PUC-RIo - Certificacdo Digital N° 1012623/CA

38

3
The TamDera

Recent studies (GARCIA et al, 2009; MACIA et al,12) have suggested
that architectural erosion and drift processesaddien interrelated. Erosion and
drift symptoms tend to affect the same or somehalated modules in the source
code (MACIA et al, 2012). These studies have alawided initial evidence that
one or more drift symptoms tend to provoke therlat¢roduction of erosion
symptoms, and vice-versa (PERRY AND WOLF, 1992; @AR et al, 2009).
However, techniques for preventing architecturajrddation tend to focus on
supporting the detection of either erosion or dsifimptoms only (Section 2.5).
Therefore, there is no explicit and unified supdort developers to detect both
kinds of degradation symptoms.

Moreover, given typical time constraints, develgpare only encouraged to
specify and maintain anti-degradation rules if tloay reuse them in different
circumstances. ldeally, architects should be ableeuse anti-drift and anti-
erosion rules across projects adhering to simitahitecture decompositions.
Existing approaches only support the specificatemd checking of anti-
degradation architecture rules for particular systeand do not provide any
mechanism to reuse them (Chapter 2). As a consegutrte specification of such
architectural rules becomes a repetitive task #ssrare often similar across
multiple projects from the same domain or the samempany (MOHA et al,
2010).

This chapter systematically presents a domain-Bpeleinguage, named
TamDera® which enables the detection of both symptoms ahitectural
degradation in the source code (Section 3.1). We lraplemented a prototype
for supporting the use @ambDera (Section 3.2). The tool checks the architecture
conformance of the software implementation withpee$ to anti-degradation
rules. The goal is to provide instrumental suppgorthe automatic detection of

*TamDera stands for “Taming Drift and Erosion in Architerl

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

39

both erosion and drift symptoms. Architects can ke tool to prevent
architectural degradation and, hence, identify ofpaties for architecturally-

relevant refactorings.

3.1.
The TamDera language

The TamDera language allows developers to define and blendeansion
and anti-drift rules to produce hybrid strategies &rchitectural degradation
prevention. The hybrid specification of these rutaght help to reveal or explain
how an anti-erosion rule is leading to drift symp& or vice-versa (Chapter 4).
In addition, we believe that, in certain circumsias) the description of anti-drift
and anti-erosion rules should be naturally blenchedrchitecture decisions and
their specifications (Section 3.1.3JamDera also supports the reuse of anti-
degradation rules in multiple contexts (Section.8.1Finally, Section 3.1.5
illustrates the use dfamDera's abstractions to specify hybrid rules to a design
pattern. The following subsections describe the &astractions of th&amDera
language, while the appendix A presents the BadKosmal Form (BNF)

grammar of the language.

3.1.1.
Examples of anti-erosion and anti-drift rules

A set of anti-erosion (AER) and anti-drift (ADR)Iles, taken from the
motivating example (Section 1.2), is used to illatd the main abstractions of
TamDera. Each rule is represented by an acronym, whictsésl through the text.
In particular, a design description of the GUI cament (Figure 1) in natural
language is provided. This description encompaaseanti-erosion rule (named
AER1) and an anti-drift rule (named ADR1) which atengly inter-related.

"The GUI component purpose is limited to handle user input and display
data information to users. It delegates user requests to the Business component
and displays the retrieved data information. In order to avoid this component
from addressing other responsibilities, GUI classes are not allowed to directly
access services provided by the Data component”.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

40

The anti-erosion rule AER1 establishes that GUks#a cannot directly
access services from modules realizing the Datapooent The anti-drift rule
ADR1 is intended to capture the GUI component’sst@int of not realizing
conceptually-different responsibilities. In order tepresent this constraint, the
rule ADR1 imposes upper boundaries on the sizecgmbbmatic complexity of
GUI classes. The rules AER1 and ADR1 are combiregrevent the GUI
component to assume more responsibilities than i@ldted ones.

In addition to AER1 and ADR1, we also use other @wdi-erosion rules
from the motivating example (Figure 1) in orderiltastrate the use of certain

TamDerd's abstractions. They are listed in the following:

* AER2: Only classes realizing the Data componentaaite to handle

Persistence and Transaction exceptions;

« AER3: Command classes realizing the component Gultraxtend
the Abstract Command class;

The anti-erosion rule AER2 is aimed at picking dhé unacceptable
handling of persistence-related and transacticstadl exceptions by classes
external to theData component. Furthermore, AER3 is in charge of detgc
absence violations (Section 2.5.1) of expected midgrecies. In particular, it
intends to enforce that all the Command classesnexa default abstract class.
The reason is that the latter implements core fanatities to access requests and

session objects.

3.1.2.
The language overview

TamDera is different from classical architecture descdptilanguages
(ADLs) (MEDVIDOVIC and RICHARD, 2000; GARLAN et aR007) as it is not
intended to provide support for specifying compdrerd-connector
decompositions (CLEMENTS et al, 2010). Instead,gtsl is to support the

Q

specification of: (i) how certain architecturallglevant concepts (e.g.,
component) are realized by modules in the sourade,cand (i) the rules
governing the modules comprising those architettwancepts. Therefore,
TamDera should be seen as complementary to ADLs and dmgr édnguages or
notations for architecture documentation (CLEMENSt @I, 2010).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

41

To achieve the aforementioned gobdmDera provides two abstractions:
concept mapping and architectural concept. They are the basic constructs in
TamDera to specify rules, which are intended to detecthbsymptoms of
architectural degradation. Figure 4 describes sTmimDera's constructs for
architectural concept and concept mapping. The BN$cription uses the bold
font to display terminal symbols. These abstractiare presented and discussed
in the following subsections.

ConceptDeclaration = concept Conceptld [Conceptinheritance]
{ [ConceptMapping]}

name: STRING

parent: STRING

ConceptMapping

Figure 4. TamDera's constructions for architectural concept and mapping

3.1.2.1.
Architectural concept

A key abstraction oTamDera is anarchitectural concept. Each concept
represents a relevant concern to the mind-set @fvame architects. These
concerns can be components, interfaces, or any démxsion expressed in an
architecture document, which is traceable to madatenner module elements in
a program. Concepts associated with design pafteuch as Facade and Chain of
Responsibility (GAMMA et al, 1995), are also oftenitical to architectural
decompositions. As a resuligmDera can also be used to express architecture
rules associated with design pattern concepts.

Each architectural concept is reified by a set @fdaie elements in the
architecture’s implementation. Module elementsizead a concept in a program
can range from classes and interfaces to inner reméf modules, such as
methods. Architects rely oarchitectural concepts to describe anti-degradation
rules that should be respected by aggregate setodifle elements realizing the
concepts. The keyworcbncept is used to define an architectural concept, which
is given a unique name&dnceptid), as described in Figure 4. Each concept is
associated with a concept mapping. For illustratlasting 4 shows dambDera
specification for three architectural conceptsvaie to the rules ADR1, AER1,
AER2 and AERS3.

GUIHW(lines 01-03) andataHW (lines 05-07) concepts refer to elements

in the program that respectively realize the GUd &ata components, whereas

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

42

the DataHWException (lines 09-11) denotes specific exceptions pertgirim
the Data component (Figure 1). The use of the kegsvoame and parent is

explained in the next subsection.
Listing 4

01: concept GUIHW

02: { parent:"Command"|

06:

07: concept DataHW

08: { name: "healthwatcher.data.*"}

09:
10: concept DataHWEXxception
11: { name: ".*PersistenceException|.*TransactExce ption"}

3.1.2.2.
Concept mapping specification

Architects define which module elements comprisehearchitectural
concept through theTamDera's notion of concept mapping specification.
TamDera supports concept mapping through regular expressibat identify
properties shared by module elements realizingctireept. Examples of these
properties are common names (suffixes, prefixesl package names) or a
common parent (super class or interface) of coelmehts.

Name-based Mapping. The definition of common properties governing
element names is made using the keywoadhe (Figure 4). The name-based
mapping receives a string (i.e., a regular expoeysas input and retrieves all
source code elements, whose names match it. Repagssions provide special
characters that allow the explicit matching witle thames of packages, classes,
interfaces and methods. More specifically, the abti@r '|' provides alternative
expressions for matching the input string. Theratizr ".' matches any character
and the quantifier *' is used for matching zero more occurrences of the
precedent character.

Listing 4 illustrates the use of the name-based pimgp The concept
DataHWException is mapped either to classes whose names ends with
PersistenceException or TransactException through name-based

concept mapping (Listing 4 - line 11). On the othand, the concemataHW is

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

43

associated with all the code elements included ihe tpackage
healthwatcher.data and in its sub-packages.

Par ent-based Mapping. Parent-based mapping is denoted by the keyword
parent (Figure 4). This pronoun refers to a super clasmanterface extended by
the code elements realizing the concept. Indeedz €t al motivates the use of
pronouns to refer to a set of architecturally-ral@velements or design pattern
elements (CRUZ and LUCENA, 2003). However, Cruz a¢t(CRUZ and
LUCENA, 2003) were interested in supporting suchnpuns in a programming
language rather than a design language to suppdritecture conformance as in
our case.

Listing 4 also depicts an example of how to usekiiyvordparent. The
conceptGUIHWIs mapped to all classes whose parent class is h@wamand
Parent-based mapping is particularly interesting fwograms with stable
interfaces. These stable interfaces in the impleatiem are typically associated
with architecturally-relevant interfaces (e.g., doented in component-and-
connector models (CLEMENTS et al, 2010)). For ine&g design patterns, such
as Chain of Responsibility (GAMMA et al, 1995), et rely on interfaces to
structure their solutions; they are also used @ize architecturally-relevant
component interfaces, to which certain rules nedattdefined.

3.1.3.
Blending anti-erosion and anti-drift rules

TamDera allows architects to specify anti-drift rules aauati-erosion rules
in terms of architectural concepts and their intBoas. Anti-erosion rules refer to
concepts by their names in specific declarativeestants. They describe
unexpected and mandatory interactions betweenlémeeats comprising two or
more concepts. While anti-erosion rules define ephdnteraction constraints,
anti-drift rules define individual concept consiizi In other words, anti-drift
rules are defined to a particular architecturaloegm. They establish user-defined
boundaries (or thresholds) on the structural prggserof the implementation
elements composing the respective concept. Tdm@Dera’s mechanisms for

describing both forms of rules are described infétlewing subsections.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

44

3.1.3.1.
Anti-erosion rules

Figure 5 illustrates th@amDera's constructions for anti-erosion rules.
Each rule is formed by at least two architectumaloepts, aource and atarget,
whose interactions between them are constrainee.fGimer encompasses code
elements that are the source of an establishedhdepey. The latter are the target
concept’s elements whose dependencies with thes@lements are constrained.
The anti-erosion rules refer to definitions of thgolved architectural concepts
through their unigue nameSoficeptlid).

AntiErosionRule

only ConceptList can-DependType ConceptList

ConceptList cannot- DependType ConceptList

ConceptList must-DependType ConceptList

ConceptList Conceptld (, Conceptld)*

Figure 5. TamDera 's constructions for anti-erosion rules

Thus, architects can establish constraints rel&tedxpected, unexpected
and mandatory dependencies between sets of atchébconcepts. Table 1
summarizes the dependency types currently suppbyt&@dmDera; A indicates a
set of source concepts aBdefers to target ones. If there are multiple cpte@
both sets A and B, it means that all the elemeht®cepts in A must follow the
dependency constraint with respect to the elenmwntencepts in B. Even though
the same source code element is mapped to a cofroeptA and to another
concept from B, it must follow the established defency constraints between
these concepts. In other words, a code element edajgpmore than one concept
must satisfies the rules associated with thoseegiac

Some dependency types are not applicable to cetigie of module
elements. For instancdeclare andderive are only applicable to classes.

Table 1. Dependency types supported by TamDera

Dependency Description

AinvokeB | A method ofA calls a method dB

Acreate B Some method oA creates an object instance of a clasq of
B

AdeclareB | The type of a field variable & is a class oB

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

45

Aderive B A class ofA extends or implements a classBof

AhandleB | A code element oA has a catch block that handles any
class exception @

o

AdependB | A code element o has some kind of dependency on

code element dB

TamDera provides three constructions to establish antsiero rules:
cannot, only-can and must (Figure 5). They are defined in terms of two
architectural concept listsCdnceptList), which denote respectively the set of
source architectural concepts (source concepts) thrdtarget architectural
concepts (target concepts).

The constructioncannot establish that source concept elements are
prohibited to have a specific dependency type \aitly target concept element.
Listing 5 illustrates the rule AERL1 (line 01) fraitme HealthWatcher architecture
(Figure 1). It uses the construcannot and the dependency typavoke to
prohibit the access fron6UHWI (source concept) code elements to services
provided byDataHW (target concept)elements.

The constructioronly-can (line 03) establishes that only code elements
from the source concepts can have a specific typdependency with code
elements from the target ones. As a consequencanitbe used to restrict the
access to target concept services exclusivelygsthirce concepts. In addition, it
can be used to ensure that certain architecturaléyant dependencies governing
exception flows, i.e., where certain raised exaayi should be handled. For
instance, the second rule from Listing 5 (line @&Yyifies whether there is a
module which does not realize the Data layer (DataHW), but it is undesirably
handling (i.e., catching) an exception comprised ke concept
DataHWException (AER2).

Listing 5
01: GUIHW cannot -invoke DataHW
02:
03: onl y DataHW can-handle DataHWException
04:

05: GUIHW rmust -derive AbstractCommand

The constructiormust imposes that source concept elements must have a

specific dependence type with the target concegmients. Thus, the last rule

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

46

from Listing 5 uses the dependendrives to enforce GUI command classes to
extend a default abstract command class (AER3).

3.1.3.2.
Anti-drift rules

TamDera allows architects to define strategies (MARINESQ004) for
detecting architectural drift in the form of antiftirules. These rules are defined
as part of architectural concept bodies (Figurer@®losed by curly braces. These
rules are composed by a metric, a mathematicalatpeand a value. More
specifically, we use a mathematical operator tal lairthreshold value to a quality
metric. These metrics are used to capture comp@nstntictural constraints, and
are intended to capture possible deviations frondutasity principles (Section
2.3).

ConceptDeclaration concept Conceptld

{ (AntiDriftRule)* }

AntiDriftRule n= Metric Operator Value
n= ConstraintSetDecl
Metric n= LOC | CBO | NOP| CC | DIT | ...
Operator n= >|<|=]<g]|2
ConstraintSetDecl ::= constraintset ConstraintSetld
{ (AntiDriftRule) +}

Value e NUMBER

LOC = lines of code, CBO = coupling between objeessses; CC = cyclomatic

complexity; NOP = number of parameters; DIT = tegitinheritance tree
Figure 6. TamDera's constructions for anti-drift rules

These structural metrics are the most popular egfyatto detect drift
symptoms (MARINESCU, 2004). The association of ¢hesetrics-based rules
with architectural concepts enables developers nsure that architecturally-
relevant modules in the code — i.e., those comisin architectural concept —
are free from architectural drift symptoms. Exigtimetrics-based techniques for
detecting code anomalies do not allow architects eiplicitly segregate
anomalous code elements that are directly relevantthe architecture

decomposition (Section 2.3). To overcome this kN, TamDera allows

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

47

architects to impose boundaries (i.e., threshadds$tructural properties, such as
size and coupling, of the source elements mappeth@éoconceptTamDera
currently supports classical metrics for size, claxipy, cohesion and coupling.
The language can be extended to support new méfexdion 3.2).

