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2
Background and Related Work

As software systems evolve, their size and compylexow. In this context,
the progressive manifestation of code anomalieskisy symptom of architecture
quality decline. Furthermore, recent studies havews that there is a strong
correlation between code anomaly occurrences armahitecture problems
(MACIA et al., 2012b). When those anomalies are not detectedremdved
early, the maintainability of software projects dam irreversibly compromised,
and, eventually, a complete redesign is inevitfllIACCORMACK et al., 2006;
EICK et al., 2001).

Although many studies have broadly investigatedr@gghes for detecting
code anomalies (WETTEEt al., 2008; LANZA et al., 2006; MUNROet al.,
2005; MARINESCUEet al., 2004), identifying those that are more likelyceuse
architecture problems is still a challenging tdskfact, recent studies have shown
that automatically detected code anomalies areoseldjood indicators of
architectural problems (MACIAt al., 2012a). Furthermore, even when there is
tool support for detecting code anomalies, devekbgeem to invest more time
removing those that are not related to architettprablems (MACIA et al.,
2012b; MURPHY-HILL et al., 2009). Thus, developers tend to prioritize
refactoring code structures that do not affectdrehies or public interfaces, and,
therefore, could not affect the architecture desigre identification and ranking
of such code anomalies as soon as possible coulotowa refactoring
effectiveness, by guiding developers into solvimg tight problems.

In this context, this chapter outlines the basiomteology we used
throughout the development of our study (Sectidr). Next, it outlines previous
research on refactoring state-of-practice (Se@i@j. Section 2.3 provides a brief
background on code anomalies and how they arescetatarchitecture problems.
Next, we describe approaches for both detecting emdmalies (Section 2.4) and
recommending refactorings (Section 2.5). We deciedhvestigate refactoring

recommendation systems as they could indicate astevimprovement
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opportunities for the source code. Those indicatiaiten comprehend the
detection of code anomalies. Finally, we also aatlexisting work on ranking

code anomalies, although such mechanisms areasti#r scarce (Section 2.6).

2.1.
Basic Terminology

Software architecture is the structure of a sysw@hich comprises software
modules, the interfaces of those modules, andeflaganship among them (BASS
et al., 2003). Architectureomponents are architectural entities which encapsulate
a subset of the system's functionalities (TAYLORakt 2009). In the context of
this dissertation, we also use the temrchitecture role to represent the
architecture decisions realized by a code elemMpte than one code element
might be required to realize an architecture réler example, considering a
system that implements the MVC pattern, a classldcaontribute to the
implementation of the role Model, View or ControllBUSCHMANN et al.,
2007).

The intended architecture comprehends explicit decisions made by the
designers on the selection of components, the@ractions, and their constraints
(TAYLOR et al., 2009). On the other hand, theyplemented architecture
describes how the system has been actually bulltY (DR et al., 2009). In
software projects, the implemented architectureroftoes not match the intended
architecture (TAYLORet al., 2009). Many prescribed architecture decisions can
be undesirably violated by the actual implementatiof a system. Those
mismatches between the intended and the implementddtectures are called
violations. As the number of violations and modularity problemsrease, the
architecture is known tdegrade (HOCHSTEIN and LINDVALL, 2005)

A frequent symptom ofarchitecture degradation (HOCHSTEIN and
LINDVALL, 2005) is the progressive manifestation obde anomalies. Code
anomaly, also referred to asde smell, is a symptom in source code of a deeper
maintainability problem (FOWLERt al.,1999). Examples of code anomalies are
Long Method and Inadequate Name. Code anomaliesftect different types of

code structures — otode elements. In the context of this dissertation, code
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elements refer to any implementation structure ehsas classes, methods or
constructors.

When code anomalies have a negative impact onysters’s architecture
design, contributing to architecture degradatiore e@all themarchitecturally
relevant code anomalies. In this senselevant means it is harmful or related to
architecture in some level. We chose to use then tarchitecturally relevant
because it has been widely used on our previoulest{ ARCOVERDEet al.,
2012; MACIAet al., 2011; MACIAet al., 2012a; MACIAet al., 2012c).

