al., 2012b). When those anomalies are not detected and removed

early, the maintainability of software projects can be irreversibly compromised,

and, eventually, a complete redesign is inevitable (MACCORMACK et al., 2006;

EICK et al., 2001).

Although many studies have broadly investigated approaches for detecting

code anomalies (WETTEL et al., 2008; LANZA et al., 2006; MUNRO et al.,

2005; MARINESCU et al., 2004), identifying those that are more likely to cause

architecture problems is still a challenging task. In fact, recent studies have shown

that automatically detected code anomalies are seldom good indicators of

architectural problems (MACIA et al., 2012a). Furthermore, even when there is

tool support for detecting code anomalies, developers seem to invest more time

removing those that are not related to architectural problems (MACIA et al.,

2012b; MURPHY-HILL et al., 2009). Thus, developers tend to prioritize

refactoring code structures that do not affect hierarchies or public interfaces, and,

therefore, could not affect the architecture design. The identification and ranking

of such code anomalies as soon as possible could improve refactoring

effectiveness, by guiding developers into solving the right problems.

In this context, this chapter outlines the basic terminology we used

throughout the development of our study (Section 2.1). Next, it outlines previous

research on refactoring state-of-practice (Section 2.2). Section 2.3 provides a brief

background on code anomalies and how they are related to architecture problems.

Next, we describe approaches for both detecting code anomalies (Section 2.4) and

recommending refactorings (Section 2.5). We decided to investigate refactoring

recommendation systems as they could indicate relevant improvement

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

21

opportunities for the source code. Those indications often comprehend the

detection of code anomalies. Finally, we also outline existing work on ranking

code anomalies, although such mechanisms are still rather scarce (Section 2.6).

2.1.
Basic Terminology

Software architecture is the structure of a system, which comprises software

modules, the interfaces of those modules, and the relationship among them (BASS

et al., 2003). Architecture components are architectural entities which encapsulate

a subset of the system's functionalities (TAYLOR et al., 2009). In the context of

this dissertation, we also use the term architecture role to represent the

architecture decisions realized by a code element. More than one code element

might be required to realize an architecture role. For example, considering a

system that implements the MVC pattern, a class could contribute to the

implementation of the role Model, View or Controller (BUSCHMANN et al.,

2007).

The intended architecture comprehends explicit decisions made by the

designers on the selection of components, their interactions, and their constraints

(TAYLOR et al., 2009). On the other hand, the implemented architecture

describes how the system has been actually built (TAYLOR et al., 2009). In

software projects, the implemented architecture often does not match the intended

architecture (TAYLOR et al., 2009). Many prescribed architecture decisions can

be undesirably violated by the actual implementation of a system. Those

mismatches between the intended and the implemented architectures are called

violations. As the number of violations and modularity problems increase, the

architecture is known to degrade (HOCHSTEIN and LINDVALL, 2005).

A frequent symptom of architecture degradation (HOCHSTEIN and

LINDVALL, 2005) is the progressive manifestation of code anomalies. Code

anomaly, also referred to as code smell, is a symptom in source code of a deeper

maintainability problem (FOWLER et al.,1999). Examples of code anomalies are

Long Method and Inadequate Name. Code anomalies can affect different types of

code structures – or code elements. In the context of this dissertation, code

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

22

elements refer to any implementation structure – such as classes, methods or

constructors.

When code anomalies have a negative impact on the system’s architecture

design, contributing to architecture degradation, we call them architecturally

relevant code anomalies. In this sense, relevant means it is harmful or related to

architecture in some level. We chose to use the term architecturally relevant

because it has been widely used on our previous studies (ARCOVERDE et al.,

2012; MACIA et al., 2011; MACIA et al., 2012a; MACIA et al., 2012c).

Code anomalies are often removed through refactorings. Refactoring is the

process of changing a system’s design structure without changing its behavior, in

order to improve its readability and maintainability (FOWLER et al., 1999).

