PUC-RIo - Certificacdo Digital N° 1012623/CA

62

4
Evaluation

Existing approaches for preventing architecturairddation promotes the
exclusive detection of either erosion or drift symmps (Section 2.5). The design
of TamDera is based on the assumption that by supportingl¢tection of both
erosion and drift symptoms, developers may beterent the increasing decay of
software architectures (Chapter 3). The usdwhDera can help to avoid the
strict focus on erosion detection, which often iyniblat architects perceive severe
drift symptoms too late, when it is hard or costlyaddress them.

In this context, the usefulness of tl@mDera language is largely
dependent on how frequent; in fact, the same locati the program becomes the
locus of inter-related erosion and drift symptothghese symptoms are somehow
related, it is likely that architects will benefftom hybrid detection rules
supported byfamDera. The relation of these symptoms can be revealddian
ways: (i) their TamDera anti-degradation rules are logically blended,, i.e.
associated with the same architectural concepgtaratchitecture model, or (i) a
drift symptom encountered in a version is perceivedprovoke an erosion
symptom in a later version. The usefulnes3arhDera is also dependent on its
adequacy to promote reuse of anti-degradation.rules

Therefore, we defined two research questions tieatedour evaluation and
are addressed in this Chapter:

(1) how significant is the number of modules in evolyieystems

exhibiting inter-related erosion and drift symptd@mns

(i) to what extent can anti-erosion rules and anft-dnies be reused

by one or more projects?

The following subsections describe the target appbbns (Section 4.1), the
study procedures (Section 4.2), the evaluationnggstt(Section 4.3), the results
(Section 4.4), and threats to validity (Section)43ection 4.6 summarizes the

study results.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

63

4.1.
Target applications

We selected applications for which either the idezh architecture
specification or the original architects are avdga Otherwise, we are not able to
investigate the veracity of both kinds of anti-detation rules and the
architectural degradation symptoms being detedféel.also looked for systems
adhering to architecture decompositions that sharelitectural styles and design
patterns. The goal was to identify a subset ofesgstwhere opportunities of reuse
of rules could be explored. At the same time, theggtems need to be from
different domains and designed by different devedspThe goal was to check
whether recurring rules could be actually reusezham extreme cases, where the
dominant domains and developers’ backgrounds wifiereht. We also selected
systems that underwent severe degradation stagéswane continued and
redesigned in follow-up projects.

Based on these criteria, we first selected threstesys: MobileMedia
(FIGUEIREDO et al, 2008), Healthwatcher (GREENWO@Dal, 2007), and
MIDAS (MALEK et al, 2007). However, we took into msideration five projects.
The reason is that the original Java projects effitst two systems manifested
major symptoms of architectural degradation overetiSection 1.2). Then, two
new follow-up projects (SOARES ET AL, 2007, HEATHWAHER, 2012)
started and consisted of significant architectgestructuring of both systems.
The systems were partially re-designed with aspéaecompositions and re-
implemented with Aspectd (ASPECTJ, 2012). We camed both groups of
projects in our evaluation to check if unchangededined design rules could be
reused. Despite of being projects designed byndistrchitects, they share, in
many cases (e.g., Section 1.2), similar designsaets. HealthWatcher is a web
system used for registering complaints about haafthes in public institutions.
MobileMedia is a product line that manages différgpes of media on mobile
devices. MIDAS is a lightweight middleware for distited sensor applications
(GARCIA et al, 2009). These projects were previpugbed in studies of
architectural degradation and refactoring (GARCIak 2009; DANTAS et al
2011; MACIA et al 2012). Therefore, we were ableattzess their degradation

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

64

symptoms from previous reports and evaluate thewatsy ofTamDera rules to
detect them.

4.2.
Study procedures

The study usedamDera’s abstractions and mechanisms, including the
notions of concepts, concept mapping, concept it@mee, constraint sets, anti-
erosion and anti-drift rules, and rule overridifge¢tion 3.1). The study was
conducted in three major phases:

Phase 1: Identification of architectural concepts We accessed the
available documentation to support the identifmatof architecturally-relevant
concepts in each project. High-level architectuslats were available for all the
five projects (TAMDERA, 2012). There were also dfie models for certain
versions where the intended architecture was nmeatlifThe subject systems make
use of several architectural styles, such as MV@yeks (Section 2.3) and
Aspectual Design (SOARES et al, 2007). They alsplement several design
patterns that are often used to realize architealecompositions, such as Chain
of Responsibility and Facade (GAMMA et al, 1995)e Wlso referred to these
patterns to guide the specification of architedteancepts. As the pattern roles
often rely on abstract classes (GAMMA et al, 1998 naturally mapped the
architectural concepts to these classes. Finakkyparformed a peer revision with
the original architects of each system to guarattiae the concepts were good
enough to represent the key decisions of the it @dchitectures.

