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3 
The TamDera  

Recent studies (GARCIA et al, 2009; MACIA et al, 2012) have suggested 

that architectural erosion and drift processes are often interrelated. Erosion and 

drift symptoms tend to affect the same or somehow related modules in the source 

code (MACIA et al, 2012). These studies have also provided initial evidence that 

one or more drift symptoms tend to provoke the later introduction of erosion 

symptoms, and vice-versa (PERRY AND WOLF, 1992; GARCIA et al, 2009). 

However, techniques for preventing architectural degradation tend to focus on 

supporting the detection of either erosion or drift symptoms only (Section 2.5). 

Therefore, there is no explicit and unified support for developers to detect both 

kinds of degradation symptoms.  

Moreover, given typical time constraints, developers are only encouraged to 

specify and maintain anti-degradation rules if they can reuse them in different 

circumstances. Ideally, architects should be able to reuse anti-drift and anti-

erosion rules across projects adhering to similar architecture decompositions. 

Existing approaches only support the specification and checking of anti-

degradation architecture rules for particular systems and do not provide any 

mechanism to reuse them (Chapter 2). As a consequence, the specification of such 

architectural rules becomes a repetitive task as rules are often similar across 

multiple projects from the same domain or the same company (MOHA et al, 

2010).  

This chapter systematically presents a domain-specific language, named 

TamDera
3 which enables the detection of both symptoms of architectural 

degradation in the source code (Section 3.1). We have implemented a prototype 

for supporting the use of TamDera (Section 3.2). The tool checks the architecture 

conformance of the software implementation with respect to anti-degradation 

rules. The goal is to provide instrumental support to the automatic detection of 

                                                 

3
TamDera stands for “Taming Drift and Erosion in Architecture”. 
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both erosion and drift symptoms. Architects can use the tool to prevent 

architectural degradation and, hence, identify opportunities for architecturally-

relevant refactorings. 

 

3.1. 
The TamDera language 

The TamDera language allows developers to define and blend anti-erosion 

and anti-drift rules to produce hybrid strategies for architectural degradation 

prevention. The hybrid specification of these rules might help to reveal or explain 

how an anti-erosion rule is leading to drift symptoms, or vice-versa (Chapter 4). 

In addition, we believe that, in certain circumstances, the description of anti-drift 

and anti-erosion rules should be naturally blended in architecture decisions and 

their specifications (Section 3.1.3). TamDera also supports the reuse of anti-

degradation rules in multiple contexts (Section 3.1.4). Finally, Section 3.1.5 

illustrates the use of TamDera's abstractions to specify hybrid rules to a design 

pattern. The following subsections describe the key abstractions of the TamDera 

language, while the appendix A presents the Backus Normal Form (BNF) 

grammar of the language. 

 

3.1.1. 
Examples of anti-erosion and anti-drift rules 

A set of anti-erosion (AER) and anti-drift (ADR) rules, taken from the 

motivating example (Section 1.2), is used to illustrate the main abstractions of 

TamDera. Each rule is represented by an acronym, which is used through the text. 

In particular, a design description of the GUI component (Figure 1) in natural 

language is provided. This description encompasses an anti-erosion rule (named 

AER1) and an anti-drift rule (named ADR1) which are strongly inter-related.   

 

"The GUI component purpose is limited to handle user input and display 
data information to users. It delegates user requests to the Business component 
and displays the retrieved data information. In order to avoid this component 
from addressing other responsibilities, GUI classes are not allowed to directly 
access services provided by the Data component".   
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The anti-erosion rule AER1 establishes that GUI classes cannot directly 

access services from modules realizing the Data component. The anti-drift rule 

ADR1 is intended to capture the GUI component’s constraint of not realizing 

conceptually-different responsibilities. In order to represent this constraint, the 

rule ADR1 imposes upper boundaries on the size and cyclomatic complexity of 

GUI classes. The rules AER1 and ADR1 are combined to prevent the GUI 

component to assume more responsibilities than GUI-related ones.  

In addition to AER1 and ADR1, we also use other two anti-erosion rules 

from the motivating example (Figure 1) in order to illustrate the use of certain 

TamDera's abstractions. They are listed in the following: 

• AER2: Only classes realizing the Data component are able to handle 

Persistence and Transaction exceptions; 

• AER3: Command classes realizing the component GUI must extend 

the Abstract Command  class; 

The anti-erosion rule AER2 is aimed at picking out the unacceptable 

handling of persistence-related and transaction-related exceptions by classes 

external to the Data component. Furthermore, AER3 is in charge of detecting 

absence violations (Section 2.5.1) of expected dependencies. In particular, it 

intends to enforce that all the Command classes extend a default abstract class. 

The reason is that the latter implements core functionalities to access requests and 

session objects. 

 

3.1.2. 
The language overview 

TamDera is different from classical architecture description languages 

(ADLs) (MEDVIDOVIC and RICHARD, 2000; GARLAN et al, 2007) as it is not 

intended to provide support for specifying component-and-connector 

decompositions (CLEMENTS et al, 2010). Instead, its goal is to support the 

specification of: (i) how certain architecturally-relevant concepts (e.g., a 

component) are realized by modules in the source code, and (ii) the rules 

governing the modules comprising those architectural concepts. Therefore, 

TamDera should be seen as complementary to ADLs and any other languages or 

notations for architecture documentation (CLEMENTS et al, 2010). 
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To achieve the aforementioned goal, TamDera provides two abstractions: 

concept mapping and architectural concept. They are the basic constructs in 

TamDera to specify rules, which are intended to detect both symptoms of 

architectural degradation. Figure 4 describes such TamDera's constructs for 

architectural concept and concept mapping. The BNF description uses the bold 

font to display terminal symbols. These abstractions are presented and discussed 

in the following subsections. 

 ConceptDeclaration  ::=   concept ConceptId [ConceptInheritance]  

           {  [ConceptMapping]} 

ConceptMapping         ::=  name: STRING 

                   ::=  parent: STRING  
Figure 4. TamDera's constructions for architectural concept and mapping 

  

3.1.2.1. 
Architectural concept  

A key abstraction of TamDera is an architectural concept. Each concept 

represents a relevant concern to the mind-set of software architects. These 

concerns can be components, interfaces, or any other decision expressed in an 

architecture document, which is traceable to modules or inner module elements in 

a program. Concepts associated with design patterns, such as Façade and Chain of 

Responsibility (GAMMA et al, 1995), are also often critical to architectural 

decompositions. As a result, TamDera can also be used to express architecture 

rules associated with design pattern concepts.  

Each architectural concept is reified by a set of module elements in the 

architecture’s implementation. Module elements realizing a concept in a program 

can range from classes and interfaces to inner members of modules, such as 

methods. Architects rely on architectural concepts to describe anti-degradation 

rules that should be respected by aggregate sets of module elements realizing the 

concepts. The keyword concept is used to define an architectural concept, which 

is given a unique name (ConceptId), as described in Figure 4. Each concept is 

associated with a concept mapping. For illustration, Listing 4 shows a TamDera 

specification for three architectural concepts relevant to the rules ADR1, AER1, 

AER2 and AER3.  

GUIHW (lines 01-03) and DataHW (lines 05-07) concepts refer to elements 

in the program that respectively realize the GUI and Data components, whereas 
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the DataHWException  (lines 09-11) denotes specific exceptions pertaining to 

the Data component (Figure 1). The use of the keywords name and parent is 

explained in the next subsection. 

Listing 4 

  01: concept GUIHW  
 02: { parent:"Command"| 
 06:  
 07: concept DataHW  
 08: { name: "healthwatcher.data.*"}  
 09: 
 10: concept DataHWException 
 11: { name: ".*PersistenceException|.*TransactExce ption"}   

 

3.1.2.2. 
Concept mapping specification  

Architects define which module elements comprise each architectural 

concept through the TamDera's notion of concept mapping specification. 

TamDera supports concept mapping through regular expressions that identify 

properties shared by module elements realizing the concept. Examples of these 

properties are common names (suffixes, prefixes, and package names) or a 

common parent (super class or interface) of code elements.  

Name-based Mapping. The definition of common properties governing 

element names is made using the keyword name (Figure 4). The name-based 

mapping receives a string (i.e., a regular expression) as input and retrieves all 

source code elements, whose names match it. Regular expressions provide special 

characters that allow the explicit matching with the names of packages, classes, 

interfaces and methods. More specifically, the character '|' provides alternative 

expressions for matching the input string.  The character '.' matches any character 

and the quantifier '*' is used for matching zero or more occurrences of the 

precedent character.  

Listing 4 illustrates the use of the name-based mapping. The concept 

DataHWException  is mapped either to classes whose names ends with 

PersistenceException  or TransactException  through name-based 

concept mapping (Listing 4 - line 11). On the other hand, the concept DataHW is 
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associated with all the code elements included in the package 

healthwatcher.data  and in its sub-packages.  

Parent-based Mapping. Parent-based mapping is denoted by the keyword 

parent (Figure 4). This pronoun refers to a super class or an interface extended by 

the code elements realizing the concept. Indeed, Cruz et al motivates the use of 

pronouns to refer to a set of architecturally-relevant elements or design pattern 

elements (CRUZ and LUCENA, 2003). However, Cruz et al (CRUZ and 

LUCENA, 2003) were interested in supporting such pronouns in a programming 

language rather than a design language to support architecture conformance as in 

our case.  

Listing 4 also depicts an example of how to use the keyword parent. The 

concept GUIHW is mapped to all classes whose parent class is named Command. 

Parent-based mapping is particularly interesting for programs with stable 

interfaces. These stable interfaces in the implementation are typically associated 

with architecturally-relevant interfaces (e.g., documented in component-and-

connector models (CLEMENTS et al, 2010)). For instance, design patterns, such 

as Chain of Responsibility (GAMMA et al, 1995), often rely on interfaces to 

structure their solutions; they are also used to realize architecturally-relevant 

component interfaces, to which certain rules need to be defined. 

