
 

 

23

 

2 
Background and related work 

As systems evolve, their size and complexity increasingly grow. As a result, 

the preservation of their software architectures plays a crucial role in the longevity 

of software systems (PERRY and WOLF, 1992; HOCHSTEIN and LINDVALL, 

2005). Central to the architecture preservation is the use of effective techniques 

that verify the conformance of the system implementation with respect to the 

intended architecture. However, the verification of the intended architecture 

design in the source code is widely recognized as a challenging task (ALDRICH, 

2002; UBAYASHI et al, 2010). 

This chapter presents terminologies and definitions associated with intended 

architecture (Section 2.1). Section 2.2 describes concepts related to architectural 

erosion and drift. The definition of intended architecture also includes the 

selection of architectural (Section 2.3) and design patterns and modularity 

principles (Section 2.4). This chapter also outlines existing work on supporting 

the detection of architectural degradation symptoms (Section 2.5). Section 2.5.1 

presents techniques that solely support the detection of erosion symptoms. Then, 

Section 2.5.2 introduces techniques aimed at supporting the detection of 

architectural drift symptoms. We refer to the motivating example (Section 1.2) in 

order to illustrate the anti-erosion and drift techniques. Finally, we overview the 

limitations of current techniques to holistically support the detection of both forms 

of architectural degradation symptoms (Section 2.5.3). 

 

2.1. 
Basic terminology 

Software architecture is concerned with the definition of architecture 

components and their interactions as well as with the definition of constraints on 

both of them (PERRY AND WOLF, 1992). Components are architectural entities 

which encapsulate a subset of the system's functionalities (TAYLOR et al, 2009). 

Each component interacts with other components in the system in order to access 

DBD
PUC-Rio - Certificação Digital Nº 1012623/CA



 

 

24

 

their exposed functionalities. They restrict access to that subset via interfaces that 

constrain which functionalities are exposed to the components (TAYLOR et al, 

2009). 

A component of the architecture description is realized by one or more 

modules in the implementation. The term module is used to represent source code 

elements, such as a package, an (implementation-level) interface or a class, which 

contribute to the implementation of a coherent unit of functionality (CLEMENTS 

et al., 2002). In certain cases, a module in the code can also partially contribute to 

the implementation of a component (EICHBERG et al, 2008; TAYLOR et al, 

2009). This means that inner elements of a module can eventually contribute to 

the implementation of different architectural components. Inner module elements 

refer to specific methods of a class and fields. 

The intended architecture (or prescriptive architecture) is formed by the 

explicit decisions made by the designers on the selection of components, their 

interactions, and constraints related to them (TAYLOR et al, 2009). The intended 

architecture decisions are mostly made prior to the system's construction 

(GARLAN and SHAW, 1993). However, these decisions can be revisited and 

consciously changed as the system evolves (TAYLOR et al, 2009).  

On the other hand, the implemented architecture describes how the system 

has been actually built (TAYLOR et al, 2009).  In software projects, the 

implemented architecture often does not match the intended architecture 

(TAYLOR et al, 2009). Many prescribed architecture decisions can be 

undesirably violated by the actual implementation of a system. These violations 

might be introduced not only in the first version of the system implementation, but 

also later through code changes during system evolution. 

These violations represent architectural degradation symptoms (Section 

2.2). In particular, the continuous adherence of constraints governing the 

components and their interactions in the source code is hard to be verified. The 

main reason is the frequent lack of an one-to-one relationship between 

architectural components and implementation modules, as mentioned above. In 

other words, in many cases a same module realizes more than one component.  In 

this dissertation, we are particularly concerned with these constraint violations. 
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2.2. 
Architectural drift and architectural erosion 

The preservation of the intended architecture in the implementation is also 

related to ensuring that constraints governing components and their interactions 

are not violated (Section 2.1). The violations of such constraints on components 

and their interactions respectively characterize the process of erosion and drift 

(Section 1.1). It is important to highlight that we adapted the definitions of these 

processes presented in (MACIA et al, 2012; PERRY AND WOLF, 1992) to 

establish a direct relationship between those definitions and component and their 

interactions violations.  

In the implementation, interactions between components are realized 

through code dependencies between their modules, such as method invocations, 

class inheritance, and object creation (EICHBERG et al, 2008). In this 

dissertation, the term dependency is used to refer to each of those structural 

relationships between modules in the code (TERRA et al, 2010). Each 

dependency has an explicit direction, i.e., a source and a target. 

Interaction constraints impose how the different components interact and 

how they are organized with respect to each other implementation (PERRY AND 

WOLF, 1992). As an example, the GUI component from the HealthWatcher 

architecture (Figure 1) is not allowed to interact with the Data component. On the 

other hand, component constraints impose expected structural properties on 

modules realizing a component to the degree desired by the architect (PERRY 

AND WOLF, 1992). For instance, the GUI component presented in the 

motivating example has constraints establishing size boundaries to GUI modules. 

The verification of interaction and component constraints is the source code 

are challenging tasks (SANGAL et al, 2005; UBAYASHI et al, 2010). The reason 

for this difficulty is manifold. First, the architecture design is comprised of a wide 

range of design decisions, such as the adopted set of architectural patterns and 

design patterns. Each single pattern establishes several constraints that are 

relevant to the intended architecture (Section 2.3). Second, the architecture design 

also involves the selection of modularity principles (Section 2.4) to be realized by 

specific (if not all) components of a software architecture. Each principle can also 

entail more than one constraint. Third, the violation of each single constraint 
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represents a symptom of the architectural degradation process. Even the 

identification of a single component constraint violation is not trivial as the 

implementation of a single component is often scattered through multiple modules 

(Section 2.1). Fourth and more importantly, these several constraints are likely to 

be repetitive and inter-related (Section 1.2.2). Then, the approach to specify these 

constraints should be targeted at reducing architects’ effort. 

There are many complementary factors in mainstream software projects that 

contribute to the implemented architecture to depart from the intended 

architecture, thereby leading to drift and erosion symptoms. They range from: (i) 

deadline pressure and programmers that are unaware about intended architecture 

decisions (TERRA and VALENTE, 2009), to (ii) out-of-date architectural 

documentation (HOCHSTEIN and LINDVALL, 2005; MOHA et al, 2010) and 

lack of proper tool support for verifying the adherence of the source code to the 

intended architecture (MACIA et al, 2012). 

 

2.3. 
Architectural and design patterns 

When defining the prescribed software architecture, many decisions need to 

be made. The selection of architectural patterns (BUSCHMANN et al, 2007) and 

design patterns (GAMMA et al, 1995) are basic steps in this process as they 

provide complementary reusable solutions to architecturally relevant problems. A 

pattern is a general reusable solution to a recurring problem when structuring a 

software system (GAMMA et al, 1995).  

Architectural patterns. Software architects often use architectural patterns 

to guide the architecture building and understanding. Architectural patterns2 

(BUSCHMANN et al, 2007) are specifically targeted at addressing architectural 

level problems. Each architectural pattern solves a problem by prescribing a 

specific architecture solution in terms of a set of components and interactions as 

well as a set of constraints on how they can be used (CLEMENTS et al., 2010). 

Therefore, each pattern entails various architectural constraints to be enforced in 

                                                 

2 In this dissertation, for simplification purpose, we use the terms architectural patterns 

(BUSCHMANN et al, 2007) and architectural styles (CLEMENTS et al., 2010) 

interchangeably. 
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the source code. More than one architectural pattern can be used in the prescribed 

architecture of a software system. 

Model-View-Controller and Layers are well-known examples of 

architectural patterns (BUSCHMANN et al, 2007). The Layer pattern structures 

applications into a group of components, where each of them is realized as a layer 

that provides a cohesive set of services (BUSCHMANN et al, 2007). Layers 

interact with each other according to a strict ordering relation (CLEMENTS et al., 

2010). More specifically, the modules realizing a layer at a specific level J, are 

allowed to interact with the layer at the level J - 1 by the use its public services. 