When refactoring is performed on a publicly visible element, like public classes or

method signatures, we call it an API-level refactoring (KIM et al., 2011) or a

high-level refactoring (MURPHY-HILL et al., 2009). Low level refactorings, on

the other hand, are those applied to internal code structures, such as method

bodies.

2.2.
Empirical Studies on Refactoring

The first part of our research was focused on understanding the longevity of

code anomalies; for doing so, we conducted an empirical study on refactoring

habits, and their prioritization (ARCOVERDE et al., 2011).

Previous studies were dedicated to understanding common refactoring

practices, as well as identifying how and when they are routinely applied.

Murphy-Hill has recently presented an extensive study on how programmers

refactor, identifying several common refactoring habits (MURPHY-HILL et al.,

2009). They found that refactorings are performed frequently, and that about half

of them are not high-level. Dig et al. (2005) investigated the role of refactoring on

APIs evolution, and found that 80% of the changes that could break client

applications are high-level refactorings. Such studies motivated us into

investigating refactoring habits, looking for reasons why some refactorings – in

this case, high-level refactorings – are postponed or neglected.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

23

Weißgerber and Diehl (2006) found that, following some revisions where

refactoring took place, there was an increasing ratio of bugs reported. Those

results were confirmed by Kim et al. (2011), who found an increase in the number

of bug fixes after refactorings. Xing and Stroulia (2006) analyzed the Eclipse

code evolution and found that 70% of the observed code changes were

refactorings. Moreover, they found that state-of-art IDE’s support only a subset of

commonly applied low-level refactorings, lacking support for more complex ones.

Those results helped us in understanding why architecturally relevant code

anomalies are seldom removed, as those anomalies intuitively require high-level

refactorings (MACIA et al., 2012b).

2.3.
Code Anomalies and Architecture Problems

The negative impact of code anomalies on the system’s architecture has

been analyzed by several studies documented in the literature. MacCormack et al.

(2006) reported that the Mozilla browser's code was overly complex and tightly

coupled, therefore hindering its maintainability and ability to evolve. Such

problems were the main causes for its complete re-engineering in 1998. This

effort consumed about five years to rewrite over seven thousand source files and

two million source lines of code (Godfrey and Lee, 2000).

Eick et al. (2001) described how the modularity of the architecture of a

large telecommunication system degraded between 1989 and 1996. In particular,

the relationship among the architectural modules increased over time. This was

the main cause why the system’s architectural modules were not independent

anymore and, consequently, further changes were not possible.

Hochstein and Lindvall (2005) investigated the main causes for architecture

degradation, indicating that refactoring specific code anomalies could help to

avoid it. Wong et al. (2011) also identified that duplicated code was related to

design defects – more specifically, design violations.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

24

2.4.
Detection of Code Anomalies

Many authors have proposed techniques and tools for automatically

detecting code anomalies (WETTEL et al., 2008; LANZA and MARINESCU,

2006; MUNRO et al., 2005; MARINESCU, 2004). Most of them are based on

exploiting information that is extracted from the source code structure, relying on

the combination of static code metrics and thresholds into logical expressions.

Those mechanisms are known as detection strategies (MARINESCU, 2004). The

example below illustrates a well-known detection strategy (LANZA and

MARINESCU, 2006) for identifying God Classes. This strategy and its thresholds

have also been used in previous studies (OLBRICH et al., 2009; 2010).

GodClass(c) = (WMC(c) >= 47) ^ (TCC(c) < 0.3) ^ (ATFD(c) > 5)

In this detection strategy:

• c is the class under analysis

• WMC is the Weighted Method Count, which is the sum of the

cyclomatic complexity of all methods within c

• TCC is the Tight Class Cohesion, representing the number of

connected methods, i.e., methods that access the same instance

variables (McCABE, 1976)

• ATFD, or Access to Foreign Data, is the number of attributes in

foreign classes accessed by class c

The main limitation of detection strategies for identifying relevant code

anomalies is that they are solely based on information that emerge from the source

code structure. That is, they disregard other kinds of information (e.g.

architectural information) that could be exploited with the source code in order to

reveal architecturally relevant code anomalies. Moreover, they only consider

individual occurrences of code anomalies, rather than analyzing the relationships

between them. These limitations are the main reasons why current mechanisms

are unable to support the detection of code anomalies responsible for introducing

architectural problems (MACIA et al., 2012a).