Phase 2: Iterative improvement of anti-degradatiorrule specifications
We also referred to the architecture models to iSpsome of the interaction
constraints (i.e., anti-erosion rules). The documagon of styles and patterns
were carefully examined to specify the rules fatheaoncept identified in Phase
1. For instance, the responsibilities and charmties of style elements and
design pattern roles were used to specify the diifti-rules. The system
developers also validated and provided us withstadf suggestions to enhance
rule definitions based on their architecture knalgke All the concepts and their

corresponding rules were made available at theystuebsite (TAMDERA,

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

65

2012). In a final step, we generalized rule speations, so that we could reuse
them across the 5 projects.

Phase 3: AssessmentWe analyzed the co-occurrences of both erosion and
drift symptoms. Then, we investigated the relatadnthe occurrences of these
processes throughout the later versions of eadleraysin addition, we assessed
the reuse of hybrid rules for preventing architesdtulegradation in each project
and also how these rules detect the same kind gfadation symptom across
multiple projects. The goal was to assess ifldneDera's mechanisms promote a
significant degree of rules’ reuse and if theseesulre efficient to detect the
degradation symptoms.

4.3.
Evaluation settings

Our study evaluated the occurrence of inter-relagedsion and drift
symptoms as well as the reuse of their correspgnudiles across the 5 projects
(Section 4.1). First, in order to analyze the digance of co-occurring erosion
and drift symptoms (Section 4.4.1), we compared the percentage of code
elements containing both forms of degradation spmgt with (ii) the number of
code elements containing at least an erosion symmoa drift symptom. The
idea was to check the proportion of modules pogsibénifesting inter-related
drift and erosion symptoms, when compared to thael toumber of modules
containing any kind of symptom. The proceduressteas the reuse témbDera
rules are next described. Finally, a full descoptiof the study settings is
available at (TAMDERA, 2012).

Reuse assessmeniThe reuse assessment relied on quantifying thie an
degradation rules that were reused, and contraitisghumber with those rules
defined from scratch. This reuse measure was edémilby the percentage of
rules that are reused out of the total of them,(beth reused and non-reused
rules). For a single project, we took into consadien the rules within the project
file and the reused rules from tlabstract rules file (Section 3.1.4.2). As an
example, consider the HealthWatcher specificatiorrigure 8, which reuses 2

rules from the super concegt) (R3 and R4), overrides two rules (R1+ and

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

66

R2+) and defines a new anti-erosion rule (R5+).dgethe total number of rules
is 5, of which 2 are reused, resulting in a retegree of 40% (2 out of 5 rules).

Effective reuse assessmenfThen, we identified the reused rules that
actually detected architectural design problemses€hrules are namefective
reused rules. We counted the number of classes containing dagom
symptom(s) to evaluate the effective reuse of ruldsen, we distinguished the
symptoms that were detected by reused rules frasetllefined from scratch.
Hence, the effective reuse was evaluated as theem@age of degradation
symptoms identified by the reused rules out oftttal of degradation symptoms
(i.e., including those identified by non-reuseces)! For illustration, consider the
numbers (highlighted values) on the right-hand sidie rules in Figure 8, which
correspond to the number of erosion and drift symst detected by the
corresponding rule. In the case of HealthWatchberg are 2, 5, 6, 0, 1
degradation symptoms detected by R1, R2, R3, R4ré¥pectively. Hence, the
effective reuse is 42.8% (6 out of 14 rules), ade§radation symptoms were
detected by the reused rule R3. The multi-projéfetcgve reuse was evaluated in
a similar way, however, by considering only ruldsatt detect degradation
symptoms in at least two different projects.

4.4,
Study results

Our evaluation was based on the analysis of tbkitactural specification
files produced for 8 versions of HealthWatchergrsions for MobileMedia and 2
versions of MIDAS. We also considered the spedifcafiles of the first and
fourth AspectJ versions of MobileMedia and Healthdlar. So, we analyzed 21
versions offamDera specifications in total. The files for two subsequversions
of the same system are different only when thenewae or more changes to the
architectural rules.