Hence, interfaces from the layer at the level J - 1 provide services used by the 

layer at the level J (BUSCHMANN et al, 2007). On the other hand, the Model-

View-Controller pattern decomposes an interactive application into three types of 

components. The Model component contains the core functionality  and 

application data. The View component displays information and realizes the 

graphical user interface, while the Controller component is in charge of handling 

user inputs.Data changes are consistently propagated from model to user interface 

via the controller. As a consequence, implementation modules realizing the view 

component cannot directly access services provided by the modules implementing 

the model component. 

Design patterns. Design patterns refer to problems at the detailed design 

level and provide reusable common design structure which involves participating 

modules and their interactions. Each design pattern is also formed by a set of 

constraints governing these modules and interactions. Even though design patterns 

are intended to address problems emerging at the detailed design stage, software 

architects might want to explicitly select them. Their goal is to structure certain 

architectural components in their intended architecture description. In this 

dissertation, we refer to these cases as architecturally-relevant design patterns. In 

fact, it is often the case that architects realize upfront that they should enforce, for 

instance, that modules of certain components realize certain design pattern 

constraints.  

Façade and Chain of Responsibility are popular examples of design patterns 

(GAMMA et al., 1995) that are employed to structure the intended software 

architecture (EICHBERG et al, 2008; UBAYASHI et al, 2010). The pattern 

Façade is often used in system architectures that are decomposed in subsystems 
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(GAMMA et al., 1995), where all the interfaces of a subsystem should be unified 

in a singular interface, the so-called façade. The goal is to provide a higher-level 

interface for the subsystem to make it easier to use. It also intends to decouple the 

subsystem from clients and other subsystems. This pattern is also usually referred 

in intended architecture descriptions following the layers pattern in order to define 

that each layer should have only a single entry point. As a consequence, the access 

to any service provided by the layer is made through the façade. In addition, only 

the façade is allowed to access the internal services realized by the 

implementation modules of a layer. 

On the other hand, the pattern Chain of Responsibility (GAMMA et al, 

1995) aims to avoid coupling between a sender of a request (i.e., client) and its 

receivers by allowing more than one module to handle the request. Thus, the 

receivers compose a chain where the request passes until an appropriate receiver 

handles it. Thus, the pattern constrains how the implementation of services is 

distributed in a chain of modules named handlers. The pattern also establishes an 

interface which must be implemented by all handlers (i.e., concrete handlers). 

This interface provides services which are exposed to component clients. Hence, 

clients must access the interface to send their requests. In other words, they are 

not allowed to directly access services provided by concrete handlers.  

 

2.4. 
Modularity principles 

Modularity is concerned with the logical decomposition of a software 

system into components (BUSCHMANN et al, 2007). In other words, modularity 

in architecture design refers to a logical partitioning of the software architecture 

that allows it to become manageable for the purpose of implementation, 

maintenance and evolution (BUSCHMANN et al, 2007). Central to 

modularization is deciding how to decompose the components that form the 

logical structure of an application.  

In order to achieve a modular architecture, a number of modularity 

principles are selected and realized by the prescribed architecture. For instance, a 

basic modularity principle is to minimize the strength of the coupling of each 

system component (GARCIA et al, 2009; MARTIN, 2002). In addition, different 
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or unrelated responsibilities should be separated from each other in a software 

architecture decomposition. These responsibilities should be attached to different 

components (PERRY AND WOLF, 1992; GARLAN AND SHAW, 1993).  

A complementary principle is the single responsibility principle (MARTIN, 

2002), which determines that each component should be cohesive, i.e., being in 

charge of addressing a single responsibility. The term cohesive refers to 

components that have a well-defined purpose. The notion of component cohesion 

is closely related to the narrow interface principle. The latter states that architects 

should hide the complexity of each component behind an abstraction that has a 

simple interface; the interface indicates how the elements interact with the entire 

system (PERRY AND WOLF, 1992; BUSCHMANN et al, 2007).  

The solutions documented by many architectural and design patterns are 

also driven by the application of one or more modularity principles. For instance, 

the layers pattern is intended to reduce the coupling of the layer components by 

ensuring that each of them only interacts with the adjacent layers. Therefore, by 

reusing existing patterns in the appropriate contexts, the architect is likely to 

promote the application of the modularity principles. However, the mere choice of 

architectural pattern does not prevent possible symptoms of architectural drifts 

(Section 3.1.5). For example, two specific layers might become strongly coupled. 

The strong coupling of modules realizing two layers might represent, for instance, 

that either: (i) one of the layers is realizing a responsibility that should be 

implemented by the other layer, or (ii) these two layers should be merged in a 

single component.  

 

2.5. 
Related work 

The prescribed architecture consists of a set of component and interaction 

constraints (Section 2.1). Some of these constraints are defined in the architectural 

and design patterns (Section 2.3) being adopted. Other constraints in the 

prescribed architecture are also derived from the conscious selection and 

application of modularity principles by software architects (Section 2.4). The 

adherence of constraints governing the components and their interactions in the 

source code are hard to be verified and enforced (Section 2.2). The violation of 
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component and interaction constraints represents symptoms of architectural drift 

and erosion, respectively (Section 2.2). 

Over the last decades, several anti-degradation techniques have been 

proposed to support the detection of architectural degradation symptoms. Each of 

these techniques usually relies on the specification of anti-degradation rules to 

constraining either properties of individual components or constraining their 

interactions. However, to the best of our knowledge, there is no technique whose 

main purpose is to simultaneously support the detection of both erosion and drift 

symptoms. Each technique is limited to only directly support the detection of 

either erosion symptoms (Section 2.5.1) or drift symptoms (Section 2.5.2). 

However, some techniques can be adapted in order to partially support the 

detection of both symptoms (Section 2.5.3).  

 

2.5.1. 
Anti-erosion techniques  

Techniques for detecting erosion symptoms provide mechanisms to 

explicitly define the intended architecture of a system through the description of 

adopted rules. These rules are limited to specifying the interaction constraints 

(Section 2.1) and are called anti-erosion rules in this dissertation.  These 

techniques often provide automated support to check if the system's 

implementation is in conformance to the intended architecture.  

They often rely on static analysis of the implemented architecture to detect 

erosion symptoms (TERRA and VALENTE, 2009; UBAYASHI et al, 2010). 

These symptoms are distinguished in divergence and absence violations 

(KNODEL and POPESCU, 2007). A divergence violation takes place when the 

dependency constraints specified in the intended architecture are not respected in 

the system implementation. On the other hand, an absence occurs when the 

implemented architecture does not establish an expected dependency prescribed in 

the intended architecture. In the following, we present the representative anti-

erosion techniques: Lattix's Dependency Manager Tool (SANGAL et al, 2005), 

the Vespucci (EICHBERG et al, 2008) and Dependency Constraint Language 

(TERRA and VALENTE, 2009). Our criterion was to select techniques which are 

instrumentally supported by industry tools and techniques that encompass a wide 
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scope of different abstractions. In particular, the techniques involve abstractions 

range from pseudo-natural languages to architecture models. Section 2.5.1.4 also 

describes other anti-erosion techniques. 

2.5.1.1. 
Lattix's Dependency Manager tool  

Lattix’s dependency manager tool (LDM) automatically extracts a 

dependency structure matrix (DSM) (SULLIVAN et al, 2001) from source code to 

represent module dependencies for a single project (SANGAL et al, 2005). The 

goal is to enable architects to detect unexpected dependencies between modules 

that violate constraints on component interactions.  

A DSM is a square matrix where rows and columns represent modules. A 

cell is marked when there is a dependency between the respective modules of the 

selected row and column (SULLIVAN et al, 2001). For instance, module A (#1) 

has dependencies with module B (third column) and module D (forth column). 

The number in the cell indicates the strength (e.g., number of method invocations) 

of the dependency. 

  

Figure 2. Dependency structure matrix 

LDM also provides graphic diagrams to exhibit components and their 

modules (SANGAL et al, 2005). Users are able to establish architectural 

components by grouping modules presented in the DSM. LDM allows architects 

to visualize the DSM and establish rules for detecting only divergence violations 

(SANGAL et al, 2005). In particular, it provides only two different dependency 

relationships: can-use and cannot-use and, hence, architects can indicate whether 

a component can or cannot interact on another one. Therefore, architects can use 

LDM for checking whether GUI components accidently access Data components 

in HealthWatcher architecture (Section 1.2). However, LDM does not enable 

architects to detect absence violations.  
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2.5.1.2. 
Vespucci  

Vespucci enables reasoning about anti-erosion rules at the levels of 

architecture design and implementation (EICHBERG et al, 2008). Vespucci uses 

declarative queries to group source code elements named ensembles.  Architects 

can define an ensemble to represent each architectural component. An ensemble 

groups modules and inner module elements that structurally belong together (e.g., 

same role defined by an architecturally-relevant design pattern) and share similar 

anti-erosion rules. For instance, architects may define an ensemble to encompass 

façades that provide model services to controller elements. 

In addition, Vespucci also introduces a graphical notation based on arrows 

and boxes for specifying expected and non-expected dependencies between 

ensembles (EICHBERG et al, 2008). As an example, we create three ensembles 

GUI, Business  and Data  to group code elements from each component of the 

HealthWatcher architecture (Figure 3). Figure 3 depicts anti-erosion rules 

governing the three ensembles. The architecture specification establishes that all 

direct access from GUI to Data  components and vice-versa are interaction 

violations. In Vespucci, interaction violations are represented by the notation "!" 

(Figure 3). 

 

Figure 3. Modeling anti-erosion rules in Vespucci 

Vespucci uses the Bytecode Analysis Toolkit (BAT) (EICHBERG et al, 

2008) and Prolog (CERI et al, 1989) for supporting the static conformance 

checking of anti-erosion rules in the system implementation. It uses BAT to 

generate the system prolog-based representation from its Java bytecode. The anti-

erosion rules defined in the graphical specification are translated to prolog queries 

to support the checking of architectural violations. 
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2.5.1.3. 
Dependence Constraint Language  

Dependence constraint language (DCL) is a domain-specific language that 

allows architects to constrain component dependencies in object-oriented systems 

(TERRA AND VALENTE, 2009). It supports the detection of divergence and 

absence violations. DCL uses imperative pseudo-natural statements to establish 

anti-erosion rules. It composes components by the grouping modules. In 

particular, architects are able to select a set of packages or classes filtered by 

common name expressions such as default suffixes and prefixes. 

Listing 1 depicts the specification of three anti-erosion rules in DCL. At 

first, we define components that enclose the respective GUI and Data code 

elements. As we can notice, DCL follows a different terminology from ours 

(Section 2.1). DCL uses the keyword module to refer to architectural components. 

As an example of anti-erosion rule, the statement 'GUI cannot-invoke  Data  ' 

establishes that any GUI element is not allowed to invoke any service provided by 

any Data  element.  

Listing 1 

  module GUI: healthwatcher.view.* 

 module Data: healthwatcher.data.* 

 GUI cannot-invoke Data 
 

2.5.1.4. 
Other anti-erosion techniques 

Marwan and Aldrich developed SCHOLIA, an embedded language for 

documenting the system's architecture in the source code and checking its 

conformance with a prescribed architecture (MARWAN and ALDRICH, 2009). 

Morgan defined a domain-specific language to specify and check anti-erosion 

rules in the system implementation (MORGAN, 2007). Ubayashi et al. presented 

Archface, a programming-level interface to represent the intended architectural 

design and detect erosion symptoms in the system's implementation (UBAYASHI 

et al, 2010). Oliveira presented the PREViA approach which provides features for 

defining components and expected interactions in the intended architecture using 

UML class and component diagrams (OLIVEIRA, 2011). It prevents architectural 
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erosion by evaluating the conformance between the system implementation with 

respect to the intended architecture.  

 

2.5.2. 
Anti-drift techniques 

Anti-drift techniques are aimed at supporting the detection of component 

constraint violations in order to reveal symptoms of architectural drift (MARA et 

al, 2011; MOHA et al, 2010; MARINESCU et al, 2005). In this case, developers 

specify the intended architecture of a system through anti-drift rules. These rules 

are often metrics-based strategies that quantify structural properties of modules 

realizing software components (MARINESCU et al, 2005; LANZA and 

MARINESCU, 2006). To be more exact, anti-drift techniques usually rely on 

detection strategies (MARINESCU, 2004) which are based on expressions that 

combine logic operators and static code metrics.  The goal is detecting 

architecturally-relevant anomalous modules in the implementation (MACIA et al, 

2012). In fact, anomalous modules in the implementation are often the source of 

relevant architectural drift symptoms (GARCIA et al, 2009; MACIA et al, 2012). 

Hence, the identification of such anomalous modules may reveal violations of 

certain modularity principles (Section 2.4) in the source code (MACIA et al, 

2012). They represent the violation of intended constraints for one or more 

individual components.  

Marinescu et al. presented iPlasma, a tool that relies on strategies 

(MARINESCU, 2004) to detect anomalous code elements (MARINESCU et al, 

2005). Moha et al. presented a methodology to detect anomalous code structures 

by combining metric-based evaluations to structural properties of modules 

(MOHA et al, 2010). Mara et al. proposed Hist-Inspect which enables the 

definition and application of conventional detection strategies (MARA et al, 

2011). In particular, we selected Hist-Inspect as representative tool to illustrate the 

anti-drift techniques. 

Hist-Inspect. It declares each anti-drift rule as a detection strategy to 

identify occurrences of an implementation module anomaly. The tool supports 

conventional metrics, such as coupling (CBO) and lines of code (LOC). The anti-

drift rules are defined in XML format as illustrated in Listing 2. This listing 
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contains a strategy for detecting the GUI classes that may implement more 

responsibilities than desired (Section 1.2). It defines an anomaly named 

unexpectedComplexGUI  that may be manifesting in classes (lines 07-09).  It 

also instantiates a strategy to detect this anomaly (lines 03-05). This strategy (line 

05) checks all system classes (i.e., including those classes that do not realize the 

GUI component) and retrieves the ones who have 100 or more lines of code or 

whose cyclomatic complexity is greater or equals to 5. These metrics were 

selected for illustrative purpose, and other metrics could be used for detecting 

similar or different drift symptoms. 

The strategy may retrieve classes neglecting this rule but that are not part of 

the GUI component. This negative aspect of Hist-Inspect is also applicable to 

other existing anti-drift techniques. As a consequence, architects have to spend 

resources in the manual identification of anomalous GUI classes from those which 

are retrieved by the tool. This situation occurs given the inability of many anti-

drift techniques for exploiting component properties in the source code (MACIA 

et al, 2012). 

Listing 2 

 01: <?xml version="1.0" enconding="UTF-8"?> 
02: <rule-catalog> 

03:  <rule id="sampleRule" 
04:   anomaly="unexpectedComplexGUI" 

05:   expression="LOC >= 100 || CC >= 5"/> 
06: </rule-catalog> 

07: <anonaly-catalog> 
08:  <anomaly id="unexpectedComplexGUI"> 
09:   applyTo="class"/> 
10: </anomaly-catalog>  

To the best of our knowledge, state-of-art techniques for preventing 

architectural drift are limited to only identifying symptoms of architectural drift in 

system's implemented architecture. Consequently, developers can introduce 

unacceptable interactions (i.e., erosion symptoms) between components (Section 

1.2). Moreover, these techniques usually only support the definition of anti-drift 

rules to all modules of a program as a whole. In other words, they often do not 

support the specification of rules to particular components, taking into 

consideration their properties and responsibilities. According to (MACIA et al, 

2012), this inability impact the use of such techniques to detect relevant 

anomalous modules which are impairing the architecture modularity. Finally, 
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these techniques support anti-drift rules specified for a particular system. 