Code anomalies are often removed throughctorings. Refactoring is the
process of changing a system’s design structuteowitchanging its behavior, in
order to improve its readability and maintainabilfFOWLER et al., 1999).
When refactoring is performed on a publicly visiblement, like public classes or
method signatures, we call it an API-level refaicipr(KIM et al., 2011) or a
high-level refactoring (MURPHY-HILLet al., 2009). Low level refactorings, on
the other hand, are those applied to internal cstdectures, such as method

bodies.

2.2.
Empirical Studies on Refactoring

The first part of our research was focused on wstdeding the longevity of
code anomalies; for doing so, we conducted an érapistudy on refactoring
habits, and their prioritization (ARCOVERDéal., 2011).

Previous studies were dedicated to understandingmmm refactoring
practices, as well as identifying how and when tlag routinely applied.
Murphy-Hill has recently presented an extensivedgton how programmers
refactor, identifying several common refactoringpite (MURPHY-HILL et al.,
2009). They found that refactorings are perfornredudently, and that about half
of them are not high-level. Dig al. (2005) investigated the role of refactoring on
APIs evolution, and found that 80% of the chandeat tcould break client
applications are high-level refactorings. Such istsid motivated us into
investigating refactoring habits, looking for reasovhy some refactorings — in

this case, high-level refactorings — are postparetkglected.
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Weil3gerber and Diehl (2006) found that, followirmree revisions where
refactoring took place, there was an increasing rat bugs reported. Those
results were confirmed by Kimet al. (2011), who found an increase in the number
of bug fixes after refactorings. Xing and Strou(2006) analyzed the Eclipse
code evolution and found that 70% of the observedecchanges were
refactorings. Moreover, they found that state-¢flaE’s support only a subset of
commonly applied low-level refactorings, lackingpport for more complex ones.
Those results helped us in understanding why achitally relevant code
anomalies are seldom removed, as those anomatigtviely require high-level
refactorings (MACIAet al., 2012b).

2.3.
Code Anomalies and Architecture Problems

The negative impact of code anomalies on the systamthitecture has
been analyzed by several studies documented iit¢heture. MacCormackt al.
(2006) reported that the Mozilla browser's code wasrly complex and tightly
coupled, therefore hindering its maintainabilitydaability to evolve. Such
problems were the main causes for its completengieering in 1998. This
effort consumed about five years to rewrite overesethousand source files and
two million source lines of code (Godfrey and L2@00).

Eick et al. (2001) described how the modularity of the aratiiee of a
large telecommunication system degraded betweefi 488 1996. In particular,
the relationship among the architectural modulesemsed over time. This was
the main cause why the system’s architectural nesdwere not independent
anymore and, consequently, further changes werpassible.

Hochstein and Lindvall (2005) investigated the nm@anses for architecture
degradation, indicating that refactoring specifmde anomalies could help to
avoid it. Wong et al. (2011) also identified thatpticated code was related to

design defects — more specifically, design violadio
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2.4.
Detection of Code Anomalies

Many authors have proposed techniques and tools atdomatically
detecting code anomalies (WETTEL al., 2008; LANZA and MARINESCU,
2006; MUNROet al., 2005; MARINESCU, 2004). Most of them are based on
exploiting information that is extracted from theusce code structure, relying on
the combination of static code metrics and threddhahto logical expressions.
Those mechanisms are knowndagection strategies (MARINESCU, 2004). The
example below illustrates a well-known detectiorrateigy (LANZA and
MARINESCU, 2006) for identifyingsod Classes. This strategy and its thresholds
have also been used in previous studies (OLBR&CA., 2009; 2010).

GodClass(c) = (WMC(c) >= 47) ~ (TCC(c) < 0.3) * (ATFD(c) > 5)

In this detection strategy:

e cis the class under analysis

* WMC is the Weighted Method Count, which is the somthe
cyclomatic complexity of all methods withn

e TCC is the Tight Class Cohesion, representing thenber of
connected methods, i.e., methods that access tine sastance
variables (McCABE, 1976)

 ATFD, or Access to Foreign Data, is the number tfibates in
foreign classes accessed by class

The main limitation of detection strategies for ntfying relevant code
anomalies is that they are solely based on infaondhat emerge from the source
code structure. That is, they disregard other kirads information (e.qg.
architectural information) that could be exploitgith the source code in order to
reveal architecturally relevant code anomalies. édwer, they only consider
individual occurrences of code anomalies, rathan thnalyzing the relationships
between them. These limitations are the main reasdry current mechanisms
are unable to support the detection of code anesadisponsible for introducing
architectural problems (MACIAt al., 2012a).

Moreover, the effectiveness of automatically-detdatode anomalies using
detection strategies has been recently studied rudd&erent perspectives:

Mantyla and Lassensius (2006), for instance, ingatt to what extent
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automatically-detected code anomalies can be used &asis for subjective
evaluation of code evolvability. Olbrickt al. (2009;2010) and Khomlet al.
(2009) analyze whether the number of code anomal@sases over time and to
what extent the anomalies influence the frequerfocshanges on code elements.
More recently, Macia et al. (2012a) investigated wbat extent detection
strategies accurately localize code anomalies e@l&b architecture problems.
This study in particular has shown that more th@&oc5of the automatically
detected code anomalies were not correlated totactire problems, while more
than 50% of the relevant code anomalies were ntecthdl. Those results are
directly related to our research, as they motivaied search for characteristics
that could help to identify architecturally relevaode anomalies.

This section described the most common mechanismdetection of code
anomalies. Next, we analyze some tools aimed aectie§ refactoring
opportunities — or refactoring recommendation syste- and some specific code

anomalies detectors.

2.4.1.
Refactoring Recommendation Systems

Even though refactoring tools are available for maevelopment
environments, developers seem to limit their usel@mm level refactorings
(MURPHY-HILL et al., 2009). Therefore, as public interfaces and hotiias are
not changed as a result of low level refactoringdec anomalies related to
architecture problems tend to linger. In fact, vevér observed in recent studies
that, for 8 analyzed systems, only 40% of all cademalies causing architecture
problems were refactored in some point of the safénevolution.

Refactoring recommendation systems could help deees to identify code
anomalies removal opportunities. Previous studiegehproposed a number of
techniques for refactoring recommendation. Vigadl. (2012) propose an expert
software agent that assists developers when refagtan object-oriented system
into an aspect-oriented one. It analyzes the usmteraction history for
improving the agent’s effectiveness over time, mgddevelopers through the
steps they should take. ®ial. (2012) also propose a refactoring recommendation

mechanism based on the observation of manual ogfagtsteps. Their goal is to
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monitor common sequences of previous changes oe swtdctures in order to
detect the occurrence of refactorings, and recondingrtheir automation on-the-
fly, while the developer is programming. The recoemaation is based on
previously observed steps needed for performingefaetorings supported.

Both approaches can be used for assisting deveslamersafer refactorings,
minimizing the risks of introducing breaking chasgéiowever, they are not
aimed at maximizing their gains, prioritizing thos@omalies that harm the

architecture the most.

2.4.2.
Detection Tools for Code Anomalies

There are currently many tools dedicated to thentifleation of code
anomalies, targeting many different developmentirenments and languages.
We analyzed three of them: Hist-Inspect (MARAal., 2010), Semmle Code
(SEMMLE CODE, 2012) and NDepend (NDEPEND, 2012)e Thain reason
why we chose to analyze those detection tools as they all consider other
sources of information in their detection mecharsism addition to the source
code structure.

Hist-inspect. Mara et al. (2011) proposed a tool callddist-Inspect to
support both the definition and the automatic ajgpion of history-sensitive
detection strategiesThe tool supports conventional metrics, such asplouy
(CBO) and lines of code (LOC) (LANZA and MARINESCRI006), and history-
sensitive metrics (MARAet al., 2011). Those metrics are calculated by evaluating
conventional metrics through the system’s evolytemd computing their values
in each revision. The resulting metric represeimts the measured characteristic
evolved. For example, Hist-Inspect calculatesriiieOC metric (MARA et al.,
2010b), which calculates the average variationtfier number of lines of code
throughout the software evolution.

Hist-Inspect detection strategies, or rules, afaneé in XML, as illustrated

below.
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Listing 1

01: <?xml version="1.0" enconding="UTF-8"?>
02: <rule-catalog>

03: <rule id="sampleRule"
04: anomaly="unexpectedComplexGUI"
05: expression="LOC >= 100 || CC >=5"/>

06: </rule-catalog>

07: <anonaly-catalog>

08: <anomaly id="unexpectedComplexGUI">
09: applyTo="class"/>

10: </anomaly-catalog>

Listing 2 declares a strategy for detecting comiX classes, which may
implement more responsibilities than desired (li@3s05). It also defines an
anomaly namedinexpectedComplexGUI  that may be manifesting in classes
(lines 07-09). This strategy checks all systemsdasand retrieves the ones who
have 100 or more lines of code or whose cyclomemicplexity is greater or
equals to 5. These metrics were selected for ifitise purpose, and other metrics
could be used for detecting similar or differentoaalies, including the
aforementioned history-sensitive metrics.

Hist-Inspect uses history information for improvititge accuracy of code
anomalies detection strategies — in terms of deuorgatheir number of false
negatives and false positives. However, is sufierm two main limitations: first,
as it is solely based on software evolution, it oaly be used over systems that
present a reasonable number of distinct revisidtiiough thechange-proneness
prioritization heuristic (Section 3.1.1) we proposed also depends on tiseeage
of different software versions, it can be combimeth other heuristics that do not
present such requirement. Moreover, Hist-Inspect based on the analysis of
different software releases; that means it igndihesintermediary changes that
might have occurred between two major releasesh®mther hand, thehange-
proneness prioritization heuristic operates over thecommits executed by
developers, taking every change made to the systendle into consideration.

Semmle Code. Semmle Code (SEMMLE CODE, 2012) is a tool that
provides a source code query language (VERBAERMEI., 2008), allowing
maintainers to define their own custom design Viols. Those queries take into
consideration several properties of source codmesies, such as dependencies,
lines of code and depth of inheritance tree. Tlo@egfmaintainers are able to
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define design rules and constraints and to vehfnt automatically, in order to
find architecture violations.
The listing below shows an example that measuresiépth of inheritance

tree using the tool’s source query language:

Listing 2

0l: from MetricRefType t, int d

02: where t.fromSource() and d = t.getInheritanceDepth() and 4 > &
03: select t, 4 order by 4 desc

Semmle Code has two main limitations for detectirghitecturally relevant
code anomalies: first, it requires explicit docutagion for the system’s design
rules on its own DSL. Therefore, when this inforimatis absent, outdated or
incorrect, its ability to detect design violationdl be compromised. Second, it
only considers the source code structure as a esairmformation for detecting
violations. Therefore, it cannot identify architee violations — as it is not
possible to define queries that explore architectoformation. For example, one
cannot define rules that detect God Classes basedthe number of
responsibilities (or concerns) implemented by agielass, as that information is
not supported.

NDepend. Targeting the .NET platform, NDepend also provideiexible
code query language for defining detection strategas well as many different
visualization features. It also allows developard architects to enforce software
quality through standard and custom rules that ben integrated to the
development environment. For example, the rulesham@sm can be used to
identify refactorings that could possibly introdum@aking changes, by analyzing
recent changes and test coverage reports. Thiatieituis illustrated in the

example below:

warnif count > 0 from t in codeBase.OlderVersion().Application.Typ
es
where t.IsPubliclyVisible &&

/I The type has been removed and its parent assembl y hasn't been
removed ...
( (t.WasRemoved() && !'t.ParentAssembly.WasRemo ved()) ||

/I ... or the type is not publicly visible anymore
It.WasRemoved() && !t.NewerVersion().IsPubli clyVisible)

select new({t,
NewVisibility = (t. WasRemoved() ? "" :t.NewerVersio
n().Visibility. ToString()) }
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This query warns if a publicly visible type is matblicly visible anymore or
if it has been removed. For doing so, NDepend is &b connect to software
version control and issue tracking systems — fromene code coverage and test
reports information can be retrieved. The integratof such properties allows
NDepend to run queries that explore not only there® code structure but also
history-sensitive information — as exemplified bg YWasRemoved constraint. By
exploring evolution information, NDepend is alsdeatp detect code anomalies
that have been postponed for many revisions. Aalthlly, two of our
prioritization heuristics also consider informatiogtrieved from source version
control and issue tracking systems. However, th@ylyasuch information for
ranking code anomalies, while NDepend uses itrfspécting the source code and
possibly detecting design problems.

It is not possible, however, to input architectum®rmation into NDepend,
in order to aid relevant anomalies detection. Mweeponce detected, all the
violations and code anomalies are considered equedrmful. Thus, as the
amount of problems increases, it becomes hardeéetdify which ones should be
prioritized.

Finally, conventional mechanisms for detecting c@i®malies do not
support the ranking of code anomalies accordinghtr harmful degree on
systems’ architecture. Consequently, developere havmanually inspect each
suspect reported by those mechanisms. For each amalmaly detected, they
must determine whether it really represents thrieatie system architecture and,
then, decidexdd hoc which one should be prioritized. This process m&gua huge
effort when the list of reported suspects is laagel covers many parts of the
system, as it usually occurs.

However, some specific detection tools offer supdor ranking code

anomalies. Next section describes two of them.
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2.5.
Ranking Systems for Code Anomalies

As shown in the previous sections, there are manoistand techniques
available for detecting code anomalies. Howevegyasems grow, the number of
detected code anomalies also tends to increase RELB et al., 2009), and can
eventually become unmanageable. Furthermore, niaénsa are expected to
choose which refactorings they are performing.fisgime of the reasons why that
choice is necessary are (i) time constraints andaiiempts to find the correct
solution when restructuring a large system. In thantext, ranking code
anomalies could be an asset for increasing thetefémess of such refactoring
efforts.

However, most of the aforementioned works do nau$oon ranking or
prioritizing code anomalies. This section describss well-known tools that
provide ranking capabilities, for different devetognt platforms.

Code Metrics is a .NET based add-in to the Visual Studio dgwalent
environment. It is able to calculate a limited sétmetrics — lines of code,
cyclomatic complexity and afferent coupling. Onbege metrics are calculated,
Code Metrics assigns a “Maintainability Index” se¢o each of the analyzed code
elements. This maintainability score is based @ dbmbination of the metrics
calculated for that code element. For each supgaonietric, there is a pre-defined
threshold — which cannot be configured. In thassethe ranking criteria is based
on the number of measures for a given code eleitheitare greater than the
thresholds.

Some limitations of this work are: (i) it only takénto consideration the
source code structure as input for identifying ces®malies, (ii) the ranking
system disregards the architecture role of eaclyzath code element and (iii)
users cannot define their own ranking criteriagfiooritizing code anomalies.

Infusion is a tool for analyzing Java, C and C++ softwamgqzts. It is able
to calculate over 60 different code metrics, anddtect code anomalies such as
Data Classes (FOWLER al., 1999). Besides providing static analysis features
for calculating code metrics, it also associatemerical scores to all detected
anomalies. Those scores measure the negative imgaeen anomaly has on the
overall systems’ quality. By combining those scor@squality deficit index is
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calculated for the entire system. That index tak&® consideration size,
complexity, encapsulation, coupling and cohesiortrioge Figure 2 illustrates a

report generated by InFusion.
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Figure 2 - InFusion report example

As InFusion is a proprietary tool, their rankingtera are not clear.
However, as it can be noticed in the report showirigure 2, three different
maintainability indexes are taken into consideratifchange, reuse and
understand). Furthermore, as only the source cddectgre is taken into
consideration as a source of information, the dieteecnechanism is not enriched
by actual architecture information.

Our study intends to complement such results bpgemmg an approach for
identifying which anomalies should be prioritizedrmore promptly refactored —
based on their architecture relevance. We analiffereht properties of the code
elements they affect, such as change-proneness earai-proneness for
identifying which anomalies are more harmful to theerall architecture and

should be removed first.
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