The evolution history of all systems underwent aedturally relevant
changes. The MobileMedia evolution was guided tghothe addition of new
features (FIGUEIREDO et al, 2008), whereas the tH@é&htcher history mostly
encompassed refactorings of specific modules irerotd adopt architecturally
relevant design patterns (GREENWOOD et al, 200he Two versions of

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

67

MIDAS are those before and after restructuringsirtgorove the system's
modularity and adaptability (GARCIA et al, 2009).héFefore, the anti-
degradation rules of the target projects had sedfemodifications over their
evolutions.

In order to present the results, we chose to focughe data of: (i) versions
1, 4 and 8 of HealthWatcher, (ii) versions 1, 4 ahaf MobileMedia, (iii)
versions 1 and 4 of the aspectual implementatidrotti systems, and (iv) the two
versions of MIDAS. These versions are those thHesad from the most widely-
scoped changes in both implementation and archredtvels along the system's
evolution. Therefore, they help us to better illatt the study results. We name
these versions as HWHW,, HWs, MM1, MM4, MM, HA1, HA4, MA1, MA,,
MIDASger and MIDAST, respectively. The analysis encompassed more than
600 anti-degradation rules and more than 300 cdndefinitions. Table 2
summarizes the amount of concepts, rule types tl@@mount of classes in the
code that actually manifested degradation symptomsach analyzed version.
The number of anti-degradation (ADG) rules is thiéytof anti-erosion (AE) and
anti-drift (AD) rules.

Table 2. Properties offamDera system specifications

MM MA HW HA MIDAS
1 4 7.1 4 1 4 8 1 4 AF[BEF
of concepts 22 24 241 2830|124 45 7627 49| 26 28
of AE rules 22 23 32} 2533|34 50 6636 52| 20 20
of AD rules 25 25 27, 2935|33 44 5137 52| 22 26

of ADG rules 47 48 59 5468|67 94 117 73 104 42 46

fofclasseswhere| g 14 16 8 1243 49 60,36 41| 49 | 45
occur DG

AE = anti-erosion; AD = anti-drift; ADG = irdegradation; DG = degradation

4.4.1.
Co-occurring erosion and drift symptoms

Simultaneous occurrences of erosion and drift sympims. We evaluated
the simultaneous occurrence of drift and erosionpgms in the same modules.
This provided a first evidence on the likelihood thfose symptoms being
somehow inter-related. Figure 11 shows the resdlte percentage of the

symptoms was computed based on the total of degwadsymptoms for each

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

68

version described in Table 2 (last row). The histag presents the percentage of
classes containing only erosion symptoms (ES), dnify symptoms (DS) and
both of them (DGS). On average 45% of the Healttth&at and MobileMedia
classes, which exhibit degradation symptoms, contamth erosion and drift
symptoms. MIDAS was an exception for the reasomthén discussed in this

section.

M Erosion Symptom MM = Mobile Media

100% - HW = HealthWatche

M Degradation Symptom

80% -

60% -

40% -

20% T

0% -
MMv1 MMv4 MMv7 HWv1 HWv4 HWv8 MIDASBEF MIDASAFT

Figure 11. Analysis of co-occurring erosion and drift symptoms

In Figure 11, we also observe that Mptesents a lower DGS measurement
in comparison to the other ones. Particularly, ahly classBaseControl | er
(Section 1.2) had both degradation symptoms. It lempnts the entire
management of all media types. Throughout the Mdibédia evolution, new
controllers were created and the management mgdes twere shared by the
controllers. As a consequence, the number of dasgetaining both symptoms
increased along the system evolution as more d@rschad both degradation
symptoms. On the other hand, the HealthWatcher umessvere practically the
same across the versions. It encompassed sewdhl classes, such as
Sear chConpl Dat a (Section 1.2) and Facade classes that are usatrgspoints
for different layers. They contained drift symptgmmich as large methods
associated with the accidental handling of excegtiodfrom non-related
components (Section 1.2).

The symbiosis of erosion and drift detectionlt could be that an extent of
these co-occurring drift and erosion symptoms vigseaccidentally affecting the
same module, but has no conceptual or historid¢alioa. However, we observed
that, on average, 85% of co-occurring symptoms wevrealed by rules bound to
the same architectural concept. These symptomsredegred to asconcept-
related. For instance, rules AER1 and ADR1 (Section 3.1€ly on theGUI

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

69

concept and detect both degradation symptoms titatr an Sear chConpl Dat a
(Section 1.2). We also observed that, in many c¢asgmir of drift and erosion
symptoms was concept-related, but they were noessecily occurring in the
same modules. These are typically the case of éhybhes for concepts related to
patterns and styles (Section 4.4.2). Thereforepitld be difficult to detect these
concept-related symptoms through the use of indalidechniques (Section 2.5)
for drift and erosion.

Erosion detection alone does not prevent degradatio If we also take
MIDAS into consideration, the simultaneous occuceerof erosion and drift
symptoms decreases from 45% to 35%, which is sigjhificant (Figure 11).
MIDAS was developed using a middleware environmentharge of strictly
enforcing the conformance of its implementationthe intended architecture
(MALEK, 2007). It means that no interaction viotati (i.e., erosion symptom)
would remain in the code and, therefore, this sy&teversions did not exhibit any
erosion symptom (GARCIA et al, 2009).

However, the quality of MIDAS architecture had peggively declined
until the point where a major restructuring wasuiezgg (GARCIA et al, 2009).
The reason was that several components of MIDA® \pavgressively exhibiting
drift symptoms: they increasingly lost their originconceptual coherence (i.e.
purpose) as their implementations had evolved twige multiple non-related
services. In other words, they were increasinglyifeating anomalies related to
the “single responsibility” principle (MARTIN, 2002The MIDAS architecture
significantly decayed due to the continued incigeraf architectural drifts
(GARCIA et al, 2009; MACIA et al, 2012). Even thdughe developers were
concerned with erosion prevention, the MIDAS amttiire became susceptible to
degradation through an architectural drift procésmnce, this scenario reinforces
the importance of the early detection of both ddgtian symptoms provided by
TamDera (Section 3.1.3). More importantly, we observedh@ MIDAS case that
the hybrid rules would be beneficial to diagnose tftollowing fact: the
enforcement of anti-erosion rules might be theaatause of drift rule violations.
This could be easily observed viamDera specifications when both rules are

bound to the same architectural concept.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

70

Drift and erosion symptoms throughout systems' evakion. We also
observed other interesting cases. Our analysialeyehat erosion symptoms in
early versions can favor drift problems in latersiens and vice-versa (Figure
12). For instance, in HealthWatcher, several mettexdarations were signalizing
exceptions to other components, but those exceptisare supposed to be
internally handled. For instance, Figure 12 illatgs theAbsFacade whose
methodupdat eEnpl oyee has cases of erosion symptoms related to the thgpwi
of exceptions. Those exception declarations weaegnl in methods in parent
classes (e.g.AbsFacade), and those erosion problems in turn caused drift
symptoms in children classes (eigeal t hwat cher Facade). The latter classes
were forced to log the occurrence of these exceptand throw them as defined
in the parent class. This situation increased tiiermal complexity of children

classes as well as their coupling degree with fmighg components.

public void updateEmployee() throws
TransactionException, RepositoryException,

P PT———] ObjectNotValidException, ...
e // 4 exception were remoded{/;;;:‘\\\\\\\\

SRS
public void update() { YWeroy,
try {

getPm().beginTransaction(); |
employeeRecord.update(); :
getPm().commitTransaction(); I
I
I
|

AbsFacade

HealthWatcherFacade } catch (TransactionException e) {

log(e);

rupdateEmployee() getPm().rollbackTransaction
throw e;

} catch (ObjectNotvalidExceptiome
log(e);
getPm().rollbackTransaction();
throw e;

DR
) {

}

//5 similar catch blocks were removed

}

Figure 12. Erosion symptoms caused drift problems in HealthwWatcher

There were also cases where drift symptoms in eaglgions were the
source of later violations in the project histofor instance, the number of
responsibilities realized by the Controller companeincreased through
successive versions. In later versions, this resipdity overload forced the
Controller to access information made availablemfrdifferent components,
thereby contributing to the establishment of usmoied dependencies between
the former and the latter ones. The analysis redetilat 66% of drift symptoms
in Controller classes were sources of interactiamlations emerging in later

versions.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

71

Identifying and removing co-occurring symptoms is ot trivial. When
both kinds of symptoms infect the same module, smmecould expect that by
removing one symptom, the other will be easily diete and fixed as well. For
instance, when removing of unacceptable acceseafchConpl Dat a (erosion
symptom) to Data services, someone could obseatetlie class is inadequately
addressing other responsibilities, such as handiiatp-specific objects (drift
symptom). This expectation motivated us to inveddghow often erosion and

drift symptoms that infected the same module ctedimultaneously fixed.

