
1 
Introduction 

Code anomalies, also referred to as code smells in the literature (FOWLER 

et al., 1999), are symptoms in the source code of a deeper maintainability 

problem. Their occurrences often represent structural problems, making code less 

flexible, harder to read and to maintain. However, code anomalies are even more 

harmful when they negatively impact the modularity of the software architecture. 

According to Bass (2003) software architecture is the structure of a system, which 

comprises software modules, the interfaces of those modules, and the relationship 

among them. In many cases, instances of code anomalies can contribute directly 

to the decay of the software architecture. In fact, previous studies have confirmed 

that the progressive manifestation of code anomalies is a key symptom of 

architecture quality decline, or architecture degradation (HOCHSTEIN and 

LINDVALL, 2005; WONG et al., 2010). 

The term architecture degradation was introduced by Hochstein and 

Lindvall, when referring to the continuous quality decline of architecture designs 

in evolving software systems (HOCHSTEIN and LINDVALL, 2005). When 

architecture degrades, the maintainability of software projects can be 

compromised irreversibly (MACCORMACK et al., 2006), and, eventually, a 

complete redesign is inevitable. An architecturally relevant code anomaly 

represents a symptom of an architecture problem in the implementation. Examples 

of architecture problems are Overused Interfaces (MARTIN et al., 2002), 

Ambiguous Interfaces (GARCIA et al., 2009) and cyclic dependencies between 

modules. Figure 1 illustrates an example of how architecture problems and code 

anomalies could be related. 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

12

 

 

Figure 1 - Impact of code anomalies on architectural problems 

The code example on the right hand side of Figure 1 depicts a code anomaly 

extracted from the HealthWatcher system (Section 4.1), detected by developers - 

namely, a Long Method (SearchData.execute). It was classified as a Long Method 

because (i) the method body has high internal complexity, and (ii) it implements 

several system functionalities, e.g. GUI, Transaction, Persistence and Business. 

High internal complexity in this case is given by the number of lines of code and 

cyclomatic complexity. Additionally, Figure 1 shows an example of architecture 

problem, associated with the realization of the exception handling policy. In this 

example, the SearchData class invokes different services from the Business 

module. Also, it ends up handling exceptions (e.g. Transaction) thrown by the 

Data module, including those that should be treated internally. That leads to 

additional code couplings between elements realizing the Data and GUI modules, 

resulting in architecture violations. These violations are represented by the dashed 

red arrows in Figure 1. 

Ideally, the software project team wants to maximize the gains in 

maintainability, removing those anomalies that are critical to architecture designs. 

Refactoring (FOWLER et al., 1999) is the most common approach for removing 

anomalies from code, whether they are relevant or not. Recent studies have shown 

refactoring has become a common practice (XING and STROULIA, 2006; 

MURPHY-HILL et al., 2009; ARCOVERDE et al., 2011), with well-known 

benefits (MURPHY-HILL et al., 2009). However, some categories or patterns of 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

13

 

code anomalies seem to be, either deliberately or not, ignored. For many reasons, 

such as time constraints and their inability to identify relevant anomalies, 

developers often focus on removing only a subset of all code anomalies that infect 

their projects (KIM et al., 2011; ARCOVERDE, et al., 2011; MACIA et al., 

2012b). Moreover, most of the anomalies that are not removed, or prioritized, are 

architecturally relevant (MACIA et al.; 2012b).  

The problem is that both detecting and removing architecturally relevant 

anomalies are not trivial tasks, especially when we consider the absence of proper 

and up-to-date architecture documentation on industry software systems. When 

relevant code anomalies are not distinguished from irrelevant ones, developers 

might waste time removing problems that do not harm the architecture design 

(MACIA et al., 2012b). 

  

1.1. 
Motivation and Problem 

It is often the case that code reviews need to be performed in order to check 

how the implementation structure is adherent to the modularity of the software 

architecture. In the context of those code reviews, a code anomaly usually requires 

closer, more immediate attention when it is related to architectural problems. 

However, the removal of architecturally relevant code anomalies is a challenging 

task, especially when those anomalies are identified late. Furthermore, there is 

little knowledge on which factors or characteristics are good indicators of 

architecturally relevant anomalies.  

This lack of knowledge implies that developers tend to not prioritize the 

code anomalies that are relevant to the architecture modularity adherence. In fact, 

there is growing empirical evidence that refactorings are more frequently 

performed on structures narrowly scoped than on those widely scoped (DIG et al., 

2006; MURPHY-HILL et al., 2009; MACIA et al., 2012b). Those low-level 

refactorings are often prioritized due to the localized nature of their changes 

(ARCOVERDE et al., 2011), as their impacts do not affect other modules and are 

not propagated through client modules. However, and for that same reason, low-

level refactorings are unable to restructure architecture problems, as they do not 

change hierarchies, dependencies or public structures. In fact, in recent studies we 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

14

 

found that around 70% and up to 95% of all refactorings performed through the 

evolution of a software project can be classified as low-level (MACIA et al., 

2012b), and are not handling architecturally relevant code anomalies. As a 

consequence, architecture degradation could not be avoided. 