For illustration, Listing 6 shows rules to detecaiftdsymptoms in the
HealthWatcher architecture. In particular, the @pic GUIHW has anti-drift
rules to constrain the size (LOC) and the cyclometimplexity (CC) of its code
elements (ADR1). These rules use user-definedhblés (i.e., 100 and 5). These
specific metrics were selected for illustrative gmse, and other metrics could be
used for detecting similar or different drift syrapts presented in the GUI
modules of the HealthWatcher system (Section B¢ violation of drift rules
may imply that developers need to reason aboutygind and checking anti-

erosion rules (Section 4.4).
Listing 6

01: concept GUIHW{
02: parent: “Command’
03: LOC< 100

04: CC<5

05:}

3.1.4.
Reusing anti-degradation rules

TamDera offers a compositional reuse mechanism for anti-dules
(Section 3.1.4.1) as well as a hierarchical reusehanism of architectural
concepts (Section 3.1.4.2), which in turn enables Hierarchical reuse of anti-
drift rules. In addition, it supports the modul@esification of rules and concepts
in specification files that can be reused acrosKiphel projects.

3.14.1.
Compositional reuse

Compositional reuse enables grouping anti-drifesuinto a named set
(constraint set). Its rationale is that most oftdsymptoms are indicated by the
neglection of several common and reusable expeptegderty constraints of

components. Architects use the keywoodstraintset (Figure 6) to specify a set

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

48

of reusable anti-drift rules ifiamDera. The definition of an architectural concept
can refer to a constraint set to reuse its anti-dries. Hence, the set of anti-drift
rules of an architectural concept includes: (i) thies explicitly defined within its
body (Section 3.1.2.1), and (ii) those associatéth the referenced constraint
sets.

Listing 7 illustrates the definition and reuse ofcanstraint set by the
example of theconstraintset InheritanceOveruse (lines 01-03), which
constrains the depth of hierarchy class trees tmdathat a piece of coherent
functionality get artificially decomposed in severaierarchy classes. The
constraint set is reused in tG&1 andController concept definitions (lines 05,
09 respectively). For conciseness, we omittedGhg and Controller anti-

drift rules, which are composed with timaeritanceOveruse rules.
Listing 7

01: constraintset InheritanceOveruse {
02: DIT<5

03:}

04:

05: concept GUK

06: InheritanceOveruse
07:}

08:

09: concept Controller{
10: InheritanceOveruse
11:}

3.1.4.2.
Hierarchical reuse

TamDera supports the reuse of previously defined conceptsieans of an
inheritance mechanism. The rationale behind hibreat reuse is that concepts
that play similar architectural roles in differeptojects should be subject to
similar anti-degradation rules, i.e., they shoulelohg to the same concept
hierarchy tree. This is also the case when, withisingle project, architectural
concepts share similar structural constraints veitiotle differences, such as
threshold adjustments.

TamDera supports the reuse of anti-drift rules from a @ptc(super
concept) to another concept (sub-concept). Theritanee of architectural

concepts is similar to inheritance mechanisms ijeatioriented systems.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

49

Architects use the keywomktends in the declaration of a concept to establish an
inheritance relationship with a super concept (F@gd). This construction

receives a string as parametanceptlid) which identifies the super concept.

ConceptDeclaration = concept Conceptld [Conceptinheritance]
{ [ConceptMapping] (AntiDriftRule)* }
Conceptlnheritance = extends Conceptld

Figure 7. Constructions for concept inheritance

Figure 8 presents the definition of a super con€> (on the top of the
figure). It defines three anti-drift rules (R1, Réhd R3). They are in charge of
realizing the rule ADR. This concept is extendedviwMM (on the left of the
figure - lines 02-07), which implicitly inheritslaBUI rules trough the inheritance
mechanism. Therefore, all module elements mapp¥@&tavM must satisfy these

rules.

abstract_rules
01: concept GUI{

02: LOC<200 R1
03: CC<6 R2
04: LOCM<60 R3
05: }

06: Gui cannot-invoke DataModel R4
mobilemedia - —__healthwatcher

01: import “abstract_rules”
02: concept GUIHW extends GUI {
03: parent: “Command”

01: import “abstract_rules”
02: concept ViewMM extends GUI{
03: name: “mobilemedia.view.*”

04: //implicit reuse of R1 R1 - Ox 04: LOC<100 b= e
S 05: CC<5 R2+ - 5x

05: //implicit reuse of R2 R2 = 02x 06: //implicit reuse of R3 R3 - 6x

06: //implicit reuse of R3 R3 - 0Ox 07: } P

07: } P

08: //implicit reuse of R4 R4 o1x | |08 //implicit reuse of R4 L

09: GUIHW must-derive AbsComd R5+ = 1x

Figure 8. Reuse of anti-degradation rules using TamDera

Abstract concepts. TamDera concepts can be abstract or concrete. Unlike
concrete concepts, abstract concepts do not spaafyncept mapping (Section
3.1.2.2). For instance, the abstract concpt (Figure 8) has two concrete sub-
concepts\iewMM- left andGUIHW- right) that define a concept mapping (line 3).
For evident reasons, only concrete concepts arekede during the anti-
degradation rule conformance. This will be expldimeSection 3.2.2.

Abstract anti-drift rules. TamDera supports the definition of abstract anti-

drift rules. In particular, users can define theskes using threshold variables

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

50

instead of concrete values (Figure 9). In a conbegy, architects declare a list of
threshold variablesTkresholdvariableList) using the keywordhresholds. Also,
they can assign numeric values for these variablesib-concepts of the super
concept. More specificallffamDera has the keyworassign which receives an
identifier of a variable as input, and assigns meuc value to the variable. This
construct is particularly interesting as architexzs define reusable anti-drift rules
without necessarily assigning their values. Aldas tis often the case when
systems are in the first phases of software devedop and hence, architects do
not have enough knowledge to impose implementatoorstrains of components.
In addition, it can also be interesting to the wiéitn of program family
architects, where certain threshold values canpeeific to certain variants of a

family.

ConceptDeclaration concept Conceptld [Conceptinheritance]

{
[ThresholdVariableList]
(AntiDriftRule)*
(AssignmentThreshold)*

}
AntiDriftRule = Metric Operator (Value | Variableld)
= ConstraintSetld
ThresholdVariablelist ::= thresholds: Variableld (, Variableld)*
AssignmentThreshold ::= assign Variableld to VALUE
Variableld = STRING
Value = NUMBER

Figure 9. TamDera 's constructions for abstract anti-drift rules

Listing 8 illustrates the san@UI concept from Listing 6 using abstract anti-
drift rules. It defines an abstract concept naméd @ines 01-06) and declares
two threshold variables:OW_SIZEandLOW_COMPLEXITYline 03). They have
their values assigned in the sub-conc@piiHW They refer to the rule ADR1

(Section 3.1.1) which assigns 100 for the variab®W_SIZE and 5 to the
LOW_COMPLEXITY.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

51

Listing 8

01: concept GUI

02: {

03: t hreshol ds: LOW_SIZE, LOW_COMPLEXITY

04: LOC < LOW_SIZE

05: CC < LOW_COMPLEXITY

06: }

07:

08: concept GUIHW ext ends GUI
09: { parent:"Command"

10: assi gn LOW_SIZE to 100
11: assi gn LOW_COMPLEXITYto 5
12: }

Architectural models. TamDera allows users to modularize the
specification of concepts and anti-degradation srule severalarchitectural
models. Figure 8 presents three such modalsstract rules (top), mobilemedia
(left) and healthwatcher (right). The modelabstract_rules defines an abstract
conceptGUI (lines 01-05) and an anti-erosion rule that chebksconformance of
AER1 (Section 3.1.1). The other models specifygterespectively constrain the
architecture of HealthWatcher and MobileMedia.

The same architectural model can be used in sevyan@kcts, thus
promoting the reuse of both anti-erosion and dtifes across multiple projects
(Section 1.2). For instance, the concgull from abstract_rules and the anti-
erosion rule R4are inherited by botthealthwatcher and mobilemedia models
through theimport construct. This construct allows the inheritanteancepts
and all anti-erosion rules defined in a super &chiral model (i.e., imported) to
a base one. The base architectural model can dafineoncepts of the inherited
concepts from the super architectural model. F@angxe, the conceptSUIHW
andViewMM reuseGUI and its reusable anti-drift rules.

Extending anti-degradation rules. TamDera also enables to override and
extend anti-drift rules in sub-concept definitionghus, architects can adjust
thresholds reused from super concepts accordingh&x needs. This is
particularly interesting to enable developers iritdsecoping with particular
characteristics of a system. The rationale beHhisirhechanism is to provide the
flexibility to reuse or not (i.e. override) antifirrules from parent concepts
without necessarily modifying their definitions. As example, Figure 8 presents
the definition of the concepsUIHW (right side), which has theul as super-

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

52

concept.GUIHW overrides anti-drift rules fronGUI imposing more restrictive
boundaries for the lines of code (line 04 - R1+) agclomatic complexity (line
05 - R2+) of its code elements. These rules wergrmden to capture existing
drift symptoms that occur iBUI classes that have less than 200 lines of code.
In addition to overriding inherited rules, a basedule can also define new
anti-erosion rules that are only applicable tesitb-concepts. For instanc&JIHW
establishes a new anti-erosion rule (line 9), néggithatGUIHWelements extend

elements denoted by the concapsComd.

3.1.5.
TamDera specification example

This section illustrates the applicationTeimDera to elaborate hybrid rules
related to an architecturally-relevant design pat{&ection 2.3). We selected the
Mediator design pattern because its description MG et al, 1995)
encompasses constraints on both components and ititeractions. These
constraints respectively require the definitionaoti-drift and anti-erosion rules
for architectures realizing the Mediator patterreré] we focus on a subset of
constraints related to the Mediator pattern, wrach retrieved from the pattern
design description (GAMMA et al, 1995):

"The Mediator design pattern intends to promote loose coupling by defining
a specific module that encapsulates how a set of other modules interact. More
specifically, the term Mediator denotes the module responsible for encapsulating
the interactions among a group of particular modules. This group encompasses
modules which are named Colleagues. Hence, the colleagues send and receive
requests from the mediator while the responsibility of the mediator is the
implementation of cooperative behavior by coordinating requests between
appropriate colleague(s)".

Anti-drift rules. According to the description, the Mediator pattertends
to promote loose coupling between colleagues. larahitecture description, the
colleagues can be realized, for instance, by imetgation modules in different
components in order to decouple them from eachroftexording to the pattern
description, we should define an anti-drift rulartgpose an upper boundary to the
coupling of modules realizing colleagues. Otherwige pattern applicability

would not be worth.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

53

In addition, we should specify an anti-drift rule establish a lower
boundary to the coupling of mediators. This rulmsito avoid the pattern usage
to decouple a few colleagues (i.e., assuming thelow among the mediator and
colleagues). In such scenario, the use of the rpattey not entail benefits. For
instance, it would not be worthwhile to reduce toepling between two or three
colleagues. Finally, we also define rules to canstthe size and complexity of
mediators aiming at avoiding anomalous God claéSeSVLER, 1999), such as
theBaseController in MobileMedia architecture (Section 1.2).

Anti-erosion rules. The main responsibility of the Mediator is to ciioate
requests between appropriate colleagues. Hencegstablish two anti-erosion
rules according to the interaction constraints leetwthe mediator and colleagues:
(i) colleagues must access services from mediateend their requests to other
colleague and, as a consequence, (ii) colleaguasotalirectly access services
from other colleagues.

TamDera enables the specification of hybrid rules to thedMtor design
pattern. Listing 9 presents each concept definitind the two anti-erosion rules.
We use abstract concepts (Section 3.1.4.2) to deghetmediator and colleagues.
Hence, the conceptdediator andColleague do not define a concept mapping
(Section 3.1.2.2). The idea is to provide a reuwsalplecification of hybrid rules
for the Mediator pattern.

The concepMediator (lines 01-07) establishes three anti-drift ruléisst,
it establishes a minimum value of coupling to a @il module (line 04) to
avoid the cases of mediators coupled with a fedeaglies. Second, the concept
constrains the size of the enclosed elements jlin&hird, it also constrains their
complexity (line 6). These two rules are tailored fletecting mediators which
may implement several responsibilities. On the otiheand, the concept
Colleague constrains only the coupling of the colleague niesluline 12).
Regarding the pattern intention, they must be dgleauthrough the mediator. As
it can be noticed, each anti-drift rule in the cgpicdefinitions is defined using
thresholds variables (Section 3.1.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

54

Listing 9

01: concept Mediator

02: {

03: t hr eshol ds: LOW_COUPLING, HIGH_SIZE, HIGH_CC
04: CBC > LOW_COUPLING

05: LOC < HIGH_SIZE

06: CC < HIGH_COMPLEXITY

07 }

08:

09: concept Colleague

10: {

11: t hreshol ds: LOW_COUPLING
12: CBC < LOW_COUPLING

13: }

14:

15: Colleague nust - i nvoke Mediator
16: Colleague cannot - i nvoke Colleague

Listing 9 also depicts two anti-erosion rules. &irg establishes that
colleagues must have a invoke dependency with thdiator (line 15). This
situation occurs as colleagues must invoke seryicegided by the mediator to
send request to another colleague. The secondsrplarticularly interesting as it
involves the same concept playing both roles ofr@mwand target of a given
established dependency constraint. It prohibitdeagues to directly invoke
services from each other (line 16). It is importamhighlight that dependencies
are defined in term of different modules (Sectiad.P). Otherwise, this rule

would incorrectly detect colleagues who invoke ahtheir own methods.

3.2.
The TamDera tool

This section outlines key issues on the implemantaif theTamDera tool.
The tool design was driven by the goal of maxingzthe reuse of anti-erosion
and anti-drift tools whenever it was possible (#ect3.2.1). Section 3.2.2
presents how thdambDera tool detects architectural degradation symptoms.
Section 3.2.3 depicts how tHemDera tool identifies inconsistencies among
rules (e.g., contradictory dependency constramturchitecture models (Section
3.1.4.2).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

55

3.2.1.
Tool design

The TamDera language (Section 3.1) allows the specification aoti-
degradation rules in software systems. In the fiession of theTamDera tool,
we decided to support architecture enforcemenawéd jprograms. The goal was to
evaluate the feasibility of our approach in theteghof programs implemented
with a popular programming language. This stratatpp allowed us to reuse
static analysis platforms for Java programs (EICRBEet al, 2008; TERRA and
VALENTE, 2009). In addition, we implemented the ltagopon the Eclipse
platform using XText (XTEXT, 2012) which is a framerk for developing the
parser and editor. XText provides features, suclsyedax coloring and code
completion which are interesting to reduce therétim specify concepts and anti-

degradation rules.

Design overview. A simplified view of the tool design is composddaur
components: Controller, Concept Mapper, Consiste@iyecker and Rule
Translator (Figure 10). Each of them has a pasdrcidsponsibility with respect to
the detection of erosion and drift symptoms. Thent@dler component
coordinates the detection of degradation symptanasgystem implementation. It
receives some inputs (e.g., architecture modeld) dmtegate activities to other
internal or external components to perform the igectural conformance (Section
3.2.2). Concept Mapper is responsible for evalgathee expressions related to
concept mappings (Section 3.1.2.2). The componemisiStency Checker is
tailored for verifying certain inconsistencies imetspecification of anti-erosion
rules (Section 3.2.3). Finally, the Rule Tranglatakes syntactic nodes
representing anti-erosion or anti-drift rules arahslates them to Prolog queries.

The tool uses the Prolog engine (SWI-PROLOG, 2@aXtatically check
the conformance of anti-degradation rules. Strattyroperties of module
elements are stored as logic statements (i.e., ledpe base) (CERI, 1989). The
tool also stores dependencies between code elerardtseveral metric values.
The set of code dependencies encompasses all tbqeged to describe anti-
erosion rules (Section 3.1.3.1), such as methodcamon, class inheritance,
exception handling block (i.e., catch), and fieldckration. Thus, a unique

Prolog-based representation is used for detectivgjan and drift symptoms.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

56

BAT Measurement Tool

2. 3.\

system’s TamDera
source code Concept Mapper
4,
E Controller |
Consistency Checker
1.

Rule Translator

8.

Prolog Engine

Figure 10. Simplified design of TamDera's tool

arthitecture
models

This single representation can also facilitate the@ extension to other
programming languages as we can develop translatongrograms in these
languages to Prolog statements. This characterstpmarticularly interesting as
recent studies have shown that most software geojemvadays are implemented
in four different programming languages (UBAYASHI &, 2010). Finally, a
recent research (EICHBERG et al, 2008) has provededience suggesting that it
Is reasonably efficient to use Prolog as an entgirgetect erosion symptoms into
the incremental build process of large systemss Teans that the Prolog engine
is fast enough to perform architectural conformaaiter the build process. This
strategy allows the system to be continuously cbéckhen the source code is
modified (EICHBERG et al, 2008).

Figure 10 illustrates the design of ti@embDera tool. The inputs to
TamDera consist of two basic artifactstép 1): the system's source code and
TamDera architecture models (Section 3.1.4.2). The formmarsed byTamDera
for obtaining structural information about the gystimplementation, i.e., the
program modules, their inner members, and theied@gncies. More specifically,
the tool reuses the Bytecode Analysis Toolkit (BAEJCHBERG et al, 2008),

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

57

which receives the system binaries (obtained frtarsource code) as parameter
and retrieves a Prolog-based representation ofsylseem g¢tep 2). Then, this
representation stores the information about modulesir members, and their
dependencies. The representation enables to cHetdpandency types supported
by TamDera (Section 3.1.3.1).

The tool also uses the system's source code tergs¢iveral measurements
for module properties, such as size and couplired Usr describing anti-drift
rules (Section 3.1.3.2). In particular, we usedb#put file generated by Together
(TOGETHER, 2012) to obtain and store these meaqstgs 3). However, any
other measurement tool could be used TymDera. For instance, it is
straightforward to integrate our tool with all tlati-drift tools mentioned in
Section 2.5.2.

The tool receives the system architecture mod@i@g. It parses the main
architectural model and also the ones which aermed by the former through the
use of themport keyword (Section 3.1.4.2). Hence, the compo@anitroller
(Figure 10 -step 3) evaluates all anti-degradation rules taking icoasideration
the use of reuse mechanisms (Section 3.1.4). Atseyaluates the concept
mappings ¢tep 5) and stores them in the knowledge base througledhgonent
Concept Mapper (Figure 10 -step 4). Our engine uses this information to
identify concept’s code elements that violate onenore anti-degradation rules.
However, before checking the rule conformance ttloé verifies whether the set
of anti-degradation rules is consisterstef 6). Section 3.2.2 describes this
procedure in more detail. The compon®&ule Translator takes the anti-
degradation rules and translate them to Prolog iegieftep 7). Then, the
Controller : (i) takes these queries and the knowledge base dependencies
and metric values for each code module), and Xi&cetes the Prolog Engine to
check the conformance of anti-degradation rutesp @).

3.2.2.
Detecting degradation symptoms

TamDera tool is used for preventing architectural degraatathrough the
detection of erosion and drift symptoms. In pattcuit supports the detection of

rule violations by transforming them into Prologeges (Section 3.2.1). This

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

58

section details this process by exemplifying tlamsformation of the rules AER1
and ADR1, presented in Section 3.2.1.

Concept mapping. The tool parses all concept definitions and euvakia
their mappings. Listing 10 presents the mappingshef conceptszUIHWand
Data. As it can be noticed, we define Prolog facts (GEE989), named
conceptMapping , that are in charge of representing the connecteiwden the
source code elements and each concept. For instdrecelasd.ogin from the
packagehw/view is mapped to the conce@UIHW Then, we translate anti-
erosion and anti-drift rules to Prolog queries, shecalledanti-erosion andanti-

drift queries.
Listing 10

01: concept Mappi ng('GUIHW' class('hw/view, Command)).

02: concept Mappi ng('GUIHW',class('class(hw/view, Login')).

03: concept Mappi ng('GUIHW',class('class(hw/view, InsertComplaint")).
04: ..

05: concept Mappi ng('Data’,class('hw/data’,'IRepository")).

06: concept Mappi ng('Data’,class(‘hw/data’,'|SymptomRepository")).
07: concept Mappi ng('Data’,class(‘hw/data’,'ComplaintRepository")).
08: concept Mappi ng('Data’,class('hw/data’,'DiseaseRepository")).

09:

Checking anti-erosion rules. The generated Prolog queries use functions
that were defined in particular Prolog files in themDera tool. In a nutshell,
anti-erosion queries search for source code elenfenin the source and target
concepts (Section 3.1.3.1) through tlomceptMapping statement. Also, they
verify the presence or absence of a specific degrarydbetween the elements
from the source and target concepts. For instahisting 11 depicts the anti-
erosion query for rule AER1 (line 01). As we canic® the string 'invoke' in the
function cannot_invoke refers to the corresponding dependency type used in

the anti-erosion rule.

Listing 11 also illustrates the definition of a @ion (lines 05-08). It
traverses the knowledge base looking for source @ements from the source
and target concepts (Section 3.1.3.1). These dedgeeats are respectively named
SOURCEand TARGET Then, the function checks the existence of actale
method invocations between these code elementsillkstrative purpose, we
removed other parameters from these functions whieh used to represent

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

59

detailed information (e.g., method signatures)alyn the tool dynamically maps
the dependency types to previously-defined funsti@ag.,cannot-invoke -
line 03). As a consequence, we can extend thefsdtpendency types through

the addition of the respective Prolog functions.

Listing 11
01: GUIHW cannot-invoke Data.
02:
03: cannot_invoke('GUIHW','Data’, SOURCE, TARGET).
04:
05: cannot_invoke(C1, C2, SOURCE, TARGET) :-
06: conceptMapping(C1l, SOURCE),
07: conceptMapping(C2,TARGET),
08: method_invocation(SOURCE, TARGET).

Checking anti-drift rules. Anti-drift queries rely on the verification of
measurement results against the established bgundastraints (i.e., the metric
thresholds). They use the sanwhceptMapping for identifying code elements
from the component which is being constrained. ihgst12 illustrates the
evaluation of an anti-drift query to check the rdlBR1 (line 01), presented in
Section 3.1.1. Th&amDera tool stores the result of a particular metric éaich
source code element in a prolog file. The statemgmiperty stores the
measurement results and receives the name of &nthe enclosed concept and
the measure value. For instance, Listing 12 presstdred information about
SearchComplData's (Section 1.2) size and complexity (lines 03-05)eJé
queries also use defined functions that companedtproperties with desirable
thresholds. For instance, the functiess_than checks if all elements mapped
to GUI have less than 100 lines of code (ADR1). This fiamcts instantiated in
order to perform the anti-drift queries. As we caotice, we verify for the GUI
concept, if there is any element violating the shds establishes for lines of
code or complexity (lines 09-10). If so, they ag&rieved by the engine. Queries
for anti-drift rules refer to measures for eachecetement, and these measures are
imported byTamDera. As a result, the set of metrics available foi-dnft rules

can be extended considering the new imported nsetric

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

60

Listing 12
01: concept GUIHW {LOC <100; CC<5}
02:
03: property(
04: 'LOC',class(‘hw/view','SearchComplData'), 200. 0).
05: property('CC',class(‘hw/view','SearchComplData’),12.0).
06:

07: less_than('LOC','GUIHW',100,CLASSNAME,MEASURE).
08: less_than('CC','GUIHW'5,CLASSNAME,MEASURE).
10: less_than(PROPERTY, CONCEPT, THRESHOLDE):-

11: conceptMapping(CONCEPT, ELEMENT),

12: property(PROPERTY, ELEMENT,MEASURE),
13: MEASURE >= THRESHOLD.

3.2.3.

Checking inconsistencies among rules

The tool also checks the consistency of anti-deggran rules defined in
architectural models (Section 3.1.4.2). In facgrascan unconsciously define an
inconsistent set of rules which hinder the archited conformance checking
(EICHBERG et al, 2008; TERRA and VALENTE, 2009) rkostance, Listing 13
presents two cases of inconsistent rules. They segontradictory constraints to
the implemented architecture. In particular, tmstfrule (line 01) establishes that
elements from A must invoke services from B. Theosd rule is inconsistent
with the first one since it prohibits the accesBagervices by modules of A. In
order to address this inconsistency case, we Wa®lag query to check if there
are two anti-erosion rules that refer to the sarnacepts (A and B) and
interaction types (invoke) but one usesast relationship while the other uses a

cannot one.

As a first step, the tool takes each anti-eroside and stores its source
concepts, target concepts, the dependency tygesrfiust, cannot and only-can)
and the kind of the rule in the knowledge basetinngs13 also presents other rule
inconsistencies (lines 04-05). It establishes timy elements from concept A are
able to declare variables of type C. The last naoses that only elements of B
can declare variables of type C. Similarly to thistfcase,TamDera also detects
this case by elaborating queries that chadk-can definitions, which denote the
same target concepts (e.g., C) and dependency tgpelare), but differ from the

source concept (e.g., A and B).

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

Listing 13

01: A must-invoke B

02: A cannot-invoke B
03:

04: only A can-declare C
05: only B can-declare C

61

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