However, this behavior was not observed in more &% of all the co-
occurrences detected in the target systems. Famices, in the AspectJ project of
HealthWatcher all the erosion symptoms in the GlHsses were addressed
through the modularization of Persistence and Bt exceptions. This
refactoring reduced the number of responsibilitieeit GUI classes were
undesirably dealing with. However, GUI classes reew infected by drift
symptoms as they introduce a tight coupling dedpeteveen GUI and Business
layers. This co-occurring problem could be detedigd@amDera as the hybrid
rules for detecting both problems would be defimethe same&sUl HWconcept.

There were also cases where the removal of dettlpms did not imply on
the detection and removal of related erosion symptd-or instance, around 83%
of all the drift problems in the Controller class#dViobileMedia were addressed
by decomposing them in micro controllers. Theredach specific controller was
responsible for dealing with a specific functiohali However, after this
architecturally-relevant refactoring, the erosigmptoms persisted in the code as
Controllers continued to deal with exceptions pggiad by the Data component
(Section 1.2). These scenarios might suggest thahe detection of an erosion
problem does not imply that it is easy to iden@ifgoncept-related drift problem
occurring in the same code module and vice-versa,(i§ relying on techniques
for detecting just one kind of degradation sympt@action 2.5) are not enough

to enable developers to prevent architectural akgi@n.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

72

4.4.2.
Reuse analysis

Significant reuse of rules The second study goal was to analyze the
potential reuse ofamDera rules in different contexts. We elaborated souafes
reusable rules specifying architectural constrai8esction 4.2). These rules were
reused in the target projects. Table 3 presentari@unt of reused rules for each
system. Similarly to Table 2, we distinguish timecaint of anti-erosion, anti-drift
and anti-degradation rules. An analysis of therast of Table 3 reveals that 72%
of the specified rules were reused on averagendakito consideration the total
number of specified rules for the all systems. Timding suggests that architects
can significantly save resources on the developmamd maintenance of
architectural rules shared by several projectsnGés applied to shared rules are
propagated through the reuse mechanisnTaemeiDera (Section 3.1.4) to multiple

projects.

Table 3. Reuse of anti-degradation rules

MM MA HW HA MIDAS
1 4 7:1 4 1 4 8 1 4 AF|BEF
of reused AE rules 19 19 23§ 20 22 16 32 48 18 %0 11 15
of reused AD rules 20 21 267 23 25 27 36 42 31 %4 1 1B
of reused ADGrules | 39 40 49: 43 47 43 68 90 49 T3 2 28
of ADG rules 47 48 59 54 68 67 94 1173 104 42 46
% of RADG rules 82 83 83, 79 7Q 64 72 76 67 70 64 6P

AE = anti-erosion; AD = anti-drift; ADG = anti-degplation;

Reuse of style and pattern constraintsWe observed that a large extent of
the reused rules, specified in reusable concefas,related to architectural styles
and design patterns (Section 4.2). The definitibraxh single style or pattern is
often formed by a cohesion set of component (anit)}cand interaction (anti-
erosion) constraints (Section 3.1.5). For instanitey Controller classes of
MobileMedia realize the design pattern Chain ofgoesibility (CoR) (GAMMA
et al, 1995). This pattern reduces the couplingvbeh the sender of a request to
its receiver by delegating the request handlingidtiple objects.

Listing 14 presents part of a reusable hybrid ageociated with the CoR
pattern. They define drift and erosion rules fode&oelements realizing the
Handl er concept. Those elements are architecturally rekees they handle

requests coming from other components. The intertacclients as well other

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

73

concepts and rules of the CoR were removed froningsl4 for illustrative
purpose. First, it defines an anti-drift rule coasting the coupling strength of
each concrete class handling the requeshdr et eHandl er, lines 01-04). The
coupling threshold is represented by the condt&mt COUPLI NG. Second, there
is also a reusable anti-erosion rule to prohibiéati calls of clients to concrete
handlers (line 05). More specifically, those cleeate realizing other architectural
concepts and should access a specific interfaceetwl their requests. This
example shows how drift and erosion rules of alsipgttern are mutually-related
(Section 1.2): while the former ones enforce stmadt properties of modules
realizing pattern concepts, the latter ones coimsttzeir interaction with other
architecturally-relevant concepts of the system.