Furthermore, we performed an analysis on several software systems for 

understanding what proportion of their code anomalies were causing architecture 

problems. We found that around 40% of the entire set of code anomalies was not 

architecturally relevant (MACIA et al., 2012b). This result, combined with the 

aforementioned study, shows us that developers are investing their refactoring 

efforts into solving code anomalies that do not harm architecture, while 

postponing those that do. Moreover, motivated by recent studies on the state of 

practice of refactoring, we wanted to understand (i) the reasons why some code 

anomalies lingered and (ii) what factors led developers to prioritize the removal of 

a particular code anomaly (ARCOVERDE et al., 2011). 

The aforementioned observations motivated us into studying three main 

subjects: (i) the factors that contribute to the longevity of code anomalies in 

software projects, (ii) which characteristics can be explored for distinguishing 

architecturally relevant code anomalies and (iii) how we can rank anomalies based 

on those characteristics, helping developers prioritize the removal of relevant code 

anomalies.  

 

1.2. 
Limitations of Related Work 

A wide range of code analysis techniques and tools have been proposed for 

automatically detecting code anomalies (MARINESCU et al., 2004; 

RATZINGER et al., 2005; MUNRO et al., 2005; LANZA et al., 2006; WETTEL 

et al., 2008). Those approaches are usually focused on the extraction and 

combination of static code measures. However, such state-of-art approaches are 

limited regarding the prioritization of architecturally relevant code anomalies. 

They are restricted to analyzing the source code structure only, leading to well-

known false positives and false negatives (MACIA et al., 2012a). 

The aforementioned restrictions make it hard for developers to distinguish 

and prioritize architecturally relevant anomalous elements that demand immediate 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

15

 

attention. Most of those techniques and tools also disregard software project 

factors, such as architecture designs, frequency of changes and number of errors. 

Additionally, developers cannot distinguish which anomalous code elements are 

architecturally harmful without knowing or considering the role that they play in 

the architectural design. To the best of our knowledge, there are not even 

empirical studies that investigate and compare the role of such project factors on 

the distinction and prioritization of architecturally relevant code anomalies. 

Several tools have been proposed to enhance refactoring effectiveness. 

SafeRefactor (SOARES et al., 2010) helps developers to verify whether their 

refactorings will change the system behaviour, avoiding incomplete or incorrect 

refactorings. BeneFactor (XI et al., 2012) recommends refactorings based on the 

observation of manual refactoring steps. However, none of these tools help 

developers in prioritizing refactorings with respect to their contribution to 

sustaining the architecture design. 

 

1.3. 
Goals and Research Questions 

Based on the issues discussed in the previous sub-sections, we define our 

goals as follows: 

• To identify the reasons why some kinds of code anomalies seem to 

linger on code 

• To propose and study the usefulness of a set of heuristics for 

prioritizing code anomalies based on their architectural relevance 

• To develop a system in order to support the automatic ranking of the 

code anomalies, according to the proposed prioritization heuristics. 

 

We intend to achieve those goals by answering the following research 

questions: 

1) Why some (patterns of) architecturally relevant anomalies are postponed 

or neglected? [RQ1] 

2) Is it possible to rank code anomalies based on their architecture relevance 

with the proposed heuristics? [RQ2] 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

16

 

3) Which characteristics help in ranking code anomalies based on their 

architecture relevance? [RQ3] 

 

1.4. 
Preliminary Studies and Tool Support 

We started our study by analyzing the causes of the longevity of code 

anomalies and the reasons why state-of-practice refactoring is not effectively 

removing relevant code anomalies. For doing so, we carried out a number of 

different empirical analyses: three exploratory studies and one survey, involving 

over 50 versions of 6 different systems and more than 300 refactorings.  

Furthermore, once we had addressed the problems related to our first 

research question (RQ1), we could contribute to the implementation of a relevant 

code anomalies detector, described on Section 1.4.2. 

 

1.4.1. 
Empirical Studies 

When trying to understand the causes why some anomalies seemed to linger 

on code for longer than others, we conducted a survey on refactoring habits. Our 

goal was to check to what extent programmers are able to identify, prioritize and 

remove architecturally relevant code anomalies. The study consisted of a survey 

which aimed at collecting information regarding which factors influence the 

persistence of code smells. This survey was applied with 33 developers from 

different companies. We found that developers often avoid refactoring structures 

with wide scope, such as public methods or classes, and prioritize less relevant 

anomalies, with respect to their impact on the system’s architecture. This study 

addresses our first research question (RQ1): 

• ARCOVERDE, R.; GARCIA, A.; FIGUEIREDO, E. Understanding 
the Longevity of Code Smells - Preliminary Results of an Explanatory 
Survey. 4th International Workshop on Refactoring Tools (WRT), held 
in conjunction with the 33rd International Conference on Software 
Engineering (ICSE), May 2011. 

