PUC-RIo - Certificacdo Digital N° 1021808/CA

1
Introduction

Code anomalies, also referred to as code smetlseifiterature (FOWLER
et al., 1999), are symptoms in the source code of a desmentainability
problem. Their occurrences often represent stratpnoblems, making code less
flexible, harder to read and to maintain. Howewede anomalies are even more
harmful when they negatively impact the modulaatythe software architecture.
According to Bass (2003) software architecturdnesgtructure of a system, which
comprises software modules, the interfaces of thosdules, and the relationship
among them. In many cases, instances of code amsntan contribute directly
to the decay of the software architecture. In fpotyvious studies have confirmed
that the progressive manifestation of code anomaiée a key symptom of
architecture quality decline, oarchitecture degradation (HOCHSTEIN and
LINDVALL, 2005; WONG et al., 2010).

The term architecture degradation was introduced Hpchstein and
Lindvall, when referring to the continuous qualitgcline of architecture designs
in evolving software systems (HOCHSTEIN and LINDVIAL2005). When
architecture degrades, the maintainability of safev projects can be
compromised irreversibly (MACCORMACKat al., 2006), and, eventually, a
complete redesign is inevitable. Aarchitecturally relevant code anomaly
represents a symptom of an architecture probletinenmplementation. Examples
of architecture problems are Overused InterfaceARVIN et al., 2002),
Ambiguous Interfaces (GARCIAt al., 2009) and cyclic dependencies between
modules. Figure 1 illustrates an example of hovhigecture problems and code

anomalies could be related.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

12

System Archi1ecture)
———————————————— 7| public class SearchData{

//other methods
/252/47 Zﬁ: ; zﬁz // void doPost(..){//complex}

void dDGet{ J{//complex}

DATA BUSINESS

catch(Persistence p){..
//14 lines of code removed

catch(Repository r){..}

Legend ‘_ [ETE":E’ |

g GUI b Business —> Expected flow
P Persistence t Transaction - 3 Architectural Violation

|:| Package -Ard'ntecture module

Figure 1 - Impact of code anomalies on architectural problems

The code example on the right hand side of Figutepicts a code anomaly
extracted from the HealthWatcher system (Sectid), 4letected by developers -
namely, a Long Method (SearchData.execute). Italassified as a Long Method
because (i) the method body Hagh internal complexity, and (ii) it implements
several system functionalities, e.g. GUI, TransaxtiPersistence and Business.
High internal complexity in this case is given I thumber of lines of code and
cyclomatic complexity. Additionally, Figure 1 showas example of architecture
problem, associated with the realization of theeption handling policy. In this
example, the SearchData class invokes differenticesr from the Business
module. Also, it ends up handling exceptions (&i@nsaction) thrown by the
Data module, including those that should be treatternally. That leads to
additional code couplings between elements reglitie Data and GUI modules,
resulting in architecture violations. These viaas are represented by the dashed
red arrows in Figure 1.

Ideally, the software project team wants to maxemithe gains in
maintainability, removing those anomalies thatargcal to architecture designs.
Refactoring (FOWLERet al., 1999) is the most common approach for removing
anomalies from code, whether they are relevanbarRecent studies have shown
refactoring has become a common practice (XING &TROULIA, 2006;
MURPHY-HILL et al.,, 2009; ARCOVERDEset al., 2011), with well-known
benefits (MURPHY-HILL et al., 2009). However, somma&tegories or patterns of

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

13

code anomalies seem to be, either deliberatelygrignored. For many reasons,
such as time constraints and their inability tonidg relevant anomalies,
developers often focus on removing only a subsetlaode anomalies that infect
their projects (KIMet al., 2011; ARCOVERDEgt al., 2011; MACIA et al.,
2012b). Moreover, most of the anomalies that ateremoved, or prioritized, are
architecturally relevant (MACIAet al.; 2012b).

The problem is that both detecting and removindigecturally relevant
anomalies are not trivial tasks, especially whencasmsider the absence of proper
and up-to-date architecture documentation on imgustftware systems. When
relevant code anomalies are not distinguished frwelevant ones, developers
might waste time removing problems that do not h#me architecture design
(MACIA et al., 2012b).

1.1.
Motivation and Problem

It is often the case that code reviews need toeo®med in order to check
how the implementation structure is adherent torttwelularity of the software
architecture. In the context of those code revienspde anomaly usually requires
closer, more immediate attention when it is relatedarchitectural problems.
However, the removal of architecturally relevante@nomalies is a challenging
task, especially when those anomalies are idedtide. Furthermore, there is
little knowledge on which factors or characteristiare good indicators of
architecturally relevant anomalies.

This lack of knowledge implies that developers teéadhot prioritize the
code anomalies that are relevant to the architeechodularity adherence. In fact,
there is growing empirical evidence that refactgsinare more frequently
performed on structures narrowly scoped than osehadely scoped (DI@t al.,
2006; MURPHY-HILL et al., 2009; MACIA et al., 2012b). Thosdow-level
refactorings are often prioritized due to the lomad nature of their changes
(ARCOVERDE et al., 2011), as their impacts do rftéc other modules and are
not propagated through client modules. However, fandhat same reason, low-
level refactorings are unable to restructure aechutre problems, as they do not
change hierarchies, dependencies or public stestim fact, in recent studies we

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

14

found that around 70% and up to 95% of all refangw performed through the
evolution of a software project can be classifiedl@v-level (MACIA et al.,
2012b), and are not handling architecturally reitvaode anomalies. As a
consequence, architecture degradation could navbieed.

Furthermore, we performed an analysis on severflvae systems for
understanding what proportion of their code anoasalvere causing architecture
problems. We found that around 40% of the entiteobeode anomalies was not
architecturally relevant (MACIAet al., 2012b). This result, combined with the
aforementioned study, shows us that developersnaesting their refactoring
efforts into solving code anomalies that do notnhaarchitecture, while
postponing those that do. Moreover, motivated lmemé studies on the state of
practice of refactoring, we wanted to understapdh@ reasons why some code
anomalies lingered and (ii) what factors led depels to prioritize the removal of
a particular code anomaly (ARCOVERREal., 2011).

The aforementioned observations motivated us ittolysng three main
subjects: (i) the factors that contribute to thegevity of code anomalies in
software projects, (ii) which characteristics cam dxplored for distinguishing
architecturally relevant code anomalies and (iyvhwe can rank anomalies based
on those characteristics, helping developers piderthe removal of relevant code

anomalies.

1.2.
Limitations of Related Work

A wide range of code analysis techniques and toal®e been proposed for
automatically detecting code anomalies (MARINESCHE al., 2004;
RATZINGER et al., 2005; MUNROet al., 2005; LANZAet al., 2006; WETTEL
et al., 2008). Those approaches are usually focusedhenektraction and
combination of static code measures. However, state-of-art approaches are
limited regarding the prioritization of architecally relevant code anomalies.
They are restricted to analyzing the source codetstre only, leading to well-
known false positives and false negatives (MAGAl., 2012a).

The aforementioned restrictions make it hard forettegpers to distinguish
and prioritize architecturally relevant anomalolesreents that demand immediate

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

15

attention. Most of those techniques and tools amsvegard software project

factors, such as architecture designs, frequenchafges and number of errors.
Additionally, developers cannot distinguish whiaoealous code elements are
architecturally harmful without knowing or considey the role that they play in

the architectural design. To the best of our knogée there are not even
empirical studies that investigate and comparerakes of such project factors on
the distinction and prioritization of architectuyatelevant code anomalies.

Several tools have been proposed to enhance refarteffectiveness.
SafeRefactor (SOARE®t al., 2010) helps developers to verify whether their
refactorings will change the system behaviour, @wgi incomplete or incorrect
refactorings. BeneFactor (& al., 2012) recommends refactorings based on the
observation of manual refactoring steps. Howevemenof these tools help
developers in prioritizing refactorings with respdo their contribution to
sustaining the architecture design.

1.3.
Goals and Research Questions

Based on the issues discussed in the previousesaioiss, we define our
goals as follows:
* To identify the reasons why some kinds of code ai@m® seem to
linger on code
« To propose and study the usefulness of a set ofigties for
prioritizing code anomalies based on their archited relevance
» To develop a system in order to support the autermanking of the

code anomalies, according to the proposed priation heuristics.

We intend to achieve those goals by answering dtlewing research
questions:

1) Why some (patterns of) architecturally relevanbmalies are postponed
or neglected? [RQ1]

2) Is it possible to rank code anomalies basedein architecture relevance

with the proposed heuristics? [RQ2]

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

16

3) Which characteristics help in ranking code an@@sabased on their
architecture relevance? [RQ3]

1.4.
Preliminary Studies and Tool Support

We started our study by analyzing the causes ofldhgevity of code
anomalies and the reasons why state-of-practicactiaing is not effectively
removing relevant code anomalies. For doing so,cexgied out a number of
different empirical analyses: three exploratorydsgs and one survey, involving
over 50 versions of 6 different systems and maae 800 refactorings.

Furthermore, once we had addressed the problerasedeko our first
research question (RQ1), we could contribute tartidementation of a relevant

code anomalies detector, described on Section.1.4.2

1.4.1.
Empirical Studies

When trying to understand the causes why some dremseemed to linger
on code for longer than others, we conducted aeyuown refactoring habits. Our
goal was to check to what extent programmers deetalidentify, prioritize and
remove architecturally relevant code anomalies. Jtnely consisted of a survey
which aimed at collecting information regarding whifactors influence the
persistence of code smells. This survey was appligd 33 developers from
different companies. We found that developers o#tenid refactoring structures
with wide scope, such as public methods or clasmed,prioritize less relevant
anomalies, with respect to their impact on theesy& architecture. This study
addresses our first research question (RQ1):

» ARCOVERDE, R.; GARCIA, A.; FIGUEIREDO, BJnderstanding
the Longevity of Code Smells - Preliminary Results of an Explanatory
Survey. 4th International Workshop on Refactoring ToM&RT), held

in conjunction with the 33rd International Conferenon Software
Engineering (ICSE), May 2011.

We also investigated to what extent code anomaliesgood indicators of
architecture problems, and, more specifically, haften relevant anomalies are
refactored. This investigation was important forentfying the level of

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

17

effectiveness of state-of-practice refactorings,emwhaddressing architecturally
relevant anomalies (RQ2). For doing so, we analyl@dersions of 6 different
real-world systems. We found that 78% of all amttiire problems were related
to code anomalies, and also that they were noh aétactored — only 30% of all
the performed refactorings removed relevant an@salihis study resulted in the
publication of a full paper at the European Confeeson Software Maintenance
and Reengineering; our major contribution to thiglg was the analysis of how
often refactorings remove architecturally relevamomalies in real software
projects:
* MACIA, |.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C.; SAA,
A. On the Relevance of Code Anomalies for Identifying Architecture
Degradation Symptoms. Proceedings of the 16th European Conference

on Software Maintenance and Reengineering (CSMR)eg&d,
Hungary, March 2012.

Once we had identified reasons why some code amesnaie neglected,
and how often they affect the preservation of decture design, we started
exploring some ideas for detecting and ranking th&ocording to the previous
study (MACIA et al., 2012b), one of the main reasons why architeltjura
relevant anomalies are not removed is the inacguodcurrent techniques for
detecting code anomalies. More specifically, swethhiques are based solely on
the analysis of the source code structure. Thusstasded an exploratory study
towards finding which characteristics in an evolyisoftware project could be
exploited to guide the ranking of code anomaliesieh as change-proneness and
error-proneness. We wrote a first draft of our sl heuristics in a short paper,
partially addressing our second and third resequestions (RQ2, RQ3):

« ARCOVERDE, R.; MACIA, 1; GARCIA, A, STAA,
A. Automatically Detecting Architecturally-Relevant Code
Anomalies. 3rd International Workshop on RecomméaodaSystems
for Software Engineering, held in conjunction witthe 34th

International Conference on Software EngineerinGSE& 2012).
Zurich, Switzerland, June 2012.

Finally, for detecting architecturally relevant eodnomalies, we designed
a recommendation tool we called SCOOP. SCOOP’'scti@emechanisms are
based on (i) using architecture information, indteastatic analysis only and (ii)

analyzing groups of anomalies for identifying patte of code anomaly

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

18

occurrences. Examples of architecture informatioplezed by SCOOP are
mappings between architectural elements and caaresits. SCOOP is able to
automatically detect and rank code anomalies, bamedthe prioritization
heuristics we proposed, partially addressing oindthesearch question (RQ3).
Furthermore, our implementation was accepted ferTtbhol Demo Track of the
International Conference on Software Maintenance:
« MACIA, I.; ARCOVERDE, R.; CIRILO, E.; GARCIA, A.; $AA,
A. Supporting the Identification of ArchitecturalBelevant Code

Anomalies. 28th |IEEE International Conference on ftvare
Maintenance (ICSM 2012). Riva Del Garda, Italy, t8egber 2012

1.4.2.
SCOOP

In order to detect relevant code anomalies, we rituted to the
implementation of SCOOP (SCOOP, 2012), a tool aina¢dautomatically
detecting architecturally relevant code anomaliéss tool was strongly based on
the notion that recurring occurrences of code atiesia or code anomaly
patterns — and the relationships between them can be batticators of
architecture problems than individual anomaly omeeces. Besides identifying
some of those relevant patterns of code anomallgsC(A et al., 2012a), this
tool is also able to detect individual anomaliesnfr metrics-based detection
strategies (LANZA and MARINESCU, 2006). We descdlibe main features of
SCOOP, as well as our initial ideas for prioritieat heuristics, in the
aforementioned paper “Automatically Detecting Atebturally relevant Code
Anomalies”. It is also important mentioning thathaugh we have implemented
some of its components, SCOOP’s detection mechargspart of an ongoing
doctorate work; our study focuses specifically amonitizing the anomalies

detected, as described in Chapter 3.

1.5.
Dissertation Structure

The next chapters have the following purposes:

Chapter 2Background and Related Work: presents general background and
outlines related work on code anomalies detecti@hranking.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

PUC-RIo - Certificacdo Digital N° 1021808/CA

19

Chapter 3Prioritization of Code Anomalies. describes our prioritization
heuristics for ranking code anomalies based on falifferent

characteristics and presents their implementatetaild

Chapter 4Evaluation: presents and discusses results for the evaluationr

prioritization heuristics.

Chapter 5Conclusion: discusses the conclusions and the contributionthfs

dissertation, and describes planned future work.

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA

