

38

3
The TamDera

Recent studies (GARCIA et al, 2009; MACIA et al, 2012) have suggested

that architectural erosion and drift processes are often interrelated. Erosion and

drift symptoms tend to affect the same or somehow related modules in the source

code (MACIA et al, 2012). These studies have also provided initial evidence that

one or more drift symptoms tend to provoke the later introduction of erosion

symptoms, and vice-versa (PERRY AND WOLF, 1992; GARCIA et al, 2009).

However, techniques for preventing architectural degradation tend to focus on

supporting the detection of either erosion or drift symptoms only (Section 2.5).

Therefore, there is no explicit and unified support for developers to detect both

kinds of degradation symptoms.

Moreover, given typical time constraints, developers are only encouraged to

specify and maintain anti-degradation rules if they can reuse them in different

circumstances. Ideally, architects should be able to reuse anti-drift and anti-

erosion rules across projects adhering to similar architecture decompositions.

Existing approaches only support the specification and checking of anti-

degradation architecture rules for particular systems and do not provide any

mechanism to reuse them (Chapter 2). As a consequence, the specification of such

architectural rules becomes a repetitive task as rules are often similar across

multiple projects from the same domain or the same company (MOHA et al,

2010).

This chapter systematically presents a domain-specific language, named

TamDera
3 which enables the detection of both symptoms of architectural

degradation in the source code (Section 3.1). We have implemented a prototype

for supporting the use of TamDera (Section 3.2). The tool checks the architecture

conformance of the software implementation with respect to anti-degradation

rules. The goal is to provide instrumental support to the automatic detection of

3
TamDera stands for “Taming Drift and Erosion in Architecture”.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

39

both erosion and drift symptoms. Architects can use the tool to prevent

architectural degradation and, hence, identify opportunities for architecturally-

relevant refactorings.

3.1.
The TamDera language

The TamDera language allows developers to define and blend anti-erosion

and anti-drift rules to produce hybrid strategies for architectural degradation

prevention. The hybrid specification of these rules might help to reveal or explain

how an anti-erosion rule is leading to drift symptoms, or vice-versa (Chapter 4).

In addition, we believe that, in certain circumstances, the description of anti-drift

and anti-erosion rules should be naturally blended in architecture decisions and

their specifications (Section 3.1.3). TamDera also supports the reuse of anti-

degradation rules in multiple contexts (Section 3.1.4). Finally, Section 3.1.5

illustrates the use of TamDera's abstractions to specify hybrid rules to a design

pattern. The following subsections describe the key abstractions of the TamDera

language, while the appendix A presents the Backus Normal Form (BNF)

grammar of the language.

3.1.1.
Examples of anti-erosion and anti-drift rules

A set of anti-erosion (AER) and anti-drift (ADR) rules, taken from the

motivating example (Section 1.2), is used to illustrate the main abstractions of

TamDera. Each rule is represented by an acronym, which is used through the text.

In particular, a design description of the GUI component (Figure 1) in natural

language is provided. This description encompasses an anti-erosion rule (named

AER1) and an anti-drift rule (named ADR1) which are strongly inter-related.

"The GUI component purpose is limited to handle user input and display
data information to users. It delegates user requests to the Business component
and displays the retrieved data information. In order to avoid this component
from addressing other responsibilities, GUI classes are not allowed to directly
access services provided by the Data component".

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

40

The anti-erosion rule AER1 establishes that GUI classes cannot directly

access services from modules realizing the Data component. The anti-drift rule

ADR1 is intended to capture the GUI component’s constraint of not realizing

conceptually-different responsibilities. In order to represent this constraint, the

rule ADR1 imposes upper boundaries on the size and cyclomatic complexity of

GUI classes. The rules AER1 and ADR1 are combined to prevent the GUI

component to assume more responsibilities than GUI-related ones.

In addition to AER1 and ADR1, we also use other two anti-erosion rules

from the motivating example (Figure 1) in order to illustrate the use of certain

TamDera's abstractions. They are listed in the following:

• AER2: Only classes realizing the Data component are able to handle

Persistence and Transaction exceptions;

• AER3: Command classes realizing the component GUI must extend

the Abstract Command class;

The anti-erosion rule AER2 is aimed at picking out the unacceptable

handling of persistence-related and transaction-related exceptions by classes

external to the Data component. Furthermore, AER3 is in charge of detecting

absence violations (Section 2.5.1) of expected dependencies. In particular, it

intends to enforce that all the Command classes extend a default abstract class.

The reason is that the latter implements core functionalities to access requests and

session objects.

