

8
Conclusions and Future Work

The degradation of the software architecture is quite hard to be avoided

(Parnas, 1994; Eick et al., 2001; van Gurp and Bosch, 2002). Among other

factors, degradation is hard to be avoided due to the continuous manifestation of

code anomalies while implementing and changing a system. Many code

anomalies manifest themselves in the implementation of software systems

independently of the modularization technique. However, code anomalies not

always imply the degradation of the system’s architecture. In other words, not all

code anomalies are considered to be relevant from the architectural perspective. A

plethora of researchers have proposed techniques and tools for detecting code

anomalies (e.g. Emden and Moonen, 2002; Ratiu et al., 2004; Marinescu, 2004;

Ratzinger, 2005; Murphy-Hill, 2008; Tsantalis, and Chatzigeorgiou, 2009;

Marinescu et al., 2010; Moha et al., 2010; Mara et al., 2011). The most used and

referred technique is called detection strategies. Each detection strategy

corresponds to a logical composition of metrics that detect code elements suspects

of suffer from a particular anomaly (Marinescu, 2004). Others researchers have

investigated the impact of code anomalies under different perspectives, such as

change-proneness (e.g. Kim et al., 2005; Mäntylä and Lassenius, 2006; Lozano et

al., 2008; Khomh et al., 2009; Rahman et al., 2010 and Zazworka et al., 2011)

and fault-proneness (e.g. Li and Shatnawi, 2007; D’Ambros et al., 2010; and

Zazworka et al., 2011).

To the best of our knowledge, however, there is no research work that

analyses the impact of code anomalies on the software architecture. In particular,

this occurs because there is no knowledge about to what extent code anomalies

relate to architectural degradation, despite of several researchers have highlighted

such relationship (Fowler et al., 1999; Godfrey and Lee, 2000; Eick et al., 2001;

van Gurp and Bosch, 2002; Maccormack et al., 2006). Also, there is no evidence

about how accurate the conventional strategies for code anomaly detection are

when identifying architecturally-relevant ones. Furthermore, conventional

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

231

strategies tend to detect long lists of code anomaly occurrences even in small

software systems, many of which are false positives. Therefore, due to time and

resource constraints developers are neither able to refactor all the code anomalies

nor identify those that demand immediate attention for the architectural

perspective.

In this context, the systematic assessment of architecturally-relevant code

anomalies is essential to help developers to identify sources of architectural

degradation, fostering smooth system evolution. The assessment of these critical

code anomalies encompasses the following processes: the detection of single and

inter-related code anomalies as well as the analysis of how they relate to the

system’s architecture. In this thesis, a suite of six aspect-oriented code anomalies

was empirically identified. Then, a suite of architecture-sensitive metrics and

detection strategies was proposed. Finally, a catalog of nine recurring inter-related

code anomalies - anomaly patterns - was documented and formalized. During the

empirical evaluations, we investigated: (i) the frequency rates of the proposed and

already published aspect-oriented code anomalies, (ii) the relationship between

code anomalies and architectural degradation in aspect-oriented and object-

oriented systems, and (iii) the accuracy of the conventional detection strategies, of

the architecture-sensitive ones and of code anomaly patterns when identifying

architecturally-relevant code anomalies.

8.1.
Revisiting the Thesis Contributions

In this thesis we discussed the need of understanding the relationship

between code anomalies and architectural degradation as well as providing

mechanisms to support the identification of architecturally-relevant code

anomalies. In this direction, we documented a suite of code anomaly patterns

which impact on the architecture design in a wide range of ways. These code

anomaly patterns are built on a set of anomalous code elements identified by

using a suite of architecture-sensitive detection strategies. In order to define such

architecture-sensitive strategies, a suite of architecture-sensitive metrics was

proposed. In summary, the six contributions of this research work are described in

what follows.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

232

1. A Catalog of Recurring Code Anomalies in Aspect-Oriented Systems

(Chapter 3). The catalog of code anomalies guides developers in

promoting the modularity of aspect-oriented systems (Macia et al.,

2011a). In particular, the documented anomalies were inspired by the

limitations identified in this sort of systems (Piveta et al., 2006; Srivisut

and Muenchaisri, 2007), such as the mimic of object-oriented anomalies.

Our contribution is the documentation of code anomalies that represent

recurring misuses of aspect-oriented mechanisms.

