

78

5
Conclusion

Recent researches (HOCHSTEIN and LINDVALL, 2005; MACIA et al,

2012) have suggested that architectural erosion and drift processes are often

intertwined. However, techniques for preventing architectural degradation tend to

focus on solely supporting the detection of either erosion or drift symptoms.

Moreover, there is not much empirical knowledge on how developers would

benefit from unified support to detect both kinds of degradation symptoms. Given

typical time constraints, developers are only encouraged to specify and maintain

hybrid rules for drift and erosion if there is evidence about: (i) their effectiveness

to reveal inter-related drift and erosion symptoms in software projects, and (ii)

their potential reuse across several projects. The next subsection describes how

the contributions of this dissertation overcome the aforementioned problems.

5.1.
Dissertation contributions

In this dissertation, we proposed TamDera, a language that supports hybrid

specifications of anti-drift and anti-erosion rules. The language allows the

detection of both categories of architectural degradation symptoms. This facility is

not supported by existing techniques (Chapter 2). Different from them, TamDera

does not require that developers learn two different languages to describe each set

of anti-drift and anti-erosion rules.

Another contribution of TamDera is the explicit support for reusing both

anti-drift and anti-erosion rules. TamDera provides features that enable the

definition of anti-degradation rules that are not strictly defined for a particular

project (Section 3.1.4). These features promote the compositional and hierarchical

reuse of such rules. The latter structures groups of anti-degradation rules in

hierarchy trees where each node can reuse or extend anti-degradation rules from

its parent. Other techniques do not support the reuse and extension of architectural

rules in multiple contexts. This is particularly interesting given the fact that anti-

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

79

degradation rules usually have their thresholds and dependency constraints

adjusted in each project (MARINESCU, 2004; MOHA et al, 2010).

A third contribution of this dissertation is the tool supporting the automatic

enforcement of TamDera rule specifications. The language has been supported by

a prototype that detects degradation symptoms in Java systems (Section 3.2). The

tool design allows the extension of the set of dependency types and the metrics

available respectively for anti-drift and anti-erosion rules (Section 3.2.2). This

may foster the tool integration with other forms of anti-drift rules as the TamDera

tool can be extended to process measures collected from other measurement tools.

In addition, the tool verifies some cases that reveal inconsistent sets of rules

(Section 3.2.3). Architects can accidently define inconsistent anti-erosion rules.

These rules involve contradictory constraints (Section 3.2.3) or even the

establishment of cyclic dependencies (TERRA and VALENTE, 2009). Thus, anti-

degradation tools may wrongly indicate degradation symptoms which are indeed

not related to any degradation process. In this fashion, architects spend time and

resources manually checking the implemented architecture and the architecture

specifications. As far as we know, none of other anti-erosion techniques supports

this facility (Section 2.2).

Finally, there is not much knowledge in the literature about the benefits of

supporting joint detection of drift and erosion problems. Our exploratory study

represents a first effort to address this gap. The dissertation presents in detail a

systematic study, which is also tailored for evaluating the usefulness of TamDera

(Chapter 4). We detected degradation symptoms in 21 versions of 5 different

projects. Our evaluation showed that TamDera could help architects and

developers to save time and resources. We found that 72% of the anti-degradation

rules were reused. Many of them were naturally of hybrid nature, i.e., both drift

and erosion rules associated with a single architectural concept (Section 4.4.2).

Typical examples were hybrid rules associated with concepts derived from

architectural styles or design patterns (Section 4.4.2).

The analysis also revealed that such reused rules were responsible for

identifying on average 75% of all degradation symptoms in the target projects

(Section 4.4.1). More interestingly, many reused rules were effective to detect the

same kind of degradation symptom across multiple projects (Section 4.4.2). There

were a broad range of scenarios confirming that individual techniques for drift or

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

80

erosion (Section 4.4.1) would not be sufficient or efficient to support degradation

prevention. For instance, in cases were drift and erosion symptoms were affecting

the same module in the code, developers detected and removed one form of

degradation symptom in a certain version, but the other remained (Section 4.4.1)

and, thereby, the system continuously degraded through the residual degradation

process.

In summary, the main contributions of this dissertation are: (i) the design of

the TamDera language to support the specification of hybrid rules for preventing

architectural erosion and drift; (ii) the support in TamDera to support reuse of

such rules; (iii) a prototype tool that implements the language and supports

automatic rule enforcement, and; (iv) an exploratory study about the synchronized

manifestation of erosion and drift symptoms as well as the TamDera adequacy to

better support their detection and reuse of anti-degradation rules.

5.2.
Future work

As part of our future plans, we intend to investigate to what extent

TamDera supports developers on the conception of anti-degradation rule

specifications that are resilient to code changes throughout the system evolution.

In particular, the goal is to have insights about how often definitions of

architectural concepts need to change in order to accommodate modifications or

additions of code elements as well as design refactorings. It might be, for instance,

that concept mappings need to be often updated to consider such code and design

changes. It might be that thresholds need to be often revisited as well. In this

fashion, we would have more evidence about the TamDera adequacy to define

and reuse hybrid rules and also to what extent these rules are easily maintained or

not.

We also plan to build a library of hybrid rules for a wide range of

architectural styles and design patterns which are relevant to architecture such as

Façade (GAMMA et al, 1995). The goal is to foster extensive reuse of anti-

degradation rules which are related to patterns. More specifically, we plan to

describe hybrid rules derived from descriptions of architectural styles

(BUSCHMANN et al, 2007; CLEMENTS et al, 20120) and design patterns

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

81

(GAMMA et al, 1995). Throughout our exploratory study, we already specified

reusable rules for a few design and architectural patterns, such as the design

patterns Mediator (Section 3.1.5) and Chain of Responsibility (Section 4.4.2), as

well as the architectural pattern Model-View-Controller (Section 2.3). Their

specification provided us with insights to elaborate the reuse mechanisms of

TamDera (Section 3.1.4).

TamDera's abstractions rely on: pseudo-natural statements for anti-erosion

rules, mathematical expressions for anti-drift rules, and reuse mechanisms. These

abstractions and mechanisms seem quite intuitive and easy to use and understand.

However, we did not evaluate the TamDera language in terms of its usability.

Evaluations with this goal are also included in our agenda.

Even though TamDera supports the reuse of anti-degradation rules in

multiple contexts, there is still a considerable effort to specify the rules. More

specifically, architects need to select which concepts and rules from a source of

reusable rules (e.g., library) fit the architecture properties of a particular system. If

they do not exactly fit the purpose, they need to be specialized or overridden,

which require some additional effort. Therefore, we plan to design and execute

empirical studies in order to perform trade-off analysis contrasting benefits and

effort in different project contexts. In particular, we also plan to study these issues

as well as the expressive power of TamDera's mechanisms to support variability

in program family architectures (FIGUEIREDO et al, 2008).

Finally, we also plan to improve the TamDera language in three directions.

First, we aim to provide more flexibility to define the concept mapping. The idea

is to enable architects to elaborate queries whose returned code elements comprise

the architectural concept. These queries may use similar constructions with this

purpose supported by Semmle Code (Section 2.5.3). Second, we intend to

improve our concept mapping mechanism even further by allowing concept

definitions to use the same mapping of another concept. This is particularly useful

when architects assign to the same module several constraints imposed by

different architectural concepts (e.g., a module that realizes several roles of

different design patterns). Third, we plan to provide features for supporting

architects to constrain the concept mappings and hierarchy relationship among

architecture concepts. For instance, users could specify that the sets of code

elements pertaining to two concepts are disjoint. This facility would be useful, for

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

82

instance, when these concepts refer to components comprising two alternative

features (FIGUEIREDO et al, 2008) of a software product line architecture.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