 

3.1.3. 
Blending anti-erosion and anti-drift rules 

TamDera allows architects to specify anti-drift rules and anti-erosion rules 

in terms of architectural concepts and their interactions. Anti-erosion rules refer to 

concepts by their names in specific declarative statements. They describe 

unexpected and mandatory interactions between the elements comprising two or 

more concepts. While anti-erosion rules define concept interaction constraints, 

anti-drift rules define individual concept constraints. In other words, anti-drift 

rules are defined to a particular architectural concept. They establish user-defined 

boundaries (or thresholds) on the structural properties of the implementation 

elements composing the respective concept. The TamDera’s mechanisms for 

describing both forms of rules are described in the following subsections. 
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3.1.3.1. 
Anti-erosion rules  

 Figure 5 illustrates the TamDera's constructions for anti-erosion rules. 

Each rule is formed by at least two architectural concepts, a source and a target, 

whose interactions between them are constrained. The former encompasses code 

elements that are the source of an established dependency. The latter are the target 

concept’s elements whose dependencies with the source elements are constrained. 

The anti-erosion rules refer to definitions of the involved architectural concepts 

through their unique names (ConceptId). 

 AntiErosionRule   ::=  only ConceptList can-DependType ConceptList 

                  ::=  ConceptList cannot- DependType ConceptList 

                 ::=  ConceptList must-DependType ConceptList 

ConceptList  ::=  ConceptId ( , ConceptId)* 
 

Figure 5. TamDera 's constructions for anti-erosion rules  

Thus, architects can establish constraints related to expected, unexpected 

and mandatory dependencies between sets of architectural concepts. Table 1 

summarizes the dependency types currently supported by TamDera; A indicates a 

set of source concepts and B refers to target ones. If there are multiple concepts in 

both sets A and B, it means that all the elements of concepts in A must follow the 

dependency constraint with respect to the elements of concepts in B. Even though 

the same source code element is mapped to a concept from A and to another 

concept from B, it must follow the established dependency constraints between 

these concepts. In other words, a code element mapped to more than one concept 

must satisfies the rules associated with those concepts. 

Some dependency types are not applicable to certain type of module 

elements. For instance, declare and derive are only applicable to classes.  

Table 1. Dependency types supported by TamDera 

Dependency Description 

 A invoke B A method of A calls a method of B 

A create B Some method of A creates an object instance of a class of 
B 

A declare B The type of a field variable of A is a class of B 
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A derive B A class of A extends or implements a class of B 

A handle B A code element of A has a catch block that handles any 
class exception of B 

A depend B A code element of A has some kind of dependency on a 
code element of B 

 

TamDera provides three constructions to establish anti-erosion rules: 

cannot, only-can and must (Figure 5). They are defined in terms of two 

architectural concept lists (ConceptList), which denote respectively the set of 

source architectural concepts (source concepts) and the target architectural 

concepts (target concepts).  

The construction cannot establish that source concept elements are 

prohibited to have a specific dependency type with any target concept element. 

Listing 5 illustrates the rule AER1 (line 01) from the HealthWatcher architecture 

(Figure 1). It uses the construct cannot and the dependency type invoke to 

prohibit the access from GUHWI (source concept) code elements to services 

provided by DataHW (target concept) elements. 

The construction only-can (line 03) establishes that only code elements 

from the source concepts can have a specific type of dependency with code 

elements from the target ones. As a consequence, it can be used to restrict the 

access to target concept services exclusively to the source concepts. In addition, it 

can be used to ensure that certain architecturally-relevant dependencies governing 

exception flows, i.e., where certain raised exceptions should be handled. For 

instance, the second rule from Listing 5 (line 03) verifies whether there is a 

module which does not realize the Data layer (i.e., DataHW), but it is undesirably 

handling (i.e., catching) an exception comprised by the concept 

DataHWException  (AER2). 

Listing 5 

  01:     GUIHW cannot-invoke DataHW 

 02:   
 03:     only DataHW can-handle DataHWException 

 04:         
 05:     GUIHW must-derive AbstractCommand  

The construction must imposes that source concept elements must have a 

specific dependence type with the target concept elements. Thus, the last rule 
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from Listing 5 uses the dependency derives to enforce GUI command classes to 

extend a default abstract command class (AER3). 

 

3.1.3.2. 
Anti-drift rules  

TamDera allows architects to define strategies (MARINESCU, 2004) for 

detecting architectural drift in the form of anti-drift rules. These rules are defined 

as part of architectural concept bodies (Figure 6) enclosed by curly braces. These 

rules are composed by a metric, a mathematical operator and a value. More 

specifically, we use a mathematical operator to bind a threshold value to a quality 

metric. These metrics are used to capture component’s structural constraints, and 

are intended to capture possible deviations from modularity principles (Section 

2.3). 

 ConceptDeclaration  ::=  concept ConceptId  

      {  (AntiDriftRule)* } 

 

AntiDriftRule             ::=  Metric Operator Value 

   ::= ConstraintSetDecl 

Metric                             ::= LOC | CBO | NOP| CC | DIT | ...      

Operator                ::=   > | < | = | ≤ | ≥ 

 

ConstraintSetDecl     ::=  constraintset ConstraintSetId 

      { (AntiDriftRule) +} 

 

Value  ∊ NUMBER 
 

LOC = lines of code, CBO = coupling between object classes; CC = cyclomatic 

complexity;  NOP = number of parameters; DIT = depth of inheritance tree  

Figure 6. TamDera's constructions for anti-drift rules 

These structural metrics are the most popular strategy to detect drift 

symptoms (MARINESCU, 2004). The association of these metrics-based rules 

with architectural concepts enables developers to ensure that architecturally-

relevant modules in the code – i.e., those comprising an architectural concept – 

are free from architectural drift symptoms. Existing metrics-based techniques for 

detecting code anomalies do not allow architects to explicitly segregate 

anomalous code elements that are directly relevant to the architecture 

decomposition (Section 2.3). To overcome this limitation, TamDera allows 
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architects to impose boundaries (i.e., thresholds) on structural properties, such as 

size and coupling, of the source elements mapped to the concept. TamDera 

currently supports classical metrics for size, complexity, cohesion and coupling. 

The language can be extended to support new metrics (Section 3.2). 

For illustration, Listing 6 shows rules to detect drift symptoms in the 

HealthWatcher architecture. In particular, the concept GUIHW has anti-drift 

rules to constrain the size (LOC) and the cyclomatic complexity (CC) of its code 

elements (ADR1). These rules use user-defined thresholds (i.e., 100 and 5). These 

specific metrics were selected for illustrative purpose, and other metrics could be 

used for detecting similar or different drift symptoms presented in the GUI 

modules of the HealthWatcher system (Section 1.2). The violation of drift rules 

may imply that developers need to reason about producing and checking anti-

erosion rules (Section 4.4). 

  Listing 6 

01: concept GUIHW{
02:  parent: “Command”
03:  LOC < 100
04:  CC < 5
05: }

 

 

3.1.4. 
Reusing anti-degradation rules 

TamDera offers a compositional reuse mechanism for anti-drift rules 

(Section 3.1.4.1) as well as a hierarchical reuse mechanism of architectural 

concepts (Section 3.1.4.2), which in turn enables the hierarchical reuse of anti-

drift rules. In addition, it supports the modular specification of rules and concepts 

in specification files that can be reused across multiple projects. 

 

3.1.4.1. 
Compositional reuse 

Compositional reuse enables grouping anti-drift rules into a named set 

(constraint set). Its rationale is that most of drift symptoms are indicated by the 

neglection of several common and reusable expected property constraints of 

components. Architects use the keyword constraintset (Figure 6) to specify a set 
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of reusable anti-drift rules in TamDera. The definition of an architectural concept 

can refer to a constraint set to reuse its anti-drift rules. Hence, the set of anti-drift 

rules of an architectural concept includes: (i) the rules explicitly defined within its 

body (Section 3.1.2.1), and (ii) those associated with the referenced constraint 

sets. 

Listing 7 illustrates the definition and reuse of a constraint set by the 

example of the constraintset InheritanceOveruse  (lines 01-03), which 

constrains the depth of hierarchy class trees to avoid that a piece of coherent 

functionality get artificially decomposed in several hierarchy classes. The 

constraint set is reused in the GUI and Controller  concept definitions (lines 05, 

09 respectively). For conciseness, we omitted the GUI and Controller  anti-

drift rules, which are composed with the InheritanceOveruse  rules. 

Listing 7 

 01: constraintset InheritanceOveruse {
02:  DIT < 5
03: }
04:
05: concept GUI{
06:  InheritanceOveruse
07: }
08:
09: concept Controller{
10:  InheritanceOveruse
11: }

 

 

3.1.4.2. 
Hierarchical reuse 

TamDera supports the reuse of previously defined concepts by means of an 

inheritance mechanism. The rationale behind hierarchical reuse is that concepts 

that play similar architectural roles in different projects should be subject to 

similar anti-degradation rules, i.e., they should belong to the same concept 

hierarchy tree. This is also the case when, within a single project, architectural 

concepts share similar structural constraints with subtle differences, such as 

threshold adjustments. 

TamDera supports the reuse of anti-drift rules from a concept (super 

concept) to another concept (sub-concept). The inheritance of architectural 

concepts is similar to inheritance mechanisms in object-oriented systems. 
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Architects use the keyword extends in the declaration of a concept to establish an 

inheritance relationship with a super concept (Figure 7). This construction 

receives a string as parameter (ConceptId) which identifies the super concept. 

 ConceptDeclaration ::= concept ConceptId [ConceptInheritance]  

           { [ConceptMapping] (AntiDriftRule)* } 

 

ConceptInheritance   ::=   extends ConceptId  

Figure 7. Constructions for concept inheritance 

Figure 8 presents the definition of a super concept GUI (on the top of the 

figure). It defines three anti-drift rules (R1, R2, and R3). They are in charge of 

realizing the rule ADR. This concept is extended by ViewMM (on the left of the 

figure - lines 02-07), which implicitly inherits all GUI rules trough the inheritance 

mechanism. Therefore, all module elements mapped to ViewMM must satisfy these 

rules. 

 

Figure 8. Reuse of anti-degradation rules using TamDera  

Abstract concepts. TamDera concepts can be abstract or concrete. Unlike 

concrete concepts, abstract concepts do not specify a concept mapping (Section 

3.1.2.2). For instance, the abstract concept GUI (Figure 8) has two concrete sub-

concepts (ViewMM - left and GUIHW - right) that define a concept mapping (line 3). 

For evident reasons, only concrete concepts are checked during the anti-

degradation rule conformance. This will be explained in Section 3.2.2. 