Moreover, the effectiveness of automatically-detected code anomalies using

detection strategies has been recently studied under different perspectives:

Mantyla and Lassensius (2006), for instance, investigate to what extent

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

25

automatically-detected code anomalies can be used as a basis for subjective

evaluation of code evolvability. Olbrich et al. (2009;2010) and Khomh et al.

(2009) analyze whether the number of code anomalies increases over time and to

what extent the anomalies influence the frequency of changes on code elements.

More recently, Macia et al. (2012a) investigated to what extent detection

strategies accurately localize code anomalies related to architecture problems.

This study in particular has shown that more than 50% of the automatically

detected code anomalies were not correlated to architecture problems, while more

than 50% of the relevant code anomalies were not detected. Those results are

directly related to our research, as they motivated our search for characteristics

that could help to identify architecturally relevant code anomalies.

This section described the most common mechanisms for detection of code

anomalies. Next, we analyze some tools aimed at detecting refactoring

opportunities – or refactoring recommendation systems – and some specific code

anomalies detectors.

2.4.1.
Refactoring Recommendation Systems

Even though refactoring tools are available for most development

environments, developers seem to limit their use on low level refactorings

(MURPHY-HILL et al., 2009). Therefore, as public interfaces and hierarchies are

not changed as a result of low level refactoring, code anomalies related to

architecture problems tend to linger. In fact, we have observed in recent studies

that, for 8 analyzed systems, only 40% of all code anomalies causing architecture

problems were refactored in some point of the software evolution.

Refactoring recommendation systems could help developers to identify code

anomalies removal opportunities. Previous studies have proposed a number of

techniques for refactoring recommendation. Vidal et al. (2012) propose an expert

software agent that assists developers when refactoring an object-oriented system

into an aspect-oriented one. It analyzes the user’s interaction history for

improving the agent’s effectiveness over time, guiding developers through the

steps they should take. Xi et al. (2012) also propose a refactoring recommendation

mechanism based on the observation of manual refactoring steps. Their goal is to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

26

monitor common sequences of previous changes on code structures in order to

detect the occurrence of refactorings, and recommending their automation on-the-

fly, while the developer is programming. The recommendation is based on

previously observed steps needed for performing the refactorings supported.

Both approaches can be used for assisting developers into safer refactorings,

minimizing the risks of introducing breaking changes. However, they are not

aimed at maximizing their gains, prioritizing those anomalies that harm the

architecture the most.

2.4.2.
Detection Tools for Code Anomalies

There are currently many tools dedicated to the identification of code

anomalies, targeting many different development environments and languages.

We analyzed three of them: Hist-Inspect (MARA et al., 2010), Semmle Code

(SEMMLE CODE, 2012) and NDepend (NDEPEND, 2012). The main reason

why we chose to analyze those detection tools is that they all consider other

sources of information in their detection mechanisms, in addition to the source

code structure.

Hist-inspect. Mara et al. (2011) proposed a tool called Hist-Inspect to

support both the definition and the automatic application of history-sensitive

detection strategies. The tool supports conventional metrics, such as coupling

(CBO) and lines of code (LOC) (LANZA and MARINESCU, 2006), and history-

sensitive metrics (MARA et al., 2011). Those metrics are calculated by evaluating

conventional metrics through the system’s evolution, and computing their values

in each revision. The resulting metric represents how the measured characteristic

evolved. For example, Hist-Inspect calculates the rpiLOC metric (MARA et al.,

2010b), which calculates the average variation for the number of lines of code

throughout the software evolution.

Hist-Inspect detection strategies, or rules, are defined in XML, as illustrated

below.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

27

Listing 1

 01: <?xml version="1.0" enconding="UTF-8"?>
02: <rule-catalog>

03: <rule id="sampleRule"
04: anomaly="unexpectedComplexGUI"

05: expression="LOC >= 100 || CC >= 5"/>
06: </rule-catalog>

07: <anonaly-catalog>
08: <anomaly id="unexpectedComplexGUI">
09: applyTo="class"/>
10: </anomaly-catalog>

Listing 2 declares a strategy for detecting complex GUI classes, which may

implement more responsibilities than desired (lines 03-05). It also defines an

anomaly named unexpectedComplexGUI that may be manifesting in classes

(lines 07-09). This strategy checks all system classes and retrieves the ones who

have 100 or more lines of code or whose cyclomatic complexity is greater or

equals to 5. These metrics were selected for illustrative purpose, and other metrics

could be used for detecting similar or different anomalies, including the

aforementioned history-sensitive metrics.

Hist-Inspect uses history information for improving the accuracy of code

anomalies detection strategies – in terms of decreasing their number of false

negatives and false positives. However, is suffers from two main limitations: first,

as it is solely based on software evolution, it can only be used over systems that

present a reasonable number of distinct revisions. Although the change-proneness

prioritization heuristic (Section 3.1.1) we proposed also depends on the existence

of different software versions, it can be combined with other heuristics that do not

present such requirement. Moreover, Hist-Inspect was based on the analysis of

different software releases; that means it ignores the intermediary changes that

might have occurred between two major releases. On the other hand, the change-

proneness prioritization heuristic operates over the commits executed by

developers, taking every change made to the system’s code into consideration.

Semmle Code. Semmle Code (SEMMLE CODE, 2012) is a tool that

provides a source code query language (VERBAERE et al., 2008), allowing

maintainers to define their own custom design violations. Those queries take into

consideration several properties of source code elements, such as dependencies,

lines of code and depth of inheritance tree. Therefore, maintainers are able to

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

28

define design rules and constraints and to verify them automatically, in order to

find architecture violations.

The listing below shows an example that measures the depth of inheritance

tree using the tool’s source query language:

Listing 2

Semmle Code has two main limitations for detecting architecturally relevant

code anomalies: first, it requires explicit documentation for the system’s design

rules on its own DSL. Therefore, when this information is absent, outdated or

incorrect, its ability to detect design violations will be compromised. Second, it

only considers the source code structure as a source of information for detecting

violations. Therefore, it cannot identify architecture violations – as it is not

possible to define queries that explore architecture information. For example, one

cannot define rules that detect God Classes based on the number of

responsibilities (or concerns) implemented by a given class, as that information is

not supported.

NDepend. Targeting the .NET platform, NDepend also provides a flexible

code query language for defining detection strategies, as well as many different

visualization features. It also allows developers and architects to enforce software

quality through standard and custom rules that can be integrated to the

development environment. For example, the rules mechanism can be used to

identify refactorings that could possibly introduce breaking changes, by analyzing

recent changes and test coverage reports. This situation is illustrated in the

example below:

warnif count > 0 from t in codeBase.OlderVersion().Application.Typ
es
where t.IsPubliclyVisible &&

 // The type has been removed and its parent assembl y hasn't been
 removed ...
 ((t.WasRemoved() && !t.ParentAssembly.WasRemo ved()) ||

 // ... or the type is not publicly visible anymore
 !t.WasRemoved() && !t.NewerVersion().IsPubli clyVisible)

select new { t,
 NewVisibility = (t.WasRemoved() ? " " : t.NewerVersio
n().Visibility.ToString()) }

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

29

This query warns if a publicly visible type is not publicly visible anymore or

if it has been removed. For doing so, NDepend is able to connect to software

version control and issue tracking systems – from where code coverage and test

reports information can be retrieved. The integration of such properties allows

NDepend to run queries that explore not only the source code structure but also

history-sensitive information – as exemplified by the WasRemoved constraint. By

exploring evolution information, NDepend is also able to detect code anomalies

that have been postponed for many revisions. Additionally, two of our

prioritization heuristics also consider information retrieved from source version

control and issue tracking systems. However, they apply such information for

ranking code anomalies, while NDepend uses it for inspecting the source code and

possibly detecting design problems.