 

We also investigated to what extent code anomalies are good indicators of 

architecture problems, and, more specifically, how often relevant anomalies are 

refactored. This investigation was important for identifying the level of 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

17

 

effectiveness of state-of-practice refactorings, when addressing architecturally 

relevant anomalies (RQ2). For doing so, we analyzed 40 versions of 6 different 

real-world systems. We found that 78% of all architecture problems were related 

to code anomalies, and also that they were not often refactored – only 30% of all 

the performed refactorings removed relevant anomalies. This study resulted in the 

publication of a full paper at the European Conference on Software Maintenance 

and Reengineering; our major contribution to this study was the analysis of how 

often refactorings remove architecturally relevant anomalies in real software 

projects: 

• MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C.; STAA, 
A. On the Relevance of Code Anomalies for Identifying Architecture 
Degradation Symptoms. Proceedings of the 16th European Conference 
on Software Maintenance and Reengineering (CSMR), Szeged, 
Hungary, March 2012. 

 
Once we had identified reasons why some code anomalies are neglected, 

and how often they affect the preservation of architecture design, we started 

exploring some ideas for detecting and ranking them. According to the previous 

study (MACIA et al., 2012b), one of the main reasons why architecturally 

relevant anomalies are not removed is the inaccuracy of current techniques for 

detecting code anomalies. More specifically, such techniques are based solely on 

the analysis of the source code structure. Thus, we started an exploratory study 

towards finding which characteristics in an evolving software project could be 

exploited to guide the ranking of code anomalies – such as change-proneness and 

error-proneness. We wrote a first draft of our proposed heuristics in a short paper, 

partially addressing our second and third research questions (RQ2, RQ3): 

• ARCOVERDE, R.; MACIA, I.; GARCIA, A.; STAA, 
A. Automatically Detecting Architecturally-Relevant Code 
Anomalies. 3rd International Workshop on Recommendation Systems 
for Software Engineering, held in conjunction with the 34th 
International Conference on Software Engineering (ICSE 2012). 
Zurich, Switzerland, June 2012. 

 

Finally, for detecting architecturally relevant code anomalies, we designed 

a recommendation tool we called SCOOP. SCOOP’s detection mechanisms are 

based on (i) using architecture information, instead of static analysis only and (ii) 

analyzing groups of anomalies for identifying patterns of code anomaly 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

18

 

occurrences. Examples of architecture information explored by SCOOP are 

mappings between architectural elements and code elements. SCOOP is able to 

automatically detect and rank code anomalies, based on the prioritization 

heuristics we proposed, partially addressing our third research question (RQ3). 

Furthermore, our implementation was accepted for the Tool Demo Track of the 

International Conference on Software Maintenance: 

• MACIA, I.; ARCOVERDE, R.; CIRILO, E.; GARCIA, A.; STAA, 
A. Supporting the Identification of Architecturally-Relevant Code 
Anomalies. 28th IEEE International Conference on Software 
Maintenance (ICSM 2012). Riva Del Garda, Italy, September 2012 

 
1.4.2. 
SCOOP 

In order to detect relevant code anomalies, we contributed to the 

implementation of SCOOP (SCOOP, 2012), a tool aimed at automatically 

detecting architecturally relevant code anomalies. This tool was strongly based on 

the notion that recurring occurrences of code anomalies – or code anomaly 

patterns – and the relationships between them can be better indicators of 

architecture problems than individual anomaly occurrences. Besides identifying 

some of those relevant patterns of code anomalies (MACIA et al., 2012a), this 

tool is also able to detect individual anomalies from metrics-based detection 

strategies (LANZA and MARINESCU, 2006). We described the main features of 

SCOOP, as well as our initial ideas for prioritization heuristics, in the 

aforementioned paper “Automatically Detecting Architecturally relevant Code 

Anomalies”. It is also important mentioning that, although we have implemented 

some of its components, SCOOP’s detection mechanism is part of an ongoing 

doctorate work; our study focuses specifically on prioritizing the anomalies 

detected, as described in Chapter 3. 

 

1.5. 
Dissertation Structure 

The next chapters have the following purposes: 

Chapter 2- Background and Related Work: presents general background and 

outlines related work on code anomalies detection and ranking. 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA



 

 

19

 

Chapter 3- Prioritization of Code Anomalies: describes our prioritization 

heuristics for ranking code anomalies based on four different 

characteristics and presents their implementation details.  

Chapter 4- Evaluation: presents and discusses results for the evaluation of our 

prioritization heuristics. 

Chapter 5- Conclusion: discusses the conclusions and the contributions for this 

dissertation, and describes planned future work. 

DBD
PUC-Rio - Certificação Digital Nº 1021808/CA




