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2 
Background and Related Work 

As software systems evolve, their size and complexity grow. In this context, 

the progressive manifestation of code anomalies is a key symptom of architecture 

quality decline. Furthermore, recent studies have shown that there is a strong 

correlation between code anomaly occurrences and architecture problems 

(MACIA et al., 2012b). When those anomalies are not detected and removed 

early, the maintainability of software projects can be irreversibly compromised, 

and, eventually, a complete redesign is inevitable (MACCORMACK et al., 2006; 

EICK et al., 2001). 

Although many studies have broadly investigated approaches for detecting 

code anomalies (WETTEL et al., 2008; LANZA et al., 2006; MUNRO et al., 

2005; MARINESCU et al., 2004), identifying those that are more likely to cause 

architecture problems is still a challenging task. In fact, recent studies have shown 

that automatically detected code anomalies are seldom good indicators of 

architectural problems (MACIA et al., 2012a). Furthermore, even when there is 

tool support for detecting code anomalies, developers seem to invest more time 

removing those that are not related to architectural problems (MACIA et al., 

2012b; MURPHY-HILL et al., 2009). Thus, developers tend to prioritize 

refactoring code structures that do not affect hierarchies or public interfaces, and, 

therefore, could not affect the architecture design. The identification and ranking 

of such code anomalies as soon as possible could improve refactoring 

effectiveness, by guiding developers into solving the right problems. 

In this context, this chapter outlines the basic terminology we used 

throughout the development of our study (Section 2.1). Next, it outlines previous 

research on refactoring state-of-practice (Section 2.2). Section 2.3 provides a brief 

background on code anomalies and how they are related to architecture problems. 

Next, we describe approaches for both detecting code anomalies (Section 2.4) and 

recommending refactorings (Section 2.5). We decided to investigate refactoring 

recommendation systems as they could indicate relevant improvement 
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opportunities for the source code. Those indications often comprehend the 

detection of code anomalies. Finally, we also outline existing work on ranking 

code anomalies, although such mechanisms are still rather scarce (Section 2.6). 

 

2.1. 
Basic Terminology 

Software architecture is the structure of a system, which comprises software 

modules, the interfaces of those modules, and the relationship among them (BASS 

et al., 2003). Architecture components are architectural entities which encapsulate 

a subset of the system's functionalities (TAYLOR et al., 2009). In the context of 

this dissertation, we also use the term architecture role to represent the 

architecture decisions realized by a code element. More than one code element 

might be required to realize an architecture role. For example, considering a 

system that implements the MVC pattern, a class could contribute to the 

implementation of the role Model, View or Controller (BUSCHMANN et al., 

2007). 

The intended architecture comprehends explicit decisions made by the 

designers on the selection of components, their interactions, and their constraints 

(TAYLOR et al., 2009). On the other hand, the implemented architecture 

describes how the system has been actually built (TAYLOR et al., 2009).  In 

software projects, the implemented architecture often does not match the intended 

architecture (TAYLOR et al., 2009). Many prescribed architecture decisions can 

be undesirably violated by the actual implementation of a system. Those 

mismatches between the intended and the implemented architectures are called 

violations. As the number of violations and modularity problems increase, the 

architecture is known to degrade (HOCHSTEIN and LINDVALL, 2005).  

A frequent symptom of architecture degradation (HOCHSTEIN and 

LINDVALL, 2005) is the progressive manifestation of code anomalies. Code 

anomaly, also referred to as code smell, is a symptom in source code of a deeper 

maintainability problem (FOWLER et al.,1999).  Examples of code anomalies are 

Long Method and Inadequate Name. Code anomalies can affect different types of 

code structures – or code elements. In the context of this dissertation, code 
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elements refer to any implementation structure – such as classes, methods or 

constructors. 

When code anomalies have a negative impact on the system’s architecture 

design, contributing to architecture degradation, we call them architecturally 

relevant code anomalies. In this sense, relevant means it is harmful or related to 

architecture in some level. We chose to use the term architecturally relevant 

because it has been widely used on our previous studies (ARCOVERDE et al., 

2012; MACIA et al., 2011; MACIA et al., 2012a; MACIA et al., 2012c). 

Code anomalies are often removed through refactorings. Refactoring is the 

process of changing a system’s design structure without changing its behavior, in 

order to improve its readability and maintainability (FOWLER et al., 1999). 

When refactoring is performed on a publicly visible element, like public classes or 

method signatures, we call it an API-level refactoring (KIM et al., 2011) or a 

high-level refactoring (MURPHY-HILL et al., 2009). Low level refactorings, on 

the other hand, are those applied to internal code structures, such as method 

bodies. 

 

2.2. 
Empirical Studies on Refactoring 

The first part of our research was focused on understanding the longevity of 

code anomalies; for doing so, we conducted an empirical study on refactoring 

habits, and their prioritization (ARCOVERDE et al., 2011). 

Previous studies were dedicated to understanding common refactoring 

practices, as well as identifying how and when they are routinely applied. 

Murphy-Hill has recently presented an extensive study on how programmers 

refactor, identifying several common refactoring habits (MURPHY-HILL et al., 

2009). They found that refactorings are performed frequently, and that about half 

of them are not high-level. Dig et al. (2005) investigated the role of refactoring on 

APIs evolution, and found that 80% of the changes that could break client 

applications are high-level refactorings. Such studies motivated us into 

investigating refactoring habits, looking for reasons why some refactorings – in 

this case, high-level refactorings – are postponed or neglected.  
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Weißgerber and Diehl (2006) found that, following some revisions where 

refactoring took place, there was an increasing ratio of bugs reported. Those 

results were confirmed by Kim et al. (2011), who found an increase in the number 

of bug fixes after refactorings. Xing and Stroulia (2006) analyzed the Eclipse  

code evolution and found that 70% of the observed code changes were 

refactorings. Moreover, they found that state-of-art IDE’s support only a subset of 

commonly applied low-level refactorings, lacking support for more complex ones. 

Those results helped us in understanding why architecturally relevant code 

anomalies are seldom removed, as those anomalies intuitively require high-level 

refactorings (MACIA et al., 2012b). 

 

2.3. 
Code Anomalies and Architecture Problems 

The negative impact of code anomalies on the system’s architecture has 

been analyzed by several studies documented in the literature.  MacCormack et al. 

(2006) reported that the Mozilla browser's code was overly complex and tightly 

coupled, therefore hindering its maintainability and ability to evolve. Such 

problems were the main causes for its complete re-engineering in 1998. This 

effort consumed about five years to rewrite over seven thousand source files and 

two million source lines of code (Godfrey and Lee, 2000).  

Eick et al. (2001) described how the modularity of the architecture of a 

large telecommunication system degraded between 1989 and 1996. In particular, 

the relationship among the architectural modules increased over time. This was 

the main cause why the system’s architectural modules were not independent 

anymore and, consequently, further changes were not possible. 

Hochstein and Lindvall (2005) investigated the main causes for architecture 

degradation, indicating that refactoring specific code anomalies could help to 

avoid it. Wong et al. (2011) also identified that duplicated code was related to 

design defects – more specifically, design violations. 
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2.4. 
Detection of Code Anomalies 

Many authors have proposed techniques and tools for automatically 

detecting code anomalies (WETTEL et al., 2008; LANZA and MARINESCU, 

2006; MUNRO et al., 2005; MARINESCU, 2004). Most of them are based on 

exploiting information that is extracted from the source code structure, relying on 

the combination of static code metrics and thresholds into logical expressions. 

Those mechanisms are known as detection strategies (MARINESCU, 2004). The 

example below illustrates a well-known detection strategy (LANZA and 

MARINESCU, 2006) for identifying God Classes. This strategy and its thresholds 

have also been used in previous studies (OLBRICH et al., 2009; 2010). 