3.1.2.
The language overview

TamDera is different from classical architecture description languages

(ADLs) (MEDVIDOVIC and RICHARD, 2000; GARLAN et al, 2007) as it is not

intended to provide support for specifying component-and-connector

decompositions (CLEMENTS et al, 2010). Instead, its goal is to support the

specification of: (i) how certain architecturally-relevant concepts (e.g., a

component) are realized by modules in the source code, and (ii) the rules

governing the modules comprising those architectural concepts. Therefore,

TamDera should be seen as complementary to ADLs and any other languages or

notations for architecture documentation (CLEMENTS et al, 2010).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

41

To achieve the aforementioned goal, TamDera provides two abstractions:

concept mapping and architectural concept. They are the basic constructs in

TamDera to specify rules, which are intended to detect both symptoms of

architectural degradation. Figure 4 describes such TamDera's constructs for

architectural concept and concept mapping. The BNF description uses the bold

font to display terminal symbols. These abstractions are presented and discussed

in the following subsections.

 ConceptDeclaration ::= concept ConceptId [ConceptInheritance]

 { [ConceptMapping]}

ConceptMapping ::= name: STRING

 ::= parent: STRING
Figure 4. TamDera's constructions for architectural concept and mapping

3.1.2.1.
Architectural concept

A key abstraction of TamDera is an architectural concept. Each concept

represents a relevant concern to the mind-set of software architects. These

concerns can be components, interfaces, or any other decision expressed in an

architecture document, which is traceable to modules or inner module elements in

a program. Concepts associated with design patterns, such as Façade and Chain of

Responsibility (GAMMA et al, 1995), are also often critical to architectural

decompositions. As a result, TamDera can also be used to express architecture

rules associated with design pattern concepts.

Each architectural concept is reified by a set of module elements in the

architecture’s implementation. Module elements realizing a concept in a program

can range from classes and interfaces to inner members of modules, such as

methods. Architects rely on architectural concepts to describe anti-degradation

rules that should be respected by aggregate sets of module elements realizing the

concepts. The keyword concept is used to define an architectural concept, which

is given a unique name (ConceptId), as described in Figure 4. Each concept is

associated with a concept mapping. For illustration, Listing 4 shows a TamDera

specification for three architectural concepts relevant to the rules ADR1, AER1,

AER2 and AER3.

GUIHW (lines 01-03) and DataHW (lines 05-07) concepts refer to elements

in the program that respectively realize the GUI and Data components, whereas

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

42

the DataHWException (lines 09-11) denotes specific exceptions pertaining to

the Data component (Figure 1). The use of the keywords name and parent is

explained in the next subsection.

Listing 4

 01: concept GUIHW
 02: { parent:"Command"|
 06:
 07: concept DataHW
 08: { name: "healthwatcher.data.*"}
 09:
 10: concept DataHWException
 11: { name: ".*PersistenceException|.*TransactExce ption"}

3.1.2.2.
Concept mapping specification

Architects define which module elements comprise each architectural

concept through the TamDera's notion of concept mapping specification.

TamDera supports concept mapping through regular expressions that identify

properties shared by module elements realizing the concept. Examples of these

properties are common names (suffixes, prefixes, and package names) or a

common parent (super class or interface) of code elements.

Name-based Mapping. The definition of common properties governing

element names is made using the keyword name (Figure 4). The name-based

mapping receives a string (i.e., a regular expression) as input and retrieves all

source code elements, whose names match it. Regular expressions provide special

characters that allow the explicit matching with the names of packages, classes,

interfaces and methods. More specifically, the character '|' provides alternative

expressions for matching the input string. The character '.' matches any character

and the quantifier '*' is used for matching zero or more occurrences of the

precedent character.

Listing 4 illustrates the use of the name-based mapping. The concept

DataHWException is mapped either to classes whose names ends with

PersistenceException or TransactException through name-based

concept mapping (Listing 4 - line 11). On the other hand, the concept DataHW is

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

43

associated with all the code elements included in the package

healthwatcher.data and in its sub-packages.

Parent-based Mapping. Parent-based mapping is denoted by the keyword

parent (Figure 4). This pronoun refers to a super class or an interface extended by

the code elements realizing the concept. Indeed, Cruz et al motivates the use of

pronouns to refer to a set of architecturally-relevant elements or design pattern

elements (CRUZ and LUCENA, 2003). However, Cruz et al (CRUZ and

LUCENA, 2003) were interested in supporting such pronouns in a programming

language rather than a design language to support architecture conformance as in

our case.

Listing 4 also depicts an example of how to use the keyword parent. The

concept GUIHW is mapped to all classes whose parent class is named Command.

Parent-based mapping is particularly interesting for programs with stable

interfaces. These stable interfaces in the implementation are typically associated

with architecturally-relevant interfaces (e.g., documented in component-and-

connector models (CLEMENTS et al, 2010)). For instance, design patterns, such

as Chain of Responsibility (GAMMA et al, 1995), often rely on interfaces to

structure their solutions; they are also used to realize architecturally-relevant

component interfaces, to which certain rules need to be defined.