It is not possible, however, to input architecture information into NDepend,

in order to aid relevant anomalies detection. Moreover, once detected, all the

violations and code anomalies are considered equally harmful. Thus, as the

amount of problems increases, it becomes harder to identify which ones should be

prioritized.

Finally, conventional mechanisms for detecting code anomalies do not

support the ranking of code anomalies according to their harmful degree on

systems’ architecture. Consequently, developers have to manually inspect each

suspect reported by those mechanisms. For each code anomaly detected, they

must determine whether it really represents threats to the system architecture and,

then, decide ad hoc which one should be prioritized. This process requires a huge

effort when the list of reported suspects is large and covers many parts of the

system, as it usually occurs.

However, some specific detection tools offer support for ranking code

anomalies. Next section describes two of them.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

30

2.5.
Ranking Systems for Code Anomalies

As shown in the previous sections, there are many tools and techniques

available for detecting code anomalies. However, as systems grow, the number of

detected code anomalies also tends to increase (OLBRICH et al., 2009), and can

eventually become unmanageable. Furthermore, maintainers are expected to

choose which refactorings they are performing first. Some of the reasons why that

choice is necessary are (i) time constraints and (ii) attempts to find the correct

solution when restructuring a large system. In this context, ranking code

anomalies could be an asset for increasing the effectiveness of such refactoring

efforts.

However, most of the aforementioned works do not focus on ranking or

prioritizing code anomalies. This section describes two well-known tools that

provide ranking capabilities, for different development platforms.

Code Metrics is a .NET based add-in to the Visual Studio development

environment. It is able to calculate a limited set of metrics – lines of code,

cyclomatic complexity and afferent coupling. Once those metrics are calculated,

Code Metrics assigns a “Maintainability Index” score to each of the analyzed code

elements. This maintainability score is based on the combination of the metrics

calculated for that code element. For each supported metric, there is a pre-defined

threshold – which cannot be configured. In that sense, the ranking criteria is based

on the number of measures for a given code element that are greater than the

thresholds.

Some limitations of this work are: (i) it only takes into consideration the

source code structure as input for identifying code anomalies, (ii) the ranking

system disregards the architecture role of each analyzed code element and (iii)

users cannot define their own ranking criteria for prioritizing code anomalies.

Infusion is a tool for analyzing Java, C and C++ software projects. It is able

to calculate over 60 different code metrics, and to detect code anomalies such as

Data Classes (FOWLER et al., 1999). Besides providing static analysis features

for calculating code metrics, it also associates numerical scores to all detected

anomalies. Those scores measure the negative impact a given anomaly has on the

overall systems’ quality. By combining those scores, a quality deficit index is

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

31

calculated for the entire system. That index takes into consideration size,

complexity, encapsulation, coupling and cohesion metrics. Figure 2 illustrates a

report generated by InFusion.

Figure 2 - InFusion report example

As InFusion is a proprietary tool, their ranking criteria are not clear.

However, as it can be noticed in the report shown in Figure 2, three different

maintainability indexes are taken into consideration (change, reuse and

understand). Furthermore, as only the source code structure is taken into

consideration as a source of information, the detection mechanism is not enriched

by actual architecture information.

Our study intends to complement such results by proposing an approach for

identifying which anomalies should be prioritized – or more promptly refactored –

based on their architecture relevance. We analyze different properties of the code

elements they affect, such as change-proneness and error-proneness for

identifying which anomalies are more harmful to the overall architecture and

should be removed first.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