Therefore, they cannot be reused in other systems even though few adjustments 

are usually required to detect similar architectural anomalies in different contexts 

(MOHA et al, 2010) (Section 1.2). 

 

2.5.3. 
Techniques for detecting both degradation symptoms  

As far as we know, a few techniques can be adapted in order to partially 

support the simultaneous detection of erosion and drift symptoms (PMD, 2012; 

SEMMLE CODE, 2012). One of them is a recently-developed tool, called 

Semmle Code (SEMMLE CODE, 2012), which is based on a source code query 

language (VERBAERE et al, 2008). This tool allows architects to elaborate code 

queries taking into consideration several properties of source code elements such 

as method invocations, lines of codes and depth of inheritance tree. Hence, 

architects can define queries to check whether modules that are relevant to 

architecture (i.e., those which realize a component) violate any component or 

interaction constraints. 

Listing 3 illustrates code queries that check the conformance of an anti-

erosion rule (lines 01-11) and anti-drift one (lines 13-20) in the HealthWatcher 

architecture (Section 1.2).  The former checks if there is a class that realizes the 

Data component and has any method invoked by a GUI module. The latter aims 

to detect anomalous GUI modules. Such modules may manifest drift symptoms.  

More specifically, it checks if a class from the package GUI has 100 or more lines 

of code and whose cyclomatic complexity value is greater or equals to 5. In 

particular, GUI modules should just delegate request to the Controller and, 

thereby, they use to have few lines of code. 
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Listing 3 

 01: //R1: gui classes cannot directly access data c lasses 
02: from Class guiClass , Class dataClass, Method c lassMethod 
03: where ( 
04:       guiClass.getPackage ().getName (). 
05:       matches( "%healthwatcher.gui%" ) and 
06:       dataClass.getPackage ().getName (). 
07:       matches( "%healthwatcher.data%" ) 
08:    ) 
09: and guiClass.getACallable().calls( classMethod ) 
10: and dataClass = classMethod. getDeclaringType ( ) 
11: select guiClass, dataClass, classMethod 
12: 
13: //R2: GUI classes are expected to have low comp lexity  
14: from Package p, Class c , MetricCallable m 
15: where p.getName().matches("%healthwatcher.gui%" ) 
16: and c.getPackage() = p 
17: and m. getDeclaringType () = c 
18: and c.getLocation().getNumberOfLinesOfCode() >=  100 
19: and c.getCyclomaticComplexity()>= 5 
20: select c, c.getLocation().getNumberOfLinesOfCod e()  

We highlight two issues in Listing 3 regarding the detection of architectural 

erosion and drift symptoms. First, each query explicitly specifies the source code 

elements whose properties are being checked instead of specifying architectural 

components. For instance, the second rule (lines 13-20) checks the size and 

complexity of classes from the package healthwatcher.gui (line 15). All 

queries that refer to the GUI component (e.g., R1 - lines 01-11) replicate the same 

expression (line 15) to select the modules realizing the component. Hence, 

whenever the architectural component changes, all related queries require 

modifications. As an example, rename operations into the package 

healthwatcher.gui require modifications on all rules referring to the GUI 

component (e.g., R1 and R2 from Listing 3). The second issue is that code query 

languages often relies on syntaxes similar to SQL (TROPASHKO and 

BURLESON, 2007). This situation can restrict the use of these techniques to 

architects who have limited familiarity with query languages. 
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