3.1.3.
Blending anti-erosion and anti-drift rules

TamDera allows architects to specify anti-drift rules and anti-erosion rules

in terms of architectural concepts and their interactions. Anti-erosion rules refer to

concepts by their names in specific declarative statements. They describe

unexpected and mandatory interactions between the elements comprising two or

more concepts. While anti-erosion rules define concept interaction constraints,

anti-drift rules define individual concept constraints. In other words, anti-drift

rules are defined to a particular architectural concept. They establish user-defined

boundaries (or thresholds) on the structural properties of the implementation

elements composing the respective concept. The TamDera’s mechanisms for

describing both forms of rules are described in the following subsections.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

44

3.1.3.1.
Anti-erosion rules

 Figure 5 illustrates the TamDera's constructions for anti-erosion rules.

Each rule is formed by at least two architectural concepts, a source and a target,

whose interactions between them are constrained. The former encompasses code

elements that are the source of an established dependency. The latter are the target

concept’s elements whose dependencies with the source elements are constrained.

The anti-erosion rules refer to definitions of the involved architectural concepts

through their unique names (ConceptId).

 AntiErosionRule ::= only ConceptList can-DependType ConceptList

 ::= ConceptList cannot- DependType ConceptList

 ::= ConceptList must-DependType ConceptList

ConceptList ::= ConceptId (, ConceptId)*

Figure 5. TamDera 's constructions for anti-erosion rules

Thus, architects can establish constraints related to expected, unexpected

and mandatory dependencies between sets of architectural concepts. Table 1

summarizes the dependency types currently supported by TamDera; A indicates a

set of source concepts and B refers to target ones. If there are multiple concepts in

both sets A and B, it means that all the elements of concepts in A must follow the

dependency constraint with respect to the elements of concepts in B. Even though

the same source code element is mapped to a concept from A and to another

concept from B, it must follow the established dependency constraints between

these concepts. In other words, a code element mapped to more than one concept

must satisfies the rules associated with those concepts.

Some dependency types are not applicable to certain type of module

elements. For instance, declare and derive are only applicable to classes.

Table 1. Dependency types supported by TamDera

Dependency Description

 A invoke B A method of A calls a method of B

A create B Some method of A creates an object instance of a class of
B

A declare B The type of a field variable of A is a class of B

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

45

A derive B A class of A extends or implements a class of B

A handle B A code element of A has a catch block that handles any
class exception of B

A depend B A code element of A has some kind of dependency on a
code element of B

TamDera provides three constructions to establish anti-erosion rules:

cannot, only-can and must (Figure 5). They are defined in terms of two

architectural concept lists (ConceptList), which denote respectively the set of

source architectural concepts (source concepts) and the target architectural

concepts (target concepts).

The construction cannot establish that source concept elements are

prohibited to have a specific dependency type with any target concept element.

Listing 5 illustrates the rule AER1 (line 01) from the HealthWatcher architecture

(Figure 1). It uses the construct cannot and the dependency type invoke to

prohibit the access from GUHWI (source concept) code elements to services

provided by DataHW (target concept) elements.

The construction only-can (line 03) establishes that only code elements

from the source concepts can have a specific type of dependency with code

elements from the target ones. As a consequence, it can be used to restrict the

access to target concept services exclusively to the source concepts. In addition, it

can be used to ensure that certain architecturally-relevant dependencies governing

exception flows, i.e., where certain raised exceptions should be handled. For

instance, the second rule from Listing 5 (line 03) verifies whether there is a

module which does not realize the Data layer (i.e., DataHW), but it is undesirably

handling (i.e., catching) an exception comprised by the concept

DataHWException (AER2).

Listing 5

 01: GUIHW cannot-invoke DataHW

 02:
 03: only DataHW can-handle DataHWException

 04:
 05: GUIHW must-derive AbstractCommand

The construction must imposes that source concept elements must have a

specific dependence type with the target concept elements. Thus, the last rule

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

46

from Listing 5 uses the dependency derives to enforce GUI command classes to

extend a default abstract command class (AER3).

3.1.3.2.
Anti-drift rules

TamDera allows architects to define strategies (MARINESCU, 2004) for

detecting architectural drift in the form of anti-drift rules. These rules are defined

as part of architectural concept bodies (Figure 6) enclosed by curly braces. These

rules are composed by a metric, a mathematical operator and a value. More

specifically, we use a mathematical operator to bind a threshold value to a quality

metric. These metrics are used to capture component’s structural constraints, and

are intended to capture possible deviations from modularity principles (Section

2.3).

 ConceptDeclaration ::= concept ConceptId

 { (AntiDriftRule)* }

AntiDriftRule ::= Metric Operator Value

 ::= ConstraintSetDecl

Metric ::= LOC | CBO | NOP| CC | DIT | ...

Operator ::= > | < | = | ≤ | ≥

ConstraintSetDecl ::= constraintset ConstraintSetId

 { (AntiDriftRule) +}

Value ∊ NUMBER

LOC = lines of code, CBO = coupling between object classes; CC = cyclomatic

complexity; NOP = number of parameters; DIT = depth of inheritance tree

Figure 6. TamDera's constructions for anti-drift rules

These structural metrics are the most popular strategy to detect drift

symptoms (MARINESCU, 2004). The association of these metrics-based rules

with architectural concepts enables developers to ensure that architecturally-

relevant modules in the code – i.e., those comprising an architectural concept –

are free from architectural drift symptoms. Existing metrics-based techniques for

detecting code anomalies do not allow architects to explicitly segregate

anomalous code elements that are directly relevant to the architecture

decomposition (Section 2.3). To overcome this limitation, TamDera allows

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

47

architects to impose boundaries (i.e., thresholds) on structural properties, such as

size and coupling, of the source elements mapped to the concept. TamDera

currently supports classical metrics for size, complexity, cohesion and coupling.

The language can be extended to support new metrics (Section 3.2).

For illustration, Listing 6 shows rules to detect drift symptoms in the

HealthWatcher architecture. In particular, the concept GUIHW has anti-drift

rules to constrain the size (LOC) and the cyclomatic complexity (CC) of its code

elements (ADR1). These rules use user-defined thresholds (i.e., 100 and 5). These

specific metrics were selected for illustrative purpose, and other metrics could be

used for detecting similar or different drift symptoms presented in the GUI

modules of the HealthWatcher system (Section 1.2). The violation of drift rules

may imply that developers need to reason about producing and checking anti-

erosion rules (Section 4.4).

 Listing 6

01: concept GUIHW{
02: parent: “Command”
03: LOC < 100
04: CC < 5
05: }

3.1.4.
Reusing anti-degradation rules

TamDera offers a compositional reuse mechanism for anti-drift rules

(Section 3.1.4.1) as well as a hierarchical reuse mechanism of architectural

concepts (Section 3.1.4.2), which in turn enables the hierarchical reuse of anti-

drift rules. In addition, it supports the modular specification of rules and concepts

in specification files that can be reused across multiple projects.

3.1.4.1.
Compositional reuse

Compositional reuse enables grouping anti-drift rules into a named set

(constraint set). Its rationale is that most of drift symptoms are indicated by the

neglection of several common and reusable expected property constraints of

components. Architects use the keyword constraintset (Figure 6) to specify a set

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

48

of reusable anti-drift rules in TamDera. The definition of an architectural concept

can refer to a constraint set to reuse its anti-drift rules. Hence, the set of anti-drift

rules of an architectural concept includes: (i) the rules explicitly defined within its

body (Section 3.1.2.1), and (ii) those associated with the referenced constraint

sets.

Listing 7 illustrates the definition and reuse of a constraint set by the

example of the constraintset InheritanceOveruse (lines 01-03), which

constrains the depth of hierarchy class trees to avoid that a piece of coherent

functionality get artificially decomposed in several hierarchy classes. The

constraint set is reused in the GUI and Controller concept definitions (lines 05,

09 respectively). For conciseness, we omitted the GUI and Controller anti-

drift rules, which are composed with the InheritanceOveruse rules.

Listing 7

 01: constraintset InheritanceOveruse {
02: DIT < 5
03: }
04:
05: concept GUI{
06: InheritanceOveruse
07: }
08:
09: concept Controller{
10: InheritanceOveruse
11: }

3.1.4.2.
Hierarchical reuse

TamDera supports the reuse of previously defined concepts by means of an

inheritance mechanism. The rationale behind hierarchical reuse is that concepts

that play similar architectural roles in different projects should be subject to

similar anti-degradation rules, i.e., they should belong to the same concept

hierarchy tree. This is also the case when, within a single project, architectural

concepts share similar structural constraints with subtle differences, such as

threshold adjustments.

TamDera supports the reuse of anti-drift rules from a concept (super

concept) to another concept (sub-concept). The inheritance of architectural

concepts is similar to inheritance mechanisms in object-oriented systems.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

49

Architects use the keyword extends in the declaration of a concept to establish an

inheritance relationship with a super concept (Figure 7). This construction

receives a string as parameter (ConceptId) which identifies the super concept.

 ConceptDeclaration ::= concept ConceptId [ConceptInheritance]

 { [ConceptMapping] (AntiDriftRule)* }

ConceptInheritance ::= extends ConceptId

Figure 7. Constructions for concept inheritance

Figure 8 presents the definition of a super concept GUI (on the top of the

figure). It defines three anti-drift rules (R1, R2, and R3). They are in charge of

realizing the rule ADR. This concept is extended by ViewMM (on the left of the

figure - lines 02-07), which implicitly inherits all GUI rules trough the inheritance

mechanism. Therefore, all module elements mapped to ViewMM must satisfy these

rules.

Figure 8. Reuse of anti-degradation rules using TamDera

Abstract concepts. TamDera concepts can be abstract or concrete. Unlike

concrete concepts, abstract concepts do not specify a concept mapping (Section

3.1.2.2). For instance, the abstract concept GUI (Figure 8) has two concrete sub-

concepts (ViewMM - left and GUIHW - right) that define a concept mapping (line 3).

For evident reasons, only concrete concepts are checked during the anti-

degradation rule conformance. This will be explained in Section 3.2.2.

Abstract anti-drift rules. TamDera supports the definition of abstract anti-

drift rules. In particular, users can define these rules using threshold variables

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

50

instead of concrete values (Figure 9). In a concept body, architects declare a list of

threshold variables (ThresholdVariableList) using the keyword thresholds. Also,

they can assign numeric values for these variables in sub-concepts of the super

concept. More specifically, TamDera has the keyword assign which receives an

identifier of a variable as input, and assigns a numeric value to the variable. This

construct is particularly interesting as architects can define reusable anti-drift rules

without necessarily assigning their values. Also, this is often the case when

systems are in the first phases of software development and hence, architects do

not have enough knowledge to impose implementation constrains of components.

In addition, it can also be interesting to the definition of program family

architects, where certain threshold values can be specific to certain variants of a

family.

 ConceptDeclaration ::= concept ConceptId [ConceptInheritance]

 {

 [ThresholdVariableList]

 (AntiDriftRule)*

 (AssignmentThreshold)*

 }

AntiDriftRule ::= Metric Operator (Value | VariableId)

 ::= ConstraintSetId

ThresholdVariableList ::= thresholds: VariableId (, VariableId)*

AssignmentThreshold ::= assign VariableId to VALUE

VariableId ::= STRING

Value ::= NUMBER

Figure 9. TamDera 's constructions for abstract anti-drift rules

Listing 8 illustrates the same GUI concept from Listing 6 using abstract anti-

drift rules. It defines an abstract concept named GUI (lines 01-06) and declares

two threshold variables: LOW_SIZE and LOW_COMPLEXITY (line 03). They have

their values assigned in the sub-concept GUIHW. They refer to the rule ADR1

(Section 3.1.1) which assigns 100 for the variable LOW_SIZE and 5 to the

LOW_COMPLEXITY.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

51

Listing 8

 01: concept GUI

02: {
03: thresholds: LOW_SIZE, LOW_COMPLEXITY

04: LOC < LOW_SIZE
05: CC < LOW_COMPLEXITY
06: }
07:
08: concept GUIHW extends GUI
09: { parent:"Command"
10: assign LOW_SIZE to 100
11: assign LOW_COMPLEXITY to 5

12: }

Architectural models. TamDera allows users to modularize the

specification of concepts and anti-degradation rules in several architectural

models. Figure 8 presents three such models: abstract_rules (top), mobilemedia

(left) and healthwatcher (right). The model abstract_rules defines an abstract

concept GUI (lines 01-05) and an anti-erosion rule that checks the conformance of

AER1 (Section 3.1.1). The other models specify rules to respectively constrain the

architecture of HealthWatcher and MobileMedia.

The same architectural model can be used in several projects, thus

promoting the reuse of both anti-erosion and drift rules across multiple projects

(Section 1.2). For instance, the concept GUI from abstract_rules and the anti-

erosion rule R4 are inherited by both healthwatcher and mobilemedia models

through the import construct. This construct allows the inheritance of concepts

and all anti-erosion rules defined in a super architectural model (i.e., imported) to

a base one. The base architectural model can define sub-concepts of the inherited

concepts from the super architectural model. For example, the concepts GUIHW
and ViewMM reuse GUI and its reusable anti-drift rules.

Extending anti-degradation rules. TamDera also enables to override and

extend anti-drift rules in sub-concept definitions. Thus, architects can adjust

thresholds reused from super concepts according to their needs. This is

particularly interesting to enable developers in better coping with particular

characteristics of a system. The rationale behind this mechanism is to provide the

flexibility to reuse or not (i.e. override) anti-drift rules from parent concepts

without necessarily modifying their definitions. As an example, Figure 8 presents

the definition of the concept GUIHW (right side), which has the GUI as super-

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

52

concept. GUIHW overrides anti-drift rules from GUI imposing more restrictive

boundaries for the lines of code (line 04 - R1+) and cyclomatic complexity (line

05 - R2+) of its code elements. These rules were overridden to capture existing

drift symptoms that occur in GUI classes that have less than 200 lines of code.

In addition to overriding inherited rules, a base module can also define new

anti-erosion rules that are only applicable to its sub-concepts. For instance, GUIHW
establishes a new anti-erosion rule (line 9), requiring that GUIHW elements extend

elements denoted by the concept AbsComd.

3.1.5.
TamDera specification example

This section illustrates the application of TamDera to elaborate hybrid rules

related to an architecturally-relevant design pattern (Section 2.3). We selected the

Mediator design pattern because its description (GAMMA et al, 1995)

encompasses constraints on both components and their interactions. These

constraints respectively require the definition of anti-drift and anti-erosion rules

for architectures realizing the Mediator pattern. Here, we focus on a subset of

constraints related to the Mediator pattern, which are retrieved from the pattern

design description (GAMMA et al, 1995):

"The Mediator design pattern intends to promote loose coupling by defining
a specific module that encapsulates how a set of other modules interact. More
specifically, the term Mediator denotes the module responsible for encapsulating
the interactions among a group of particular modules. This group encompasses
modules which are named Colleagues. Hence, the colleagues send and receive
requests from the mediator while the responsibility of the mediator is the
implementation of cooperative behavior by coordinating requests between
appropriate colleague(s)".

