PUC-RIo - Certificacdo Digital N° 1012623/CA

23

2
Background and related work

As systems evolve, their size and complexity insiregly grow. As a result,
the preservation of their software architectureypla crucial role in the longevity
of software systems (PERRY and WOLF, 1992; HOCHS®II&hd LINDVALL,
2005). Central to the architecture preservatiothésuse of effective techniques
that verify the conformance of the system impleragoh with respect to the
intended architecture. However, the verification tbé intended architecture
design in the source code is widely recognized esalenging task (ALDRICH,
2002; UBAYASHI et al, 2010).

This chapter presents terminologies and definitessociated with intended
architecture (Section 2.1). Section 2.2 descrilmgepts related to architectural
erosion and drift. The definition of intended atebture also includes the
selection of architectural (Section 2.3) and desmaiterns and modularity
principles (Section 2.4). This chapter also ouflimxisting work on supporting
the detection of architectural degradation sympt@¢8esction 2.5). Section 2.5.1
presents techniques that solely support the deteciti erosion symptoms. Then,
Section 2.5.2 introduces techniques aimed at stipgorthe detection of
architectural drift symptoms. We refer to the mating example (Section 1.2) in
order to illustrate the anti-erosion and drift teicfues. Finally, we overview the
limitations of current techniques to holisticallypport the detection of both forms

of architectural degradation symptoms (Section32.5.

2.1.
Basic terminology

Software architecture is concerned with the dedinitof architecture
components and their interactions as well as wighdefinition of constraints on
both of them (PERRY AND WOLF, 1992Componentsare architectural entities
which encapsulate a subset of the system's furaii@s (TAYLOR et al, 2009).
Each componennteractswith other components in the system in order weas

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

24

their exposed functionalities. They restrict acdesthat subset via interfaces that
constrainwhich functionalities are exposed to the componéMAYLOR et al,
2009).

A component of the architecture description isireal by one or more
modules in the implementation. The temmoduleis used to represent source code
elements, such as a package, an (implementatieh:-leverface or a class, which
contribute to the implementation of a coherent ohitunctionality (CLEMENTS
et al., 2002). In certain cases, a module in tltke@an also partially contribute to
the implementation of a component (EICHBERG et28I08; TAYLOR et al,
2009). This means that inner elements of a modaieeventually contribute to
the implementation of different architectural comgots.Inner module elements
refer to specific methods of a class and fields.

The intended architecturgor prescriptive architecture) is formed by the
explicit decisions made by the designers on thecteh of components, their
interactions, and constraints related to them (TARLet al, 2009). The intended
architecture decisions are mostly made prior to #ystem's construction
(GARLAN and SHAW, 1993). However, these decisioas bde revisited and
consciously changed as the system evolves (TAYLO&, 2009).

On the other hand, thenplemented architecturdescribes how the system
has been actually built (TAYLOR et al, 2009). Ioftasare projects, the
implemented architecture often does not match th&nded architecture
(TAYLOR et al, 2009). Many prescribed architectudecisions can be
undesirably violated by the actual implementatiérasystem. These violations
might be introduced not only in the first versidrtloe system implementation, but
also later through code changes during system genlu

These violations represent architectural degradaigmptoms (Section
2.2). In particular, the continuous adherence ohstmints governing the
components and their interactions in the sources ¢echard to be verified. The
main reason is the frequent lack of an one-to-oektionship between
architectural components and implementation modwdesmentioned above. In
other words, in many cases a same module realipes than one componenin

this dissertation, we are particularly concernetih\sthese constraint violations.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

25

2.2.
Architectural drift and architectural erosion

The preservation of the intended architecture enithplementation is also
related to ensuring that constraints governing aomepts and their interactions
are not violated (Section 2.1). The violations o€ls constraints on components
and their interactions respectively characterize phocess of erosion and drift
(Section 1.1). It is important to highlight that \wwdapted the definitions of these
processes presented in (MACIA et al, 2012; PERRYDAWOLF, 1992) to
establish a direct relationship between those diefits and component and their
interactions violations.

In the implementation, interactions between comptseare realized
through code dependencies between their modulel, @1 method invocations,
class inheritance, and object creation (EICHBERG a&t 2008). In this
dissertation, the terndependencyis used to refer to each of those structural
relationships between modules in the code (TERRAakt 2010). Each
dependency has an explicit direction, i.e., a svara a target.

Interaction constraintsmpose how the different components interact and
how they are organized with respect to each othptementation (PERRY AND
WOLF, 1992). As an example, the GUI component frtra HealthWatcher
architecture (Figure 1) is not allowed to interath the Data component. On the
other hand,component constraintémpose expected structural properties on
modules realizing a component to the degree desiyethe architect (PERRY
AND WOLF, 1992). For instance, the GUI componenesented in the
motivating example has constraints establishing bandaries to GUI modules.

The verification of interaction and component coaists is the source code
are challenging tasks (SANGAL et al, 2005; UBAYAS#ilal, 2010). The reason
for this difficulty is manifold. First, the architture design is comprised of a wide
range of design decisions, such as the adoptedfsatchitectural patterns and
design patterns. Each single pattern establishgsrae constraints that are
relevant to the intended architecture (Section. B8gond, the architecture design
also involves the selection of modularity princgpl&ection 2.4) to be realized by
specific (if not all) components of a software atetture. Each principle can also
entail more than one constraint. Third, the violatiof each single constraint

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

26

represents a symptom of the architectural degm@daprocess. Even the
identification of a single component constraint l&imn is not trivial as the
implementation of a single component is often gcatt through multiple modules
(Section 2.1). Fourth and more importantly, themeegal constraints are likely to
be repetitive and inter-related (Section 1.2.2)em lthe approach to specify these
constraints should be targeted at reducing ardkiteffort.

There are many complementary factors in mainstreaitware projects that
contribute to the implemented architecture to deplaom the intended
architecture, thereby leading to drift and erosgmptoms. They range from: (i)
deadline pressure and programmers that are unabarg intended architecture
decisions (TERRA and VALENTE, 2009), to (i) out-date architectural
documentation (HOCHSTEIN and LINDVALL, 2005; MOHA al, 2010) and
lack of proper tool support for verifying the adéece of the source code to the
intended architecture (MACIA et al, 2012).

2.3.
Architectural and design patterns

When defining the prescribed software architectarany decisions need to
be made. The selection of architectural patteridSBHMANN et al, 2007) and
design patterns (GAMMA et al, 1995) are basic stepshis process as they
provide complementary reusable solutions to architally relevant problems. A
pattern is a general reusable solution to a raagyiproblem when structuring a
software system (GAMMA et al, 1995).

Architectural patterns. Software architects often use architectural paste
to guide the architecture building and understamdifrchitectural patterns
(BUSCHMANN et al, 2007) are specifically targetedaaldressing architectural
level problems. Each architectural pattern solvepr@lem by prescribing a
specific architecture solution in terms of a setofmponents and interactions as
well as a set of constraints on how they can bd (SEEMENTS et al., 2010).

Therefore, each pattern entails various architatiwwnstraints to be enforced in

2 In this dissertation, for simplification purposee use the terms architectural patterns
(BUSCHMANN et al, 2007) and architectural styles LEMENTS et al., 2010)

interchangeably.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

27

the source code. More than one architectural pati@n be used in the prescribed
architecture of a software system.

Model-View-Controller and Layers are well-known axaes of
architectural patterns (BUSCHMANN et al, 2007). Tleyer patternstructures
applications into a group of components, where @dthem is realized aslayer
that provides a cohesive set of services (BUSCHMA®&INal, 2007). Layers
interact with each other according to a strict ardgrelation (CLEMENTS et al.,
2010). More specifically, the modules realizingagdr at a specific level J, are
allowed to interact with the layer at the level 1 by the use its public services.
Hence, interfaces from the layer at the level Jprdvide services used by the
layer at the level J (BUSCHMANN et al, 2007). Or thther hand, thiodel-
View-Controllerpattern decomposes an interactive applicationtimiee types of
components. TheModel component contains the core functionality and
application data. Thé&/iew component displays information and realizes the
graphical user interface, while ti@ntroller component is in charge of handling
user inputs.Data changes are consistently propddiae model to user interface
via the controller. As a consequence, implemenatimdules realizing the view
component cannot directly access services provigettie modules implementing
the model component.

Design patterns. Design patterns refer to problems at the detailesigth
level and provide reusable common design structimeh involves participating
modules and their interactions. Each design patieralso formed by a set of
constraints governing these modules and interaxtiBnen though design patterns
are intended to address problems emerging at ttadletb design stage, software
architects might want to explicitly select them.eirhgoal is to structure certain
architectural components in their intended architec description. In this
dissertation, we refer to these casearakitecturally-relevant design patternis
fact, it is often the case that architects realigiont that they should enforce, for
instance, that modules of certain components eatiertain design pattern
constraints.

Facade and Chain of Responsibility are popular gkasnof design patterns
(GAMMA et al., 1995) that are employed to structdhe intended software
architecture (EICHBERG et al, 2008; UBAYASHI et &010). The pattern
Facadeis often used in system architectures that arerdposed in subsystems

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

28

(GAMMA et al., 1995), where all the interfaces o$absystem should be unified
in a singular interface, the so-called facade. @bal is to provide a higher-level
interface for the subsystem to make it easier & lislso intends to decouple the
subsystem from clients and other subsystems. Tditemp is also usually referred
in intended architecture descriptions following tagers pattern in order to define
that each layer should have only a single entrptpdis a consequence, the access
to any service provided by the layer is made thinothg facade. In addition, only
the facade is allowed to access the internal sesvicealized by the
implementation modules of a layer.

On the other hand, the patte@hain of ResponsibilitfGAMMA et al,
1995) aims to avoid coupling between a sender & gaest (i.e., client) and its
receivers by allowing more than one module to hartle request. Thus, the
receivers compose a chain where the request passean appropriate receiver
handles it. Thus, the pattern constrains how thplamentation of services is
distributed in a chain of modules named handlelng pattern also establishes an
interface which must be implemented by all handlges, concrete handlers).
This interface provides services which are expdeecbmponent clients. Hence,
clients must access the interface to send theueslq. In other words, they are

not allowed to directly access services provideddncrete handlers.

2.4,
Modularity principles

Modularity is concerned with the logical decomposit of a software
system into components (BUSCHMANN et al, 2007)other words, modularity
in architecture design refers to a logical pamitny of the software architecture
that allows it to become manageable for the purpoeimplementation,
maintenance and evolution (BUSCHMANN et al, 2007¢entral to
modularization is deciding how to decompose the mmments that form the
logical structure of an application.

In order to achieve a modular architecture, a numdie modularity
principles are selected and realized by the ptesdrarchitecture. For instance, a
basic modularity principle is to minimize the swém of the coupling of each
system component (GARCIA et al, 2009; MARTIN, 2Q0) addition, different

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

29

or unrelated responsibilities should be separateoh feach other in a software
architecture decomposition. These responsibilgiesuld be attached to different
components (PERRY AND WOLF, 1992; GARLAN AND SHAWR93).

A complementary principle is the single respongipprinciple (MARTIN,
2002), which determines that each component shioelldohesive, i.e., being in
charge of addressing a single responsibility. Themt cohesive refers to
components that have a well-defined purpose. Thiemof component cohesion
is closely related to the narrow interface prineipfhe latter states that architects
should hide the complexity of each component belasindabstraction that has a
simple interface; the interface indicates how tlenents interact with the entire
system (PERRY AND WOLF, 1992; BUSCHMANN et al, 2007

The solutions documented by many architectural éesign patterns are
also driven by the application of one or more madty principles. For instance,
the layers pattern is intended to reduce the cogpif the layer components by
ensuring that each of them only interacts with ddgcent layers. Therefore, by
reusing existing patterns in the appropriate cdstethe architect is likely to
promote the application of the modularity princglélowever, the mere choice of
architectural pattern does not prevent possiblepsgms of architectural drifts
(Section 3.1.5). For example, two specific layeighhbecome strongly coupled.
The strong coupling of modules realizing two layeright represent, for instance,
that either: (i) one of the layers is realizing esponsibility that should be
implemented by the other layer, or (ii) these tagers should be merged in a

single component.

2.5.
Related work

The prescribed architecture consists of a set ofpoment and interaction
constraints (Section 2.1). Some of these consgrairg defined in the architectural
and design patterns (Section 2.3) being adoptedherOtonstraints in the
prescribed architecture are also derived from tl@scious selection and
application of modularity principles by softwarechitects (Section 2.4). The
adherence of constraints governing the componardstlzeir interactions in the
source code are hard to be verified and enforcedti@® 2.2). The violation of

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

30

component and interaction constraints represemspt®ms of architectural drift
and erosion, respectively (Section 2.2).

Over the last decades, several anti-degradatiohnigees have been
proposed to support the detection of architectdegiradation symptoms. Each of
these techniques usually relies on the specificatib anti-degradation rules to
constraining either properties of individual comeots or constraining their
interactions. However, to the best of our knowledgere is no technique whose
main purpose is to simultaneously support the dieteof both erosion and drift
symptoms. Each technique is limited to only dinedlpport the detection of
either erosion symptoms (Section 2.5.1) or drifmpjoms (Section 2.5.2).
However, some techniqgues can be adapted in ordgratbally support the

detection of both symptoms (Section 2.5.3).

2.5.1.
Anti-erosion techniques

Techniques for detecting erosion symptoms provideclranisms to
explicitly define the intended architecture of ateyn through the description of
adopted rules. These rules are limited to spedfitime interaction constraints
(Section 2.1) and are callednti-erosion rulesin this dissertation. These
techniqgues often provide automated support to chdéckthe system's
implementation is in conformance to the intendexhigecture.

They often rely on static analysis of the impleneeinarchitecture to detect
erosion symptoms (TERRA and VALENTE, 2009; UBAYASIdt al, 2010).
These symptoms are distinguished divergence and absence violations
(KNODEL and POPESCU, 2007). divergenceviolation takes place when the
dependency constraints specified in the intendeklitecture are not respected in
the system implementation. On the other hand,absenceoccurs when the
implemented architecture does not establish anctepelependency prescribed in
the intended architecture. In the following, we gam@t the representative anti-
erosion techniques: Lattix's Dependency Managerd T®SANGAL et al, 2005),
the Vespucci (EICHBERG et al, 2008) and Depende@onstraint Language
(TERRA and VALENTE, 2009). Our criterion was toesgltechniques which are
instrumentally supported by industry tools and tegues that encompass a wide

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

31

scope of different abstractions. In particular, teehniques involve abstractions
range from pseudo-natural languages to architechadels. Section 2.5.1.4 also
describes other anti-erosion techniques.

2.5.1.1.
Lattix's Dependency Manager tool

Lattix’'s dependency manager tool (LDM) automatigalextracts a
dependency structure matrix (DSM) (SULLIVAN et 2001) from source code to
represent module dependencies for a single prég&NGAL et al, 2005). The
goal is to enable architects to detect unexpecegbrlencies between modules
that violate constraints on component interactions.

A DSM is a square matrix where rows and columnsesgnt modules. A
cell is marked when there is a dependency betweemnespective modules of the
selected row and column (SULLIVAN et al, 2001). Fostance, module A (#1)
has dependencies with module B (third column) amdiute D (forth column).
The number in the cell indicates the strength (eigmber of method invocations)

of the dependency.

$root PR SC T A
!_E Maodule & A1 | 6|9
i_l‘:rj Module B 2 18
| [+ Module € 3|7 B
r&.: Maidule & 4

Figure 2. Dependency structure matrix

LDM also provides graphic diagrams to exhibit comgats and their
modules (SANGAL et al, 2005). Users are able toaldsth architectural
components by grouping modules presented in the DS allows architects
to visualize the DSM and establish rules for detgconly divergence violations
(SANGAL et al, 2005). In particular, it provideslgriwo different dependency
relationshipscan-useandcannot-useand, hence, architects can indicate whether
a component can or cannot interact on another Omerefore, architects can use
LDM for checking whether GUI components acciderttgess Data components
in HealthWatcher architecture (Section 1.2). HoweueM does not enable

architects to detect absence violations.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

32

2.5.1.2.
Vespucci

Vespucci enables reasoning about anti-erosion rakeshe levels of
architecture design and implementation (EICHBER@IgR2008). Vespucci uses
declarative queries to group source code elememteedensembles Architects
can define an ensemble to represent each archiaécomponent. An ensemble
groups modules and inner module elements thattatally belong together (e.qg.,
same role defined by an architecturally-relevarsigie pattern) and share similar
anti-erosion rules. For instance, architects mdindean ensemble to encompass
facades that provide model services to controleEments.

In addition, Vespucci also introduces a graphicathtion based on arrows
and boxes for specifying expected and non-exped®ependencies between
ensembles (EICHBERG et al, 2008). As an examplecwate three ensembles
GUI, Business andData to group code elements from each component of the
HealthWatcher architecture (Figure 3). Figure 3 icisp anti-erosion rules
governing the three ensembles. The architectureifgiaion establishes that all
direct access fronGUI to Data components and vice-versa are interaction
violations. In Vespucci, interaction violations aepresented by the notation "!"
(Figure 3).

&3 GUl é.—-""“' " business e Y & Data
_ -
........... ol
._____ﬁ__..a--

Figure 3. Modeling anti-erosion rules in Vespucci

Vespucci uses the Bytecode Analysis Toolkit (BABIGHBERG et al,
2008) and Prolog (CERI et al, 1989) for supportihg static conformance
checking of anti-erosion rules in the system immatation. It uses BAT to
generate the system prolog-based representationifsalava bytecode. The anti-
erosion rules defined in the graphical specificatoe translated to prolog queries
to support the checking of architectural violations

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

33

2.5.1.3.
Dependence Constraint Language

Dependence constraint language (DCL) is a domadeisp language that
allows architects to constrain component dependsrini object-oriented systems
(TERRA AND VALENTE, 2009). It supports the detecti@f divergence and
absence violations. DCL uses imperative pseudoralaitatements to establish
anti-erosion rules. It composes components by theuping modules. In
particular, architects are able to select a sepamkages or classes filtered by
common name expressions such as default suffixeéprafixes.

Listing 1 depicts the specification of three amtiston rules in DCL. At
first, we define components that enclose the reasgec&UI and Data code
elements. As we can notice, DCL follows a differéatminology from ours
(Section 2.1). DCL uses the keywarmbdule to refer to architectural components.
As an example of anti-erosion rule, the statenm@&udt cannot-invoke Data '
establishes that argUl element is not allowed to invoke any service pledi by

anyData element.
Listing 1

module GUI: healthwatcher.view.*
module Data: healthwatcher.data.*

GUI cannot-invoke Data

2.5.1.4.
Other anti-erosion techniques

Marwan and Aldrich developed SCHOLIA, an embeddadguage for
documenting the system's architecture in the sowad#e and checking its
conformance with a prescribed architecture (MARWANI ALDRICH, 2009).
Morgan defined a domain-specific language to speaiid check anti-erosion
rules in the system implementation (MORGAN, 200Thayashi et al. presented
Archface, a programming-level interface to reprédée intended architectural
design and detect erosion symptoms in the sysiemplementation (UBAYASHI
et al, 2010). Oliveira presented the PREVIA applnoabich provides features for
defining components and expected interactions enintended architecture using
UML class and component diagrams (OLIVEIRA, 201d prevents architectural

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

34

erosion by evaluating the conformance between yees1 implementation with
respect to the intended architecture.

2.5.2.
Anti-drift techniques

Anti-drift techniques are aimed at supporting tretedtion of component
constraint violations in order to reveal symptomsuehitectural drift (MARA et
al, 2011; MOHA et al, 2010; MARINESCU et al, 2005).this case, developers
specify the intended architecture of a system thin@anti-drift rules These rules
are often metrics-based strategies that quantifycttral properties of modules
realizing software components (MARINESCU et al, 200LANZA and
MARINESCU, 2006). To be more exact, anti-drift tejues usually rely on
detection strategieBMARINESCU, 2004) which are based on expressioms th
combine logic operators and static code metrics.he Tgoal is detecting
architecturally-relevant anomalous modules in thplementation (MACIA et al,
2012). In fact, anomalous modules in the implententaare often the source of
relevant architectural drift symptoms (GARCIA et 2009; MACIA et al, 2012).
Hence, the identification of such anomalous moduhes reveal violations of
certain modularity principles (Section 2.4) in teeurce code (MACIA et al,
2012). They represent the violation of intended st@ints for one or more
individual components.

Marinescu et al. presented iPlasma, a tool thakesebn strategies
(MARINESCU, 2004) to detect anomalous code elem@#&RINESCU et al,
2005). Moha et al. presented a methodology to tem@amalous code structures
by combining metric-based evaluations to structypabperties of modules
(MOHA et al, 2010). Mara et al. proposed Hist-Ingpevhich enables the
definition and application of conventional detentistrategies (MARA et al,
2011). In particular, we selected Hist-Inspecteggmesentative tool to illustrate the
anti-drift techniques.

Hist-Inspect. It declares each anti-drift rule as a detectiorategy to
identify occurrences of an implementation moduleraaly. The tool supports
conventional metrics, such as coupling (CBO) anddiof code (LOC). The anti-
drift rules are defined in XML format as illustrdten Listing 2. This listing

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

35

contains a strategy for detecting the GUI clas$ed tmay implement more
responsibilities than desired (Section 1.2). Itimked an anomaly named
unexpectedComplexGUI that may be manifesting in classes (lines 07-08).
also instantiates a strategy to detect this anoifialys 03-05). This strategy (line
05) checks all system classes (i.e., includingdhdasses that do not realize the
GUI component) and retrieves the ones who haveadtQfore lines of code or
whose cyclomatic complexity is greater or equalsbtoThese metrics were
selected for illustrative purpose, and other metdould be used for detecting
similar or different drift symptoms.

The strategy may retrieve classes neglecting thesbut that are not part of
the GUI component. This negative aspect of Hist-Inspecls® applicable to
other existing anti-drift techniques. As a conseugpee architects have to spend
resources in the manual identification of anomalBul classes from those which
are retrieved by the tool. This situation occurgegithe inability of many anti-
drift techniques for exploiting component propestie the source code (MACIA
et al, 2012).

Listing 2

01: <?xml version="1.0" enconding="UTF-8"?>
02: <rule-catalog>

03: <rule id="sampleRule"
04: anomaly="unexpectedComplexGUI"
05: expression="LOC >= 100 || CC >=5"/>

06: </rule-catalog>

07: <anonaly-catalog>

08: <anomaly id="unexpectedComplexGUI">
09: applyTo="class"/>

10: </anomaly-catalog>

To the best of our knowledge, state-of-art techesgudor preventing
architectural drift are limited to only identifyirgymptoms of architectural drift in
system's implemented architecture. Consequentlyeldpers can introduce
unacceptable interactions (i.e., erosion symptdme$yveen components (Section
1.2). Moreover, these techniques usually only supihe definition of anti-drift
rules to all modules of a program as a whole. leptwords, they often do not
support the specification of rules to particularmpmnents, taking into
consideration their properties and responsibilitiéscording to (MACIA et al,
2012), this inability impact the use of such tequeis to detect relevant
anomalous modules which are impairing the architectmodularity. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

36

these techniques support anti-drift rules speciffed a particular system.
Therefore, they cannot be reused in other systemas though few adjustments
are usually required to detect similar architedtareomalies in different contexts
(MOHA et al, 2010) (Section 1.2).

2.5.3.
Techniques for detecting both degradation symptoms

As far as we know, a few techniques can be adaptexder to partially
support the simultaneous detection of erosion aiftl s¥ymptoms (PMD, 2012;
SEMMLE CODE, 2012). One of them is a recently-depeld tool, called
Semmle Code (SEMMLE CODE, 2012), which is based@ource code query
language (VERBAERE et al, 2008). This tool allowshétects to elaborate code
queries taking into consideration several propgriesource code elements such
as method invocations, lines of codes and depthnloéritance tree. Hence,
architects can define queries to check whether mhesdthat are relevant to
architecture (i.e., those which realize a componegidlate any component or
interaction constraints.

Listing 3 illustrates code queries that check tbefarmance of an anti-
erosion rule (lines 01-11) and anti-drift one (8n&3-20) in the HealthWatcher
architecture (Section 1.2). The former checkhéré¢ is a class that realizes the
Data component and has any method invoked by a GUI meodine latter aims
to detect anomalous GUI modules. Such modules mayifast drift symptoms.
More specifically, it checks if a class from theckageGUI has 100 or more lines
of code and whose cyclomatic complexity value isatgr or equals to 5. In
particular, GUI modules should just delegate refjuesthe Controller and,

thereby, they use to have few lines of code.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

PUC-RIo - Certificacdo Digital N° 1012623/CA

37

Listing 3

01: //R1: gui classes cannot directly access data ¢ lasses
02: from Class guiClass , Class dataClass, Method ¢ lassMethod
03: where (

04 guiClass.getPackage ().getName ().

05: matches("%healthwatcher.gui%") and

06: dataClass.getPackage ().getName ().

07: matches("%healthwatcher.data%")

08:)

09: and guiClass.getACallable().calls(classMethod)

10: and dataClass = classMethod. getDeclaringType ()

11: select guiClass, dataClass, classMethod

12:

13: //IR2: GUI classes are expected to have low comp lexity
14: from Package p, Class ¢, MetricCallable m

15: where p.getName().matches("%healthwatcher.gui%")

16: and c.getPackage() = p
17: and m. getDeclaringType () =c¢

18: and c.getLocation().getNumberOfLinesOfCode() >= 100
19: and c.getCyclomaticComplexity()>= 5
20: select c, c.getlLocation().getNumberOfLinesOfCod e()

We highlight two issues in Listing 3 regarding thetection of architectural
erosion and drift symptoms. First, each query explispecifies the source code
elements whose properties are being checked insteagecifying architectural
components. For instance, the second rule (line€0)3checks the size and
complexity of classes from the packalyealthwatcher.gui (line 15). All
queries that refer to the GUI component (e.g., Rdes 01-11) replicate the same
expression (line 15) to select the modules reajizine component. Hence,
whenever the architectural component changes, edited queries require
modifications. As an example, rename operationso inhe package
healthwatcher.gui require modifications on all rules referring to tEdJI
component (e.g., R1 and R2 from Listing 3). Theosdcissue is that code query
languages often relies on syntaxes similar to SQIRQPASHKO and
BURLESON, 2007). This situation can restrict thee uf these techniques to
architects who have limited familiarity with qudanguages.

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA

