PUC-RIo - Certificacdo Digital N° 1012623/CA

78

5
Conclusion

Recent researches (HOCHSTEIN and LINDVALL, 2005; ®IA et al,
2012) have suggested that architectural erosion daiftl processes are often
intertwined. However, techniques for preventinghéectural degradation tend to
focus on solely supporting the detection of eitbession or drift symptoms.
Moreover, there is not much empirical knowledge lmow developers would
benefit from unified support to detect both kindslegradation symptoms. Given
typical time constraints, developers are only enaged to specify and maintain
hybrid rules for drift and erosion if there is esrate about: (i) their effectiveness
to reveal inter-related drift and erosion symptamsoftware projects, and (ii)
their potential reuse across several projects. ridw subsection describes how

the contributions of this dissertation overcomeafaementioned problems.

5.1.
Dissertation contributions

In this dissertation, we propos&dmbDera, a language that supports hybrid
specifications of anti-drift and anti-erosion ruleshe language allows the
detection of both categories of architectural dégtian symptoms. This facility is
not supported by existing techniques (Chapter #je@nt from them,TamDera
does not require that developers learn two diffelamguages to describe each set
of anti-drift and anti-erosion rules.

Another contribution offamDera is the explicit support for reusing both
anti-drift and anti-erosion ruleslamDera provides features that enable the
definition of anti-degradation rules that are ntiicdy defined for a particular
project (Section 3.1.4). These features promotetimepositional and hierarchical
reuse of such rules. The latter structures groupsnbi-degradation rules in
hierarchy trees where each node can reuse or eatgirdegradation rules from
its parent. Other techniques do not support theer@md extension of architectural
rules in multiple contexts. This is particularlytearesting given the fact that anti-


DBD
PUC-Rio - Certificação Digital Nº 1012623/CA


PUC-RIo - Certificacdo Digital N° 1012623/CA

79

degradation rules usually have their thresholds degendency constraints
adjusted in each project (MARINESCU, 2004; MOHAakEt2010).

A third contribution of this dissertation is theotsupporting the automatic
enforcement oTamDera rule specifications. The language has been sugxbont
a prototype that detects degradation symptomsva ggstems (Section 3.2). The
tool design allows the extension of the set of depecy types and the metrics
available respectively for anti-drift and anti-aays rules (Section 3.2.2). This
may foster the tool integration with other formsaoti-drift rules as th&amDera
tool can be extended to process measures colloidther measurement tools.

In addition, the tool verifies some cases that aéweconsistent sets of rules
(Section 3.2.3). Architects can accidently defineonsistent anti-erosion rules.
These rules involve contradictory constraints (iBect3.2.3) or even the
establishment of cyclic dependencies (TERRA and ENLE, 2009). Thus, anti-
degradation tools may wrongly indicate degradasgmptoms which are indeed
not related to any degradation process. In thisidas architects spend time and
resources manually checking the implemented awthite and the architecture
specifications. As far as we know, none of othdr-arosion techniques supports
this facility (Section 2.2).

Finally, there is not much knowledge in the literat about the benefits of
supporting joint detection of drift and erosion Iplems. Our exploratory study
represents a first effort to address this gap. dissertation presents in detail a
systematic study, which is also tailored for evahgthe usefulness GamDera
(Chapter 4). We detected degradation symptoms irvezsions of 5 different
projects. Our evaluation showed th@idmDera could help architects and
developers to save time and resources. We found #8a of the anti-degradation
rules were reused. Many of them were naturally yddrial nature, i.e., both drift
and erosion rules associated with a single ardhoitaicconcept (Section 4.4.2).
Typical examples were hybrid rules associated vatimcepts derived from
architectural styles or design patterns (Sectid2).

The analysis also revealed that such reused rubre wesponsible for
identifying on average 75% of all degradation syonm in the target projects
(Section 4.4.1). More interestingly, many reusddgwvere effective to detect the
same kind of degradation symptom across multipdgepts (Section 4.4.2). There

were a broad range of scenarios confirming thawiddal techniques for drift or


DBD
PUC-Rio - Certificação Digital Nº 1012623/CA


PUC-RIo - Certificacdo Digital N° 1012623/CA

80

erosion (Section 4.4.1) would not be sufficienefiicient to support degradation
prevention. For instance, in cases were drift andien symptoms were affecting
the same module in the code, developers detectddreanoved one form of
degradation symptom in a certain version, but tineroremained (Section 4.4.1)
and, thereby, the system continuously degradedigfwrohe residual degradation
process.