GodClass(c) = (WMC(c) >= 47) ^ (TCC(c) < 0.3) ^ (ATFD(c) > 5) 

In this detection strategy: 

• c is the class under analysis 

• WMC is the Weighted Method Count, which is the sum of the 

cyclomatic complexity of all methods within c  

• TCC is the Tight Class Cohesion, representing the number of 

connected methods, i.e., methods that access the same instance 

variables (McCABE, 1976) 

• ATFD, or Access to Foreign Data, is the number of attributes in 

foreign classes accessed by class c  

The main limitation of detection strategies for identifying relevant code 

anomalies is that they are solely based on information that emerge from the source 

code structure. That is, they disregard other kinds of information (e.g. 

architectural information) that could be exploited with the source code in order to 

reveal architecturally relevant code anomalies. Moreover, they only consider 

individual occurrences of code anomalies, rather than analyzing the relationships 

between them. These limitations are the main reasons why current mechanisms 

are unable to support the detection of code anomalies responsible for introducing 

architectural problems (MACIA et al., 2012a). 

Moreover, the effectiveness of automatically-detected code anomalies using 

detection strategies has been recently studied under different perspectives: 

Mantyla and Lassensius (2006), for instance, investigate to what extent 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

25

 

automatically-detected code anomalies can be used as a basis for subjective 

evaluation of code evolvability. Olbrich et al. (2009;2010) and Khomh et al. 

(2009) analyze whether the number of code anomalies increases over time and to 

what extent the anomalies influence the frequency of changes on code elements. 

More recently, Macia et al. (2012a) investigated to what extent detection 

strategies accurately localize code anomalies related to architecture problems. 

This study in particular has shown that more than 50% of the automatically 

detected code anomalies were not correlated to architecture problems, while more 

than 50% of the relevant code anomalies were not detected. Those results are 

directly related to our research, as they motivated our search for characteristics 

that could help to identify architecturally relevant code anomalies.  

This section described the most common mechanisms for detection of code 

anomalies. Next, we analyze some tools aimed at detecting refactoring 

opportunities – or refactoring recommendation systems – and some specific code 

anomalies detectors. 

 

2.4.1. 
Refactoring Recommendation Systems 

Even though refactoring tools are available for most development 

environments, developers seem to limit their use on low level refactorings 

(MURPHY-HILL et al., 2009). Therefore, as public interfaces and hierarchies are 

not changed as a result of low level refactoring, code anomalies related to 

architecture problems tend to linger. In fact, we have observed in recent studies 

that, for 8 analyzed systems, only 40% of all code anomalies causing architecture 

problems were refactored in some point of the software evolution. 

Refactoring recommendation systems could help developers to identify code 

anomalies removal opportunities. Previous studies have proposed a number of 

techniques for refactoring recommendation. Vidal et al. (2012) propose an expert 

software agent that assists developers when refactoring an object-oriented system 

into an aspect-oriented one. It analyzes the user’s interaction history for 

improving the agent’s effectiveness over time, guiding developers through the 

steps they should take. Xi et al. (2012) also propose a refactoring recommendation 

mechanism based on the observation of manual refactoring steps. Their goal is to 
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monitor common sequences of previous changes on code structures in order to 

detect the occurrence of refactorings, and recommending their automation on-the-

fly, while the developer is programming. The recommendation is based on 

previously observed steps needed for performing the refactorings supported. 

Both approaches can be used for assisting developers into safer refactorings, 

minimizing the risks of introducing breaking changes. However, they are not 

aimed at maximizing their gains, prioritizing those anomalies that harm the 

architecture the most.  

 

2.4.2. 
Detection Tools for Code Anomalies  

There are currently many tools dedicated to the identification of code 

anomalies, targeting many different development environments and languages. 

We analyzed three of them: Hist-Inspect (MARA et al., 2010), Semmle Code 

(SEMMLE CODE, 2012) and NDepend (NDEPEND, 2012). The main reason 

why we chose to analyze those detection tools is that they all consider other 

sources of information in their detection mechanisms, in addition to the source 

code structure. 

Hist-inspect. Mara et al. (2011) proposed a tool called Hist-Inspect to 

support both the definition and the automatic application of history-sensitive 

detection strategies. The tool supports conventional metrics, such as coupling 

(CBO) and lines of code (LOC) (LANZA and MARINESCU, 2006), and history-

sensitive metrics (MARA et al., 2011). Those metrics are calculated by evaluating 

conventional metrics through the system’s evolution, and computing their values 

in each revision. The resulting metric represents how the measured characteristic 

evolved. For example, Hist-Inspect calculates the rpiLOC metric (MARA et al., 

2010b), which calculates the average variation for the number of lines of code 

throughout the software evolution. 