Abstract anti-drift rules. TamDera supports the definition of abstract anti-

drift rules. In particular, users can define these rules using threshold variables 
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instead of concrete values (Figure 9). In a concept body, architects declare a list of 

threshold variables (ThresholdVariableList) using the keyword thresholds.  Also, 

they can assign numeric values for these variables in sub-concepts of the super 

concept. More specifically, TamDera has the keyword assign which receives an 

identifier of a variable as input, and assigns a numeric value to the variable. This 

construct is particularly interesting as architects can define reusable anti-drift rules 

without necessarily assigning their values. Also, this is often the case when 

systems are in the first phases of software development and hence, architects do 

not have enough knowledge to impose implementation constrains of components.  

In addition, it can also be interesting to the definition of program family 

architects, where certain threshold values can be specific to certain variants of a 

family. 

 ConceptDeclaration  ::=   concept ConceptId [ConceptInheritance]  

           {   

            [ThresholdVariableList]   

            (AntiDriftRule)*  

       (AssignmentThreshold)*  

    } 

AntiDriftRule            ::=  Metric Operator (Value | VariableId) 

   ::= ConstraintSetId 

ThresholdVariableList ::= thresholds: VariableId ( , VariableId )* 

AssignmentThreshold ::= assign VariableId to VALUE 

VariableId  ::= STRING  

Value   ::= NUMBER  

Figure 9. TamDera 's constructions for abstract anti-drift rules 

Listing 8 illustrates the same GUI concept from Listing 6 using abstract anti-

drift rules. It defines an abstract concept named GUI (lines 01-06) and declares 

two threshold variables: LOW_SIZE and LOW_COMPLEXITY (line 03). They have 

their values assigned in the sub-concept GUIHW. They refer to the rule ADR1 

(Section 3.1.1) which assigns 100 for the variable LOW_SIZE and 5 to the 

LOW_COMPLEXITY. 
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Listing 8 

 01: concept GUI  

02: {  
03:   thresholds: LOW_SIZE, LOW_COMPLEXITY  

04:   LOC < LOW_SIZE 
05:   CC < LOW_COMPLEXITY 
06: } 
07:  
08: concept GUIHW extends GUI  
09: { parent:"Command"  
10:   assign LOW_SIZE to 100 
11:   assign LOW_COMPLEXITY to 5 

12: }  

Architectural models. TamDera allows users to modularize the 

specification of concepts and anti-degradation rules in several architectural 

models. Figure 8 presents three such models: abstract_rules (top), mobilemedia 

(left) and healthwatcher (right). The model abstract_rules defines an abstract 

concept GUI (lines 01-05) and an anti-erosion rule that checks the conformance of 

AER1 (Section 3.1.1). The other models specify rules to respectively constrain the 

architecture of HealthWatcher and MobileMedia. 

The same architectural model can be used in several projects, thus 

promoting the reuse of both anti-erosion and drift rules across multiple projects 

(Section 1.2). For instance, the concept GUI from abstract_rules and the anti-

erosion rule R4 are inherited by both healthwatcher and mobilemedia models 

through the import construct. This construct allows the inheritance of concepts 

and all anti-erosion rules defined in a super architectural model (i.e., imported) to 

a base one. The base architectural model can define sub-concepts of the inherited 

concepts from the super architectural model. For example, the concepts GUIHW 
and ViewMM reuse GUI and its reusable anti-drift rules. 

Extending anti-degradation rules. TamDera also enables to override and 

extend anti-drift rules in sub-concept definitions. Thus, architects can adjust 

thresholds reused from super concepts according to their needs. This is 

particularly interesting to enable developers in better coping with particular 

characteristics of a system. The rationale behind this mechanism is to provide the 

flexibility to reuse or not (i.e. override) anti-drift rules from parent concepts 

without necessarily modifying their definitions. As an example, Figure 8 presents 

the definition of the concept GUIHW (right side), which has the GUI as super-
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concept. GUIHW overrides anti-drift rules from GUI imposing more restrictive 

boundaries for the lines of code (line 04 - R1+) and cyclomatic complexity (line 

05 - R2+) of its code elements. These rules were overridden to capture existing 

drift symptoms that occur in GUI classes that have less than 200 lines of code. 

In addition to overriding inherited rules, a base module can also define new 

anti-erosion rules that are only applicable to its sub-concepts. For instance, GUIHW 
establishes a new anti-erosion rule (line 9), requiring that GUIHW elements extend 

elements denoted by the concept AbsComd. 

 

3.1.5. 
TamDera specification example 

This section illustrates the application of TamDera to elaborate hybrid rules 

related to an architecturally-relevant design pattern (Section 2.3). We selected the 

Mediator design pattern because its description (GAMMA et al, 1995) 

encompasses constraints on both components and their interactions. These 

constraints respectively require the definition of anti-drift and anti-erosion rules 

for architectures realizing the Mediator pattern. Here, we focus on a subset of 

constraints related to the Mediator pattern, which are retrieved from the pattern 

design description (GAMMA et al, 1995): 

 

"The Mediator design pattern intends to promote loose coupling by defining 
a specific module that encapsulates how a set of other modules interact. More 
specifically, the term Mediator denotes the module responsible for encapsulating 
the interactions among a group of particular modules. This group encompasses 
modules which are named Colleagues. Hence, the colleagues send and receive 
requests from the mediator while the responsibility of the mediator is the 
implementation of cooperative behavior by coordinating requests between 
appropriate colleague(s)". 

 

Anti-drift rules. According to the description, the Mediator pattern intends 

to promote loose coupling between colleagues. In an architecture description, the 

colleagues can be realized, for instance, by implementation modules in different 

components in order to decouple them from each other. According to the pattern 

description, we should define an anti-drift rule to impose an upper boundary to the 

coupling of modules realizing colleagues. Otherwise, the pattern applicability 

would not be worth.  
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In addition, we should specify an anti-drift rule to establish a lower 

boundary to the coupling of mediators. This rule aims to avoid the pattern usage 

to decouple a few colleagues (i.e., assuming the coupling among the mediator and 

colleagues). In such scenario, the use of the pattern may not entail benefits. For 

instance, it would not be worthwhile to reduce the coupling between two or three 

colleagues. Finally, we also define rules to constrain the size and complexity of 

mediators aiming at avoiding anomalous God classes (FOWLER, 1999), such as 

the BaseController  in MobileMedia  architecture (Section 1.2).  

Anti-erosion rules. The main responsibility of the Mediator is to coordinate 

requests between appropriate colleagues. Hence, we establish two anti-erosion 

rules according to the interaction constraints between the mediator and colleagues: 

(i) colleagues must access services from mediator to send their requests to other 

colleague and, as a consequence, (ii) colleagues cannot directly access services 

from other colleagues. 

TamDera enables the specification of hybrid rules to the Mediator design 

pattern. Listing 9 presents each concept definition and the two anti-erosion rules. 

We use abstract concepts (Section 3.1.4.2) to denote the mediator and colleagues. 

Hence, the concepts Mediator  and Colleague  do not define a concept mapping 

(Section 3.1.2.2). The idea is to provide a reusable specification of hybrid rules 

for the Mediator pattern.  

The concept Mediator  (lines 01-07) establishes three anti-drift rules. First, 

it establishes a minimum value of coupling to a mediator module (line 04) to 

avoid the cases of mediators coupled with a few colleagues. Second, the concept 

constrains the size of the enclosed elements (line 5). Third, it also constrains their 

complexity (line 6). These two rules are tailored for detecting mediators which 

may implement several responsibilities. On the other hand, the concept 

Colleague  constrains only the coupling of the colleague modules (line 12). 

Regarding the pattern intention, they must be decoupled through the mediator. As 

it can be noticed, each anti-drift rule in the concept definitions is defined using 

thresholds variables (Section 3.1.4.2). 
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Listing 9 

 01: concept Mediator 

02: { 
03:  thresholds: LOW_COUPLING, HIGH_SIZE, HIGH_CC 
04:  CBC > LOW_COUPLING  
05:  LOC < HIGH_SIZE 
06:  CC < HIGH_COMPLEXITY  

07 } 
08:  
09: concept Colleague 

10: { 
11:  thresholds: LOW_COUPLING 
12:  CBC < LOW_COUPLING  

13: } 
14:  
15: Colleague must-invoke Mediator 
16: Colleague cannot-invoke Colleague  

Listing 9 also depicts two anti-erosion rules. First, it establishes that 

colleagues must have a invoke dependency with the mediator (line 15). This 

situation occurs as colleagues must invoke services provided by the mediator to 

send request to another colleague. The second rule is particularly interesting as it 

involves the same concept playing both roles of source and target of a given 

established dependency constraint. It prohibits colleagues to directly invoke 

services from each other (line 16). It is important to highlight that dependencies 

are defined in term of different modules (Section 2.1.1). Otherwise, this rule 

would incorrectly detect colleagues who invoke any of their own methods. 

 

3.2. 
The TamDera tool 

This section outlines key issues on the implementation of the TamDera tool. 

The tool design was driven by the goal of maximizing the reuse of anti-erosion 

and anti-drift tools whenever it was possible (Section 3.2.1). Section 3.2.2 

presents how the TamDera tool detects architectural degradation symptoms. 

Section 3.2.3 depicts how the TamDera tool identifies inconsistencies among 

rules (e.g., contradictory dependency constraint) in architecture models (Section 

3.1.4.2).   
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3.2.1. 
Tool design 

The TamDera language (Section 3.1) allows the specification of anti-

degradation rules in software systems. In the first version of the TamDera tool, 

we decided to support architecture enforcement of Java programs. The goal was to 

evaluate the feasibility of our approach in the context of programs implemented 

with a popular programming language. This strategy also allowed us to reuse 

static analysis platforms for Java programs (EICHBERG et al, 2008; TERRA and 

VALENTE, 2009). In addition, we implemented the tool upon the Eclipse 

platform using XText (XTEXT, 2012) which is a framework for developing the 

parser and editor. XText provides features, such as syntax coloring and code 

completion which are interesting to reduce the effort to specify concepts and anti-

degradation rules. 