Listing 14

01: constraintset ConcreteHandl er {

02: threshol ds: LOW COUPLI NG

03: CBO < LOW CQOUPLI NG

04: }

05: dient cannot-invoke ConcreteHandl er

Significant detection of degradation symptoms by nesed rules. As
previously mentioned, 72% of the rules were reu§dw remaining 28% were
particularly defined for specific project concepg¥ore importantly, we observed
that a significant number of erosion and drift syomps were detected by reused
rules. They were responsible for detecting on aeer@a5% of the existing
symptoms. Table 4 illustrates the effective reusection 4.3) for each system
version. These measures represented a balancecpetiveereused rule percentage
and the symptoms detected by them. In other word%p of the rules were
reused, and they were responsible for detectingroxpmately, 75% of all
degradation symptoms. The 28% of the remaining -feosed) rules detected
25% of the degradation symptoms. Therefore, theseurules had similar
efficiency to detect architectural deviations imgarison to the non-reused rules

unique to each project.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

74

Overriding and anti-drift rules. There was a need to subtly override
reused rules in 11% of the cases (TAMDERA, 2012)r kstance, as we
mentioned, the conce®U HW overrides anti-drift rules fron@Ul to impose
more restrictive constraint boundaries (Section432). These boundaries are
used to capture particular symptoms in HealthWat¢bel elements. In such
scenarios, we decided not to modify these ruleshim GUl super-concept.
Otherwise, it would potentially generate false pess in the MobileMedia
analysis asVi ewiwM is also a sub-concept @l . In fact, these restrictive
boundaries are not applicable for tiieewMM code elements (Figure 8). Rule
overriding (Section 3.1.4.2) was often useful twmidvfalse positives and false
negatives, in addition to capture particular symptotricacies of a project. It was
also particularly interesting for addressing adjpestts required in the aspect-
oriented refactorings of the MM and HW architectu¢8ection 4.1). For instance,
concept mappings need to be often overridden teiden (i) the inclusion of new
code elements in the AspectJ implementation, ahdh@ rename or removal of
certain classes. Thresholds of drift rules alsodedeto be replaced in

specializations of architectural concepts.

Table 4. Detection of degradation symptoms by reudeules

MM MA HW HA MIDAS
1 4 7 1 41 1 4 8§ 1 4 BEF AFT
of DG 24 41 557 20 33116140159 85 105| 50 46
of DGRR |21 37 46| 16 27| 85108113 58 81 28 25
ERR 87 90 83,80 81| 7377 71} 68 77 56 54
DG = degradation symptoms; DGRR = degradation symptbetected by reused rules;

ERR = effective reuse of rules

Detection of the same degradation symptom in multie projects. The
reused rules were also effective in the detectich@same degradation symptom
manifesting across different projects. In order perform this analysis, we
selected a representative set of pairs of systersions, which were sharing
reusable rules. Figure 13 presents the resultedoh of those selected pairs
(represented in the x-axis). For instance, the fo@r is formed by the first
versions of the HW and MM systems. The rules tlet¢ct degradation symptoms
in both systems are callemmon reused rules in Figure 13. Their percentage
(dark grey bar) is computed from the total numidenuées defined for the pair of

versions (Section 4.3). We assessed the percemfagegradation symptoms

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

75

detected by them, the so-calladhilar symptoms. The analysis reveals that 34%
on average of the rules were effectively reuseddiect degradation symptoms
that occur in both HealthWatcher and MobileMediglations. Examples of
these rules are: (i) anti-erosion rules constrgimiomponent interactions imposed
by architectural styles (e.g., R4 - Figure 8), &nti-erosion rules that restrict the
access of specific-component exceptions, (iii)-dnft rules to constrain size,
complexity and coupling of particular componentscts as View, Model, GUI
and Data (e.g., R3 - Figure 8), and (iv) both enosind drift rules associated with
architecturally-relevant design patterns used irth beystems, such as the
Command (GAMMA et al, 1995).

50% + ————————————— [—————————————————
B Common reusedrules || MM = Mobile Media
sose || similarsymptoms | [HW=Healthwatcher | g

30% A
20% T -

10% 1

0% -

MM1/HW1 MA1/HA1 MM4/HW4 MA4HA4 MM7/HWS8

Figure 13: Effective reuse of common rules in multiple projects

4.4.3.
Discussion

Our results (Section 4.4) confirmed the expectatibaut the frequency of
co-occurring erosion and drift symptoms in the sdoreinter-related) modules.
Regarding the research question Q1, the resultgestighat the number of
modules containing both forms of degradation isificant. On average 45% of
the HealthWatcher and MobileMedia classes whictiesedl from at least one
symptom, have occurrences of both erosion andsiniftptoms (Section 4.4.1).

These results are particularly interesting as #reesconcept definition can
group hybrid rules for detecting erosion and dsftmptoms and, thereby,
promoting a full prevention of architectural degaadn. Then, if an erosion
symptom is detected, for example, the developerreastively check whether

drift symptoms (defined together with the anti-évasrule) are possibly affecting

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

76

the same module. It might be that the anti-drifesuare not accurate enough to
detect the drift symptom given imperfections thetrmos and thresholds adopted
in such rules (MACIA et al, 2012).

In addition, many inter-related drift and erosiogmgtoms do not
necessarily affect the same modules in the code €hain of responsibility case
— Section 4.4.2), which make them difficult to dgtvgether using existing anti-
drift and anti-erosion techniques (Section 2.5) @halysis of the MIDAS project
also confirmed that automated detection of erosiges was not enough to
prevent architectural degradation (Section 4.4Bvelopers did not observe the
progressive manifestation of drift symptoms in mleduwhere erosion-related
constraints were being enforced.

The study also evaluated the amount of anti-erograhanti-drift rules that
were reused in each project version. Taking intosmeration the research
question Q2, our analysis revealed that on average of the rules to a particular
project were reused from a source of general rdlesse reused rules are often
the cases of constraints to architectural stylesigth pattern as well as strategies
for detecting recurring drift-related anomaliesdi®m 4.4.2). Therefore, this may
better foster the specification of rules governiagchitectural concepts as

architects do not need to define them from scratch.

4.5.
Threats to validity

This section presents threats that might hinder Wadidity of the
conclusions made in our study (Section 4.4). Theypaesented below.

Choice of the target applications.In empirical studies, the results are
always limited to the scope of the selected apiiina. We tried to mitigate this
threat by selecting applications from different gans and developed by different
programmers. We and other researchers should aéplibe study presented here
to embrace the analysis of other target applicatiofollowing different
architecture decompositions. Then, we could reableteer generalization of the
results. However, we should highlight that theseliaptions should be in

conformance to the requirements described in Sedtib. For instance, it would

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

77

not be worth to evaluate the reuse of anti-degradatiles in systems that follow
completely different design decisions.

Validity of the architecture models Another issue possibility threatening
the conclusion validity is how the architecturahcepts and their anti-degradation
rules were defined. They directly impact the measiant of reused and non-
reused rules as well as the degradation symptomestdd by them. Some could
claim that our previous knowledge of all the cortseggnd rules for all the systems
artificially facilitated the reuse achievement wittmDera rules. To reduce the
influence of this treat, we specified the concepferring to architectural
components presented in high-level component dmagrfar all projects (Section
4.3). We also performed a detailed revision with #éinchitects of each system to
guarantee that the defined concepts capture thstreams associated with the
intended architecture. However, we should recat tleuse obviously does not
occur for free anyway; no reuse can be promotedeife is no effort upfront to
anticipate general rules applicable to an orgaiuizair to a particular domain.

Validity of architectural degradation symptoms. We evaluated the
efficiency of reused rules in terms of the amountdegradation symptoms they
are able to detect. The study used previous repbdat architectural degradation
and refactorings in each application as an “ora¢i&’, a reference model) to
retrieve the degradation symptoms. This may exbgrm@apact the conclusion
results. However, we also consulted the architextsonfirm several reported
symptoms of architectural degradation.

Validity of the detection strategies.A threat to construct validity includes
the suite of metrics (and thresholds) used for dietg drift symptoms in each
system. They are directly related to the amounlriff symptoms that are detected
in the evaluation of effective reused rules. Wauon a classical suite of metrics
for quantifying size, complexity, cohesion and dmg to evaluate modularity
properties of system modules. We adopted theseawndiecause they are often
used and supported by commercial tools (TOGETHHR_2R They have also
been used in previous studies to detect archi@ctdegradation symptoms
(MARA et al, 2011; MACIA et al, 2012).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