In summary, the main contributions of this diss@estaare: (i) the design of
the TamDera language to support the specification of hybrigsuor preventing
architectural erosion and drift; (ii) the suppantTamDera to support reuse of
such rules; (iii) a prototype tool that implementse language and supports
automatic rule enforcement, and; (iv) an explosagiudy about the synchronized
manifestation of erosion and drift symptoms as @sltheTamDera adequacy to

better support their detection and reuse of argratiation rules.

5.2.
Future work

As part of our future plans, we intend to invedigdo what extent
TamDera supports developers on the conception of antiatkgron rule
specifications that are resilient to code changesughout the system evolution.
In particular, the goal is to have insights abowwhoften definitions of
architectural concepts need to change in ordec¢oramodate modifications or
additions of code elements as well as design m@fiags. It might be, for instance,
that concept mappings need to be often updatedrsiader such code and design
changes. It might be that thresholds need to benafevisited as well. In this
fashion, we would have more evidence aboutTémaDera adequacy to define
and reuse hybrid rules and also to what extenethdss are easily maintained or
not.

We also plan to build a library of hybrid rules far wide range of
architectural styles and design patterns whichrelevant to architecture such as
Facade (GAMMA et al, 1995). The goal is to fostateasive reuse of anti-
degradation rules which are related to patternsreMgpecifically, we plan to
describe hybrid rules derived from descriptions afchitectural styles
(BUSCHMANN et al, 2007; CLEMENTS et al, 20120) adésign patterns


DBD
PUC-Rio - Certificação Digital Nº 1012623/CA


PUC-RIo - Certificacdo Digital N° 1012623/CA

81

(GAMMA et al, 1995). Throughout our exploratory dyt) we already specified
reusable rules for a few design and architectuedtemns, such as the design
patterns Mediator (Section 3.1.5) and Chain of Besjbility (Section 4.4.2), as
well as the architectural pattern Model-View-Cotigo (Section 2.3). Their
specification provided us with insights to elaberdhe reuse mechanisms of
TamDera (Section 3.1.4).

TamDerd's abstractions rely on: pseudo-natural statememtsiiti-erosion
rules, mathematical expressions for anti-drift sul@nd reuse mechanisms. These
abstractions and mechanisms seem quite intuitideeasy to use and understand.
However, we did not evaluate tffemDera language in terms of its usability.
Evaluations with this goal are also included in agenda.

Even thoughTamDera supports the reuse of anti-degradation rules in
multiple contexts, there is still a considerableorfto specify the rules. More
specifically, architects need to select which cpteend rules from a source of
reusable rules (e.qg., library) fit the architectpreperties of a particular system. If
they do not exactly fit the purpose, they need e¢ospecialized or overridden,
which require some additional effort. Therefore, plan to design and execute
empirical studies in order to perform trade-off lggs contrasting benefits and
effort in different project contexts. In particulave also plan to study these issues
as well as the expressive powerTeimDera's mechanisms to support variability
in program family architectures (FIGUEIREDO et2008).

Finally, we also plan to improve tHembDera language in three directions.
First, we aim to provide more flexibility to defiriee concept mapping. The idea
is to enable architects to elaborate queries whetsened code elements comprise
the architectural concept. These queries may us#asiconstructions with this
purpose supported by Semmle Code (Section 2.583orfsl, we intend to
improve our concept mapping mechanism even furtherallowing concept
definitions to use the same mapping of another eoind his is particularly useful
when architects assign to the same module sevemdtraints imposed by
different architectural concepts (e.g., a modulat thealizes several roles of
different design patterns). Third, we plan to pdavifeatures for supporting
architects to constrain the concept mappings aerdatthy relationship among
architecture concepts. For instance, users coudttifypthat the sets of code

elements pertaining to two concepts are disjoihts Tacility would be useful, for


DBD
PUC-Rio - Certificação Digital Nº 1012623/CA


PUC-RIo - Certificacdo Digital N° 1012623/CA

82

instance, when these concepts refer to componemgpresing two alternative
features (FIGUEIREDO et al, 2008) of a softwaredoict line architecture.


DBD
PUC-Rio - Certificação Digital Nº 1012623/CA