Anti-drift rules. According to the description, the Mediator pattern intends

to promote loose coupling between colleagues. In an architecture description, the

colleagues can be realized, for instance, by implementation modules in different

components in order to decouple them from each other. According to the pattern

description, we should define an anti-drift rule to impose an upper boundary to the

coupling of modules realizing colleagues. Otherwise, the pattern applicability

would not be worth.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

53

In addition, we should specify an anti-drift rule to establish a lower

boundary to the coupling of mediators. This rule aims to avoid the pattern usage

to decouple a few colleagues (i.e., assuming the coupling among the mediator and

colleagues). In such scenario, the use of the pattern may not entail benefits. For

instance, it would not be worthwhile to reduce the coupling between two or three

colleagues. Finally, we also define rules to constrain the size and complexity of

mediators aiming at avoiding anomalous God classes (FOWLER, 1999), such as

the BaseController in MobileMedia architecture (Section 1.2).

Anti-erosion rules. The main responsibility of the Mediator is to coordinate

requests between appropriate colleagues. Hence, we establish two anti-erosion

rules according to the interaction constraints between the mediator and colleagues:

(i) colleagues must access services from mediator to send their requests to other

colleague and, as a consequence, (ii) colleagues cannot directly access services

from other colleagues.

TamDera enables the specification of hybrid rules to the Mediator design

pattern. Listing 9 presents each concept definition and the two anti-erosion rules.

We use abstract concepts (Section 3.1.4.2) to denote the mediator and colleagues.

Hence, the concepts Mediator and Colleague do not define a concept mapping

(Section 3.1.2.2). The idea is to provide a reusable specification of hybrid rules

for the Mediator pattern.

The concept Mediator (lines 01-07) establishes three anti-drift rules. First,

it establishes a minimum value of coupling to a mediator module (line 04) to

avoid the cases of mediators coupled with a few colleagues. Second, the concept

constrains the size of the enclosed elements (line 5). Third, it also constrains their

complexity (line 6). These two rules are tailored for detecting mediators which

may implement several responsibilities. On the other hand, the concept

Colleague constrains only the coupling of the colleague modules (line 12).

Regarding the pattern intention, they must be decoupled through the mediator. As

it can be noticed, each anti-drift rule in the concept definitions is defined using

thresholds variables (Section 3.1.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

54

Listing 9

 01: concept Mediator

02: {
03: thresholds: LOW_COUPLING, HIGH_SIZE, HIGH_CC
04: CBC > LOW_COUPLING
05: LOC < HIGH_SIZE
06: CC < HIGH_COMPLEXITY

07 }
08:
09: concept Colleague

10: {
11: thresholds: LOW_COUPLING
12: CBC < LOW_COUPLING

13: }
14:
15: Colleague must-invoke Mediator
16: Colleague cannot-invoke Colleague

Listing 9 also depicts two anti-erosion rules. First, it establishes that

colleagues must have a invoke dependency with the mediator (line 15). This

situation occurs as colleagues must invoke services provided by the mediator to

send request to another colleague. The second rule is particularly interesting as it

involves the same concept playing both roles of source and target of a given

established dependency constraint. It prohibits colleagues to directly invoke

services from each other (line 16). It is important to highlight that dependencies

are defined in term of different modules (Section 2.1.1). Otherwise, this rule

would incorrectly detect colleagues who invoke any of their own methods.

3.2.
The TamDera tool

This section outlines key issues on the implementation of the TamDera tool.

The tool design was driven by the goal of maximizing the reuse of anti-erosion

and anti-drift tools whenever it was possible (Section 3.2.1). Section 3.2.2

presents how the TamDera tool detects architectural degradation symptoms.

Section 3.2.3 depicts how the TamDera tool identifies inconsistencies among

rules (e.g., contradictory dependency constraint) in architecture models (Section

3.1.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

55

3.2.1.
Tool design

The TamDera language (Section 3.1) allows the specification of anti-

degradation rules in software systems. In the first version of the TamDera tool,

we decided to support architecture enforcement of Java programs. The goal was to

evaluate the feasibility of our approach in the context of programs implemented

with a popular programming language. This strategy also allowed us to reuse

static analysis platforms for Java programs (EICHBERG et al, 2008; TERRA and

VALENTE, 2009). In addition, we implemented the tool upon the Eclipse

platform using XText (XTEXT, 2012) which is a framework for developing the

parser and editor. XText provides features, such as syntax coloring and code

completion which are interesting to reduce the effort to specify concepts and anti-

degradation rules.

Design overview. A simplified view of the tool design is composed of four

components: Controller, Concept Mapper, Consistency Checker and Rule

Translator (Figure 10). Each of them has a particular responsibility with respect to

the detection of erosion and drift symptoms. The Controller component

coordinates the detection of degradation symptoms in a system implementation. It

receives some inputs (e.g., architecture models) and delegate activities to other

internal or external components to perform the architectural conformance (Section

3.2.2). Concept Mapper is responsible for evaluating the expressions related to

concept mappings (Section 3.1.2.2). The component Consistency Checker is

tailored for verifying certain inconsistencies in the specification of anti-erosion

rules (Section 3.2.3). Finally, the Rule Translator takes syntactic nodes

representing anti-erosion or anti-drift rules and translates them to Prolog queries.

The tool uses the Prolog engine (SWI-PROLOG, 2012) to statically check

the conformance of anti-degradation rules. Structural properties of module

elements are stored as logic statements (i.e., knowledge base) (CERI, 1989). The

tool also stores dependencies between code elements and several metric values.

The set of code dependencies encompasses all those required to describe anti-

erosion rules (Section 3.1.3.1), such as method invocation, class inheritance,

exception handling block (i.e., catch), and field declaration. Thus, a unique

Prolog-based representation is used for detecting erosion and drift symptoms.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

56

Figure 10. Simplified design of TamDera's tool

This single representation can also facilitate the tool extension to other

programming languages as we can develop translators of programs in these

languages to Prolog statements. This characteristic is particularly interesting as

recent studies have shown that most software projects nowadays are implemented

in four different programming languages (UBAYASHI et al, 2010). Finally, a

recent research (EICHBERG et al, 2008) has provided evidence suggesting that it

is reasonably efficient to use Prolog as an engine to detect erosion symptoms into

the incremental build process of large systems. This means that the Prolog engine

is fast enough to perform architectural conformance after the build process. This

strategy allows the system to be continuously checked when the source code is

modified (EICHBERG et al, 2008).

Figure 10 illustrates the design of the TamDera tool. The inputs to

TamDera consist of two basic artifacts (step 1): the system's source code and

TamDera architecture models (Section 3.1.4.2). The former is used by TamDera

for obtaining structural information about the system implementation, i.e., the

program modules, their inner members, and their dependencies. More specifically,

the tool reuses the Bytecode Analysis Toolkit (BAT) (EICHBERG et al, 2008),

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

57

which receives the system binaries (obtained from its source code) as parameter

and retrieves a Prolog-based representation of the system (step 2). Then, this

representation stores the information about modules, their members, and their

dependencies. The representation enables to check all dependency types supported

by TamDera (Section 3.1.3.1).

The tool also uses the system's source code to gather several measurements

for module properties, such as size and coupling used for describing anti-drift

rules (Section 3.1.3.2). In particular, we use the output file generated by Together

(TOGETHER, 2012) to obtain and store these measures (step 3). However, any

other measurement tool could be used by TamDera. For instance, it is

straightforward to integrate our tool with all the anti-drift tools mentioned in

Section 2.5.2.

The tool receives the system architecture model as input. It parses the main

architectural model and also the ones which are referred by the former through the

use of the import keyword (Section 3.1.4.2). Hence, the component Controller

(Figure 10 - step 3) evaluates all anti-degradation rules taking into consideration

the use of reuse mechanisms (Section 3.1.4). Also, it evaluates the concept

mappings (step 5) and stores them in the knowledge base through the component

Concept Mapper (Figure 10 - step 4). Our engine uses this information to

identify concept’s code elements that violate one or more anti-degradation rules.

However, before checking the rule conformance, the tool verifies whether the set

of anti-degradation rules is consistent (step 6). Section 3.2.2 describes this

procedure in more detail. The component Rule Translator takes the anti-

degradation rules and translate them to Prolog queries (step 7). Then, the

Controller : (i) takes these queries and the knowledge base (i.e., dependencies

and metric values for each code module), and (ii) executes the Prolog Engine to

check the conformance of anti-degradation rules (step 8).

3.2.2.
Detecting degradation symptoms

TamDera tool is used for preventing architectural degradation through the

detection of erosion and drift symptoms. In particular, it supports the detection of

rule violations by transforming them into Prolog queries (Section 3.2.1). This

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

58

section details this process by exemplifying the transformation of the rules AER1

and ADR1, presented in Section 3.2.1.

Concept mapping. The tool parses all concept definitions and evaluates

their mappings. Listing 10 presents the mappings of the concepts GUIHW and

Data . As it can be noticed, we define Prolog facts (CERI, 1989), named

conceptMapping , that are in charge of representing the connection between the

source code elements and each concept. For instance, the class Login from the

package hw/view is mapped to the concept GUIHW. Then, we translate anti-

erosion and anti-drift rules to Prolog queries, the so-called anti-erosion and anti-

drift queries.

Listing 10

 01: conceptMapping('GUIHW',class('hw/view, Command')).
02: conceptMapping('GUIHW',class('class(hw/view, Login')).
03: conceptMapping('GUIHW',class('class(hw/view, InsertComplaint')).

04: ...
05: conceptMapping('Data',class('hw/data','IRepository')).
06: conceptMapping('Data',class('hw/data','ISymptomRepository')).
07: conceptMapping('Data',class('hw/data','ComplaintRepository')).
08: conceptMapping('Data',class('hw/data','DiseaseRepository')).