Hist-Inspect detection strategies, or rules, are defined in XML, as illustrated 

below. 
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Listing 1  

 01: <?xml version="1.0" enconding="UTF-8"?> 
02: <rule-catalog> 

03:  <rule id="sampleRule" 
04:   anomaly="unexpectedComplexGUI" 

05:   expression="LOC >= 100 || CC >= 5"/> 
06: </rule-catalog> 

07: <anonaly-catalog> 
08:  <anomaly id="unexpectedComplexGUI"> 
09:   applyTo="class"/> 
10: </anomaly-catalog>  

 

Listing 2 declares a strategy for detecting complex GUI classes, which may 

implement more responsibilities than desired (lines 03-05). It also defines an 

anomaly named unexpectedComplexGUI  that may be manifesting in classes 

(lines 07-09). This strategy checks all system classes and retrieves the ones who 

have 100 or more lines of code or whose cyclomatic complexity is greater or 

equals to 5. These metrics were selected for illustrative purpose, and other metrics 

could be used for detecting similar or different anomalies, including the 

aforementioned history-sensitive metrics. 

Hist-Inspect uses history information for improving the accuracy of code 

anomalies detection strategies – in terms of decreasing their number of false 

negatives and false positives. However, is suffers from two main limitations: first, 

as it is solely based on software evolution, it can only be used over systems that 

present a reasonable number of distinct revisions. Although the change-proneness 

prioritization heuristic (Section 3.1.1) we proposed also depends on the existence 

of different software versions, it can be combined with other heuristics that do not 

present such requirement. Moreover, Hist-Inspect was based on the analysis of 

different software releases; that means it ignores the intermediary changes that 

might have occurred between two major releases. On the other hand, the change-

proneness prioritization heuristic operates over the commits executed by 

developers, taking every change made to the system’s code into consideration. 

Semmle Code. Semmle Code (SEMMLE CODE, 2012) is a tool that 

provides a source code query language (VERBAERE et al., 2008), allowing 

maintainers to define their own custom design violations. Those queries take into 

consideration several properties of source code elements, such as dependencies, 

lines of code and depth of inheritance tree. Therefore, maintainers are able to 
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define design rules and constraints and to verify them automatically, in order to 

find architecture violations. 

The listing below shows an example that measures the depth of inheritance 

tree using the tool’s source query language: 

Listing 2 

 

Semmle Code has two main limitations for detecting architecturally relevant 

code anomalies: first, it requires explicit documentation for the system’s design 

rules on its own DSL. Therefore, when this information is absent, outdated or 

incorrect, its ability to detect design violations will be compromised. Second, it 

only considers the source code structure as a source of information for detecting 

violations. Therefore, it cannot identify architecture violations – as it is not 

possible to define queries that explore architecture information. For example, one 

cannot define rules that detect God Classes based on the number of 

responsibilities (or concerns) implemented by a given class, as that information is 

not supported. 

NDepend. Targeting the .NET platform, NDepend also provides a flexible 

code query language for defining detection strategies, as well as many different 

visualization features. It also allows developers and architects to enforce software 

quality through standard and custom rules that can be integrated to the 

development environment. For example, the rules mechanism can be used to 

identify refactorings that could possibly introduce breaking changes, by analyzing 

recent changes and test coverage reports. This situation is illustrated in the 

example below: 

warnif  count > 0 from  t in  codeBase.OlderVersion().Application.Typ
es 
where  t.IsPubliclyVisible &&  
 
  // The type has been removed and its parent assembl y hasn't been
 removed ... 
     ( (t.WasRemoved() && !t.ParentAssembly.WasRemo ved()) || 
 
     // ... or the type is not publicly visible anymore 
       !t.WasRemoved() && !t.NewerVersion().IsPubli clyVisible) 
 
select  new { t, 
             NewVisibility = (t.WasRemoved() ? " "  : t.NewerVersio
n().Visibility.ToString()) } 
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This query warns if a publicly visible type is not publicly visible anymore or 

if it has been removed. For doing so, NDepend is able to connect to software 

version control and issue tracking systems – from where code coverage and test 

reports information can be retrieved. The integration of such properties allows 

NDepend to run queries that explore not only the source code structure but also 

history-sensitive information – as exemplified by the WasRemoved constraint. By 

exploring evolution information, NDepend is also able to detect code anomalies 

that have been postponed for many revisions. Additionally, two of our 

prioritization heuristics also consider information retrieved from source version 

control and issue tracking systems. However, they apply such information for 

ranking code anomalies, while NDepend uses it for inspecting the source code and 

possibly detecting design problems. 

It is not possible, however, to input architecture information into NDepend, 

in order to aid relevant anomalies detection. Moreover, once detected, all the 

violations and code anomalies are considered equally harmful. Thus, as the 

amount of problems increases, it becomes harder to identify which ones should be 

prioritized. 

 

Finally, conventional mechanisms for detecting code anomalies do not 

support the ranking of code anomalies according to their harmful degree on 

systems’ architecture. Consequently, developers have to manually inspect each 

suspect reported by those mechanisms. For each code anomaly detected, they 

must determine whether it really represents threats to the system architecture and, 

then, decide ad hoc which one should be prioritized. This process requires a huge 

effort when the list of reported suspects is large and covers many parts of the 

system, as it usually occurs.  

However, some specific detection tools offer support for ranking code 

anomalies. Next section describes two of them. 
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2.5. 
Ranking Systems for Code Anomalies 

As shown in the previous sections, there are many tools and techniques 

available for detecting code anomalies. However, as systems grow, the number of 

detected code anomalies also tends to increase (OLBRICH et al., 2009), and can 

eventually become unmanageable. Furthermore, maintainers are expected to 

choose which refactorings they are performing first. Some of the reasons why that 

choice is necessary are (i) time constraints and (ii) attempts to find the correct 

solution when restructuring a large system. In this context, ranking code 

anomalies could be an asset for increasing the effectiveness of such refactoring 

efforts. 

However, most of the aforementioned works do not focus on ranking or 

prioritizing code anomalies. This section describes two well-known tools that 

provide ranking capabilities, for different development platforms. 

Code Metrics is a .NET based add-in to the Visual Studio development 

environment. It is able to calculate a limited set of metrics – lines of code, 

cyclomatic complexity and afferent coupling. Once those metrics are calculated, 

Code Metrics assigns a “Maintainability Index” score to each of the analyzed code 

elements. This maintainability score is based on the combination of the metrics 

calculated for that code element. For each supported metric, there is a pre-defined 

threshold – which cannot be configured. In that sense, the ranking criteria is based 

on the number of measures for a given code element that are greater than the 

thresholds.  

Some limitations of this work are: (i) it only takes into consideration the 

source code structure as input for identifying code anomalies, (ii) the ranking 

system disregards the architecture role of each analyzed code element and (iii) 

users cannot define their own ranking criteria for prioritizing code anomalies. 

Infusion is a tool for analyzing Java, C and C++ software projects. It is able 

to calculate over 60 different code metrics, and to detect code anomalies such as 

Data Classes (FOWLER et al., 1999). Besides providing static analysis features 

for calculating code metrics, it also associates numerical scores to all detected 

anomalies. Those scores measure the negative impact a given anomaly has on the 

overall systems’ quality. By combining those scores, a quality deficit index is 
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calculated for the entire system. That index takes into consideration size, 

complexity, encapsulation, coupling and cohesion metrics. Figure 2 illustrates a 

report generated by InFusion. 

 

Figure 2 - InFusion report example 

As InFusion is a proprietary tool, their ranking criteria are not clear. 

However, as it can be noticed in the report shown in Figure 2, three different 

maintainability indexes are taken into consideration (change, reuse and 

understand). Furthermore, as only the source code structure is taken into 

consideration as a source of information, the detection mechanism is not enriched 

by actual architecture information. 

Our study intends to complement such results by proposing an approach for 

identifying which anomalies should be prioritized – or more promptly refactored – 

based on their architecture relevance. We analyze different properties of the code 

elements they affect, such as change-proneness and error-proneness for 

identifying which anomalies are more harmful to the overall architecture and 

should be removed first. 
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