Design overview.  A simplified view of the tool design is composed of four 

components: Controller, Concept Mapper, Consistency Checker and Rule 

Translator (Figure 10). Each of them has a particular responsibility with respect to 

the detection of erosion and drift symptoms. The Controller component 

coordinates the detection of degradation symptoms in a system implementation. It 

receives some inputs (e.g., architecture models) and delegate activities to other 

internal or external components to perform the architectural conformance (Section 

3.2.2). Concept Mapper is responsible for evaluating the expressions related to 

concept mappings (Section 3.1.2.2). The component Consistency Checker is 

tailored for verifying certain inconsistencies in the specification of anti-erosion 

rules (Section 3.2.3).  Finally, the Rule Translator takes syntactic nodes 

representing anti-erosion or anti-drift rules and translates them to Prolog queries. 

The tool uses the Prolog engine (SWI-PROLOG, 2012) to statically check 

the conformance of anti-degradation rules. Structural properties of module 

elements are stored as logic statements (i.e., knowledge base) (CERI, 1989). The 

tool also stores dependencies between code elements and several metric values. 

The set of code dependencies encompasses all those required to describe anti-

erosion rules (Section 3.1.3.1), such as method invocation, class inheritance, 

exception handling block (i.e., catch), and field declaration. Thus, a unique 

Prolog-based representation is used for detecting erosion and drift symptoms. 
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Figure 10. Simplified design of TamDera's tool 

This single representation can also facilitate the tool extension to other 

programming languages as we can develop translators of programs in these 

languages to Prolog statements. This characteristic is particularly interesting as 

recent studies have shown that most software projects nowadays are implemented 

in four different programming languages (UBAYASHI et al, 2010). Finally, a 

recent research (EICHBERG et al, 2008) has provided evidence suggesting that it 

is reasonably efficient to use Prolog as an engine to detect erosion symptoms into 

the incremental build process of large systems. This means that the Prolog engine 

is fast enough to perform architectural conformance after the build process. This 

strategy allows the system to be continuously checked when the source code is 

modified (EICHBERG et al, 2008). 

Figure 10 illustrates the design of the TamDera tool. The inputs to 

TamDera consist of two basic artifacts (step 1): the system's source code and 

TamDera architecture models (Section 3.1.4.2). The former is used by TamDera 

for obtaining structural information about the system implementation, i.e., the 

program modules, their inner members, and their dependencies. More specifically, 

the tool reuses the Bytecode Analysis Toolkit (BAT) (EICHBERG et al, 2008), 
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which receives the system binaries (obtained from its source code) as parameter 

and retrieves a Prolog-based representation of the system (step 2). Then, this 

representation stores the information about modules, their members, and their 

dependencies. The representation enables to check all dependency types supported 

by TamDera (Section 3.1.3.1).  

The tool also uses the system's source code to gather several measurements 

for module properties, such as size and coupling used for describing anti-drift 

rules (Section 3.1.3.2). In particular, we use the output file generated by Together 

(TOGETHER, 2012) to obtain and store these measures (step 3). However, any 

other measurement tool could be used by TamDera. For instance, it is 

straightforward to integrate our tool with all the anti-drift tools mentioned in 

Section 2.5.2.  

The tool receives the system architecture model as input. It parses the main 

architectural model and also the ones which are referred by the former through the 

use of the import keyword (Section 3.1.4.2). Hence, the component Controller  

(Figure 10 - step 3) evaluates all anti-degradation rules taking into consideration 

the use of reuse mechanisms (Section 3.1.4). Also, it evaluates the concept 

mappings (step 5) and stores them in the knowledge base through the component 

Concept Mapper  (Figure 10 - step 4). Our engine uses this information to 

identify concept’s code elements that violate one or more anti-degradation rules. 

However, before checking the rule conformance, the tool verifies whether the set 

of anti-degradation rules is consistent (step 6). Section 3.2.2 describes this 

procedure in more detail. The component Rule Translator  takes the anti-

degradation rules and translate them to Prolog queries (step 7). Then, the 

Controller : (i) takes these queries and the knowledge base (i.e., dependencies 

and metric values for each code module), and (ii) executes the Prolog Engine to 

check the conformance of anti-degradation rules (step 8). 

3.2.2. 
Detecting degradation symptoms  

TamDera tool is used for preventing architectural degradation through the 

detection of erosion and drift symptoms. In particular, it supports the detection of 

rule violations by transforming them into Prolog queries (Section 3.2.1). This 

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA



 

 

58

 

section details this process by exemplifying the transformation of the rules AER1 

and ADR1, presented in Section 3.2.1. 

Concept mapping. The tool parses all concept definitions and evaluates 

their mappings. Listing 10 presents the mappings of the concepts GUIHW and 

Data . As it can be noticed, we define Prolog facts (CERI, 1989), named 

conceptMapping , that are in charge of representing the connection between the 

source code elements and each concept. For instance, the class Login  from the 

package hw/view  is mapped to the concept GUIHW. Then, we translate anti-

erosion and anti-drift rules to Prolog queries, the so-called anti-erosion and anti-

drift queries. 

Listing 10 

 01: conceptMapping('GUIHW',class('hw/view, Command')). 
02: conceptMapping('GUIHW',class('class(hw/view, Login')). 
03: conceptMapping('GUIHW',class('class(hw/view, InsertComplaint')).  

04: ... 
05: conceptMapping('Data',class('hw/data','IRepository')). 
06: conceptMapping('Data',class('hw/data','ISymptomRepository')). 
07: conceptMapping('Data',class('hw/data','ComplaintRepository')). 
08: conceptMapping('Data',class('hw/data','DiseaseRepository')). 