09: ...

Checking anti-erosion rules. The generated Prolog queries use functions

that were defined in particular Prolog files in the TamDera tool. In a nutshell,

anti-erosion queries search for source code elements from the source and target

concepts (Section 3.1.3.1) through the conceptMapping statement. Also, they

verify the presence or absence of a specific dependency between the elements

from the source and target concepts. For instance, Listing 11 depicts the anti-

erosion query for rule AER1 (line 01). As we can notice, the string 'invoke' in the

function cannot_invoke refers to the corresponding dependency type used in

the anti-erosion rule.

Listing 11 also illustrates the definition of a function (lines 05-08). It

traverses the knowledge base looking for source code elements from the source

and target concepts (Section 3.1.3.1). These code elements are respectively named

SOURCE and TARGET. Then, the function checks the existence of accidental

method invocations between these code elements. For illustrative purpose, we

removed other parameters from these functions which are used to represent

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

59

detailed information (e.g., method signatures). Finally, the tool dynamically maps

the dependency types to previously-defined functions (e.g., cannot-invoke -

line 03). As a consequence, we can extend the set of dependency types through

the addition of the respective Prolog functions.

Listing 11

 01: GUIHW cannot-invoke Data.
 02:
 03: cannot_invoke('GUIHW','Data', SOURCE, TARGET).
 04:
 05: cannot_invoke(C1, C2, SOURCE, TARGET) :-
 06: conceptMapping(C1, SOURCE),
 07: conceptMapping(C2,TARGET),
 08: method_invocation(SOURCE,TARGET).

Checking anti-drift rules. Anti-drift queries rely on the verification of

measurement results against the established boundary constraints (i.e., the metric

thresholds). They use the same conceptMapping for identifying code elements

from the component which is being constrained. Listing 12 illustrates the

evaluation of an anti-drift query to check the rule ADR1 (line 01), presented in

Section 3.1.1. The TamDera tool stores the result of a particular metric for each

source code element in a prolog file. The statement property stores the

measurement results and receives the name of a metric, the enclosed concept and

the measure value. For instance, Listing 12 presents stored information about

SearchComplData's (Section 1.2) size and complexity (lines 03-05). These

queries also use defined functions that compare stored properties with desirable

thresholds. For instance, the function less_than checks if all elements mapped

to GUI have less than 100 lines of code (ADR1). This function is instantiated in

order to perform the anti-drift queries. As we can notice, we verify for the GUI

concept, if there is any element violating the thresholds establishes for lines of

code or complexity (lines 09-10). If so, they are retrieved by the engine. Queries

for anti-drift rules refer to measures for each code element, and these measures are

imported by TamDera. As a result, the set of metrics available for anti-drift rules

can be extended considering the new imported metrics.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

60

Listing 12

01: concept GUIHW { LOC < 100; CC < 5 }
02:
03: property(
04: 'LOC',class('hw/view','SearchComplData'), 200. 0).
05: property('CC',class('hw/view','SearchComplData'),12.0).
06:
07: less_than('LOC','GUIHW',100,CLASSNAME,MEASURE).
08: less_than('CC','GUIHW',5,CLASSNAME,MEASURE).
10: less_than(PROPERTY, CONCEPT, THRESHOLDE):-
11: conceptMapping(CONCEPT, ELEMENT),
12: property(PROPERTY, ELEMENT,MEASURE),
13: MEASURE >= THRESHOLD.

3.2.3.
Checking inconsistencies among rules

The tool also checks the consistency of anti-degradation rules defined in

architectural models (Section 3.1.4.2). In fact, users can unconsciously define an

inconsistent set of rules which hinder the architectural conformance checking

(EICHBERG et al, 2008; TERRA and VALENTE, 2009). For instance, Listing 13

presents two cases of inconsistent rules. They impose contradictory constraints to

the implemented architecture. In particular, the first rule (line 01) establishes that

elements from A must invoke services from B. The second rule is inconsistent

with the first one since it prohibits the access of B services by modules of A. In

order to address this inconsistency case, we use a Prolog query to check if there

are two anti-erosion rules that refer to the same concepts (A and B) and

interaction types (invoke) but one uses a must relationship while the other uses a

cannot one.

As a first step, the tool takes each anti-erosion rule and stores its source

concepts, target concepts, the dependency types (i.e., must, cannot and only-can)

and the kind of the rule in the knowledge base. Listing 13 also presents other rule

inconsistencies (lines 04-05). It establishes that only elements from concept A are

able to declare variables of type C. The last rule imposes that only elements of B

can declare variables of type C. Similarly to the first case, TamDera also detects

this case by elaborating queries that check only-can definitions, which denote the

same target concepts (e.g., C) and dependency types (declare), but differ from the

source concept (e.g., A and B).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

61

Listing 13

01: A must-invoke B
02: A cannot-invoke B
03:
04: only A can-declare C
05: only B can-declare C

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