2. A Suite of Architecture-Sensitive Metrics (Chapter 6). We defined a

suite of architecture-sensitive metrics to be exploited in the detection of

code anomalies (Macia et al., 2013). These measures quantify two kinds

of architecture-sensitive information: (i) how architectural components

are implemented by the code elements and (ii) how architectural

concerns are modularized by the code elements. These kinds of

information can be partially recovered from the system implementation

by third-party tools (Eisenbarth et al., 2003; Maqbool et al., 2007;

FEAT, 2009; Garcia et al., 2011; Nguyen et al., 2011). Therefore, the

proposed metrics could be gathered even when the architectural design

is not available as it often occurs. On the other hand, when the

architectural design is documented, the proposed metrics can be used in

different architectural views, such as component-and-connector view

and module view.

3. A Suite of Architecture-Sensitive Detection Strategies (Chapter 6). We

also proposed a suite of architecture-sensitive detection strategies, which

combines source code and architecture-sensitive metrics (Macia et al.,

2013). The goal of this suite is to overcome the limitations of

conventional detection strategies and, thus, provide developers with a

more accurate list of architecturally-relevant code anomalies. This suite

can be extended and, by no means, we claimed that the proposed

strategies are exhaustive. In other words, new architecture-sensitive

strategies could be elaborated to detect additional code anomalies.

4. A Catalog of Code Anomaly Patterns (Chapter 7). We also documented

a first catalog of nine recurring inter-related code anomalies, the so-

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

233

called code anomaly patterns. The patterns were grouped into four

intuitive categories according to their common characteristics,

facilitating their recognition by software engineers. The catalogue of

code anomaly patterns aims at guiding software engineers in promptly

identifying the anomalous code elements that harmful impact on the

architecture design. These patterns were systematically observed

through the analysis of evolving software systems from several domains,

implemented using different programming languages and

modularization techniques. This catalogue is a novel contribution as

there is no evidence about which inter-related anomalous code elements

can harmful impact the software architecture.

5. Tool Support (Chapter 7). We also designed and implemented a tool,

named SCOOP (Macia et al., 2012c), which supports the detection of

code anomaly patterns. To this end, SCOOP provides engineers with a

Domain Specific Language allowing them to define their own detection

strategies, including the architecture-sensitive ones. This means that

SCOOP supports: (i) collecting the proposed architecture-sensitive

metrics, (ii) employing the architecture-sensitive detection strategies,

and (iii) identifying existing code anomaly patterns. The output

generated by SCOOP includes lists of single anomalous elements

(identified by detection strategies) and code anomaly patterns. SCOOP

was implemented as an Eclipse plug-in (Eclipse, 2011). Its current

implementation exploits the architectural concern projections

documented using ConcernMapper and Vespucci, which have a list of

concerns names and the code elements that modularize each concern.

Additionally, SCOOP relies on Vespucci to exploit how code elements

relate to architectural components.

6. Empirical Evaluation. We designed and executed empirical studies to

evaluate our catalogue of aspect-oriented anomalies, the suite of

architecture-sensitive metrics and strategies as well as the code anomaly

patterns.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

234

a. Frequency of aspect-oriented Code Anomalies (Chapter 3). The aim

of this evaluation was centered on observing the occurrence and

frequency of the documented code anomalies. We carried out this

evaluation using three software systems (Macia et al., 2011a). Many

successive releases of the target systems were investigated as well as

their evolving code anomalies.

b. Relationship between Code Anomalies and Architectural Degradation

(Chapter 4). We also investigated the interplay between code

anomalies and architectural degradation (Macia et al., 2012b; Macia

et al., 2011d). This investigation relied on the evolution of five

software systems implemented using different programming

languages and modularization techniques. First, we analyzed to what

extent code anomalies are likely to favor architectural degradation.

Additionally, we assessed the proportion of architectural degradation

symptoms in the system implementation that could be removed

through refactoring code anomalies. Second, we investigated whether

certain properties of the code anomaly indicate their architecture-

relevance. Finally, we assessed how often developers remove

architecturally-relevant code anomalies by means of refactoring

actions.

c. Accuracy of Conventional Detection Strategies (Chapter 5). Once the

correlation between code anomalies and architectural degradation

symptoms was confirmed, the accuracy of conventional strategies was

assessed when detecting architecturally-relevant anomalies. The

evaluation involved the employee of nineteen conventional detection

strategies using the same systems in which that correlation was

confirmed (Macia et al., 2012a).

d. Architecture-Sensitive Strategies and Architectural Degradation

(Chapter 6). A study was carried out to analyze the accuracy of

architecture-sensitive strategies when detecting architecturally-

relevant code anomalies (Macia et al., 2013). In particular, such

accuracy was assessed in the context of five Java systems. In this

study, we also investigated the contribution of each kind of

architecture-sensitive information - components and concerns

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

235

projections. Finally, we analyze the influence of projecting concerns

at different granularity levels - method- and class level - on the

strategies accuracy.

e. Code Anomaly Patterns and Architectural Degradation (Chapter 7).

The last evaluation performed in this thesis aimed at assessing

whether and to what extent the documented anomaly patterns are

better indicators of architecturally-relevant anomalies than single

code anomalies. This evaluation was carried out in the context of five

software systems that present different stages of the architectural

degradation.

8.2.
Future Work

In spite of the contributions of this thesis described in Section 8.1, we have

identified some future work. Basically, five main topics can be derived and they

are described as follows.

1. Further Evaluations. The proposed architecture-sensitive strategies and

the documented anomaly patterns were evaluated in the context of five

representative Java systems (Chapters 6 and 7). The performed studies

provided evidence with respect to the benefits of exploiting architecture-

sensitive information and relationships between anomalous code

elements in the detection of architecturally-relevant code anomalies.

However, it is important to undertake further empirical investigations

considering other software systems.

a. Our evaluation focused on system versions that presented different

stages of the architectural degradation. Thus, it could be interesting to

perform further studies considering the evolution of degraded

software architectures. The goal of this kind of study is to gather

findings about how architecturally-relevant code anomalies are

formed aiming at promptly identify their occurrences. This early

identification allows engineers to save effort in later maintenance

tasks.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

236

b. The performed studies considered system versions that presented

different architectural decompositions. It could be interesting to

perform studies involving groups of systems following the same

architectural decomposition. The goal is to investigate which anomaly

patterns are likely to occur more often in systems built on the basis of

certain architectural design.

c. In the evaluation we only relied on object-oriented systems. This

occurred because we did not find any available system developed

using other programming techniques that meet the relevant criteria

listed in Table 6.4 (Bergmans et al., 1992; Harrison and Ossher, 1993;

Prehofer, 1997; Kickzales et al., 1997; Rajan and Sullivan, 2005).

Therefore, it is necessary to replicate the performed studies in systems

developed with post object-oriented programming techniques. This

kind of study is interesting because the relationship between code

anomalies and architectural degradation was confirmed not only in

object-oriented systems.

2. Improved Tool Support. We also identified some improvements to be

implemented in SCOOP regarding the code anomaly and patterns

detection.

a. It would be interesting to rank the code elements identified by each

strategy according to different criteria, such as architectural role,

change-proneness, and fault-proneness (Arcoverde, 2012). These

rankings will provide engineers with a broader perspective about the

harmful impact of the anomalous code elements. Therefore, software

engineers may better decide which anomalous code elements must be

refactored first.

b. It could be useful to extend SCOOP to incorporate mechanisms for

architecture design and concern recovery. Therefore, the tool could

include an automate process of code anomaly detection when the

architecture design information is not given as input. As not all

concerns are architecturally-relevant, SCOOP could allow engineers

to select which recovered concerns they consider to be relevant.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

237

3. Refactoring Recommendation for Code Anomaly Patterns. Besides the

detection of code anomaly patterns, engineers should be guided with

refactoring sequences to remove their occurrences. The suggestion of

such sequences is a challenge due to several reasons. First, they have to

remove anomalies infecting inter-related code elements. Second, the

suggested sequence might have to remove different kinds of code

anomalies. Third, the sequence has to be effective not only in removing

the code anomalies without affecting the system behavior, but also in

removing the architectural degradation symptoms. Finally, the proposed

sequence should contain a low number of refactorings in order to save

engineers' effort.

4. Expanding the Suite of Code Anomaly Patterns. In this thesis we

documented a catalog of nine code anomaly patterns. A natural question

is how complete the proposed suite of anomaly patterns is. By no means

we have claimed that the proposed suite is exhaustive. In fact, the

proposed code anomaly patterns act as a stepping stone towards the

understanding of particular "shapes" of inter-related code anomalies and

their relation with architectural degradation. Therefore, new anomaly

patterns can be further observed either individually or by composing

existing ones.

5. Visualization of Code Anomaly Patterns. As software systems evolve

and the number of code anomalies increases, analysis of code anomaly

patterns may become a challenge and a time-consuming task. Visual

representations (Carneiro et al., 2008a; Carneiro et al., 2008b; Wettel

and Lanza, 2007; Ducasse et al., 2006; Lanza, 2004; Lanza and

Ducasse, 2003; Stasko et al., 1998) have been shown useful in

supporting code anomalies and concerns analysis (Novais et al. 2012;

Wettel et