09: ...   

Checking anti-erosion rules. The generated Prolog queries use functions 

that were defined in particular Prolog files in the TamDera tool. In a nutshell, 

anti-erosion queries search for source code elements from the source and target 

concepts (Section 3.1.3.1) through the conceptMapping  statement.  Also, they 

verify the presence or absence of a specific dependency between the elements 

from the source and target concepts. For instance, Listing 11 depicts the anti-

erosion query for rule AER1 (line 01). As we can notice, the string 'invoke' in the 

function cannot_invoke  refers to the corresponding dependency type used in 

the anti-erosion rule.  

Listing 11 also illustrates the definition of a function (lines 05-08). It 

traverses the knowledge base looking for source code elements from the source 

and target concepts (Section 3.1.3.1). These code elements are respectively named 

SOURCE and TARGET. Then, the function checks the existence of accidental 

method invocations between these code elements. For illustrative purpose, we 

removed other parameters from these functions which are used to represent 
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detailed information (e.g., method signatures). Finally, the tool dynamically maps 

the dependency types to previously-defined functions (e.g., cannot-invoke  - 

line 03). As a consequence, we can extend the set of dependency types through 

the addition of the respective Prolog functions. 

Listing 11 

  01: GUIHW cannot-invoke Data. 
 02: 
 03: cannot_invoke('GUIHW','Data', SOURCE, TARGET).  
 04: 
 05: cannot_invoke( C1, C2, SOURCE, TARGET) :-  
 06:  conceptMapping(C1, SOURCE), 
 07:  conceptMapping(C2,TARGET), 
 08:  method_invocation(SOURCE,TARGET).  

Checking anti-drift rules. Anti-drift queries rely on the verification of 

measurement results against the established boundary constraints (i.e., the metric 

thresholds). They use the same conceptMapping  for identifying code elements 

from the component which is being constrained. Listing 12 illustrates the 

evaluation of an anti-drift query to check the rule ADR1 (line 01), presented in 

Section 3.1.1. The TamDera tool stores the result of a particular metric for each 

source code element in a prolog file. The statement property stores the 

measurement results and receives the name of a metric, the enclosed concept and 

the measure value. For instance, Listing 12 presents stored information about 

SearchComplData's  (Section 1.2) size and complexity (lines 03-05). These 

queries also use defined functions that compare stored properties with desirable 

thresholds. For instance, the function less_than  checks if all elements mapped 

to GUI have less than 100 lines of code (ADR1). This function is instantiated in 

order to perform the anti-drift queries. As we can notice, we verify for the GUI 

concept, if there is any element violating the thresholds establishes for lines of 

code or complexity (lines 09-10). If so, they are retrieved by the engine. Queries 

for anti-drift rules refer to measures for each code element, and these measures are 

imported by TamDera. As a result, the set of metrics available for anti-drift rules 

can be extended considering the new imported metrics. 
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Listing 12 

01: concept GUIHW { LOC < 100; CC < 5 } 
02:  
03: property( 
04:  'LOC',class('hw/view','SearchComplData'), 200. 0). 
05: property('CC',class('hw/view','SearchComplData' ),12.0). 
06: 
07: less_than('LOC','GUIHW',100,CLASSNAME,MEASURE).  
08: less_than('CC','GUIHW',5,CLASSNAME,MEASURE). 
10: less_than(PROPERTY, CONCEPT, THRESHOLDE):- 
11:  conceptMapping(CONCEPT, ELEMENT), 
12:  property(PROPERTY, ELEMENT,MEASURE), 
13:  MEASURE >= THRESHOLD. 

 

3.2.3. 
Checking inconsistencies among rules 

The tool also checks the consistency of anti-degradation rules defined in 

architectural models (Section 3.1.4.2). In fact, users can unconsciously define an 

inconsistent set of rules which hinder the architectural conformance checking 

(EICHBERG et al, 2008; TERRA and VALENTE, 2009). For instance, Listing 13 

presents two cases of inconsistent rules. They impose contradictory constraints to 

the implemented architecture. In particular, the first rule (line 01) establishes that 

elements from A must invoke services from B. The second rule is inconsistent 

with the first one since it prohibits the access of B services by modules of A. In 

order to address this inconsistency case, we use a Prolog query to check if there 

are two anti-erosion rules that refer to the same concepts (A and B) and 

interaction types (invoke) but one uses a must relationship while the other uses a 

cannot one.  

As a first step, the tool takes each anti-erosion rule and stores its source 

concepts, target concepts, the dependency types (i.e., must, cannot and only-can) 

and the kind of the rule in the knowledge base. Listing 13 also presents other rule 

inconsistencies (lines 04-05). It establishes that only elements from concept A are 

able to declare variables of type C. The last rule imposes that only elements of B 

can declare variables of type C. Similarly to the first case, TamDera also detects 

this case by  elaborating queries that check only-can definitions, which denote the 

same target concepts (e.g., C) and dependency types (declare), but differ from the 

source concept (e.g., A and B). 
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Listing 13 

01: A must-invoke B 
02: A cannot-invoke B 
03:  
04: only A can-declare  C 
05: only B can-declare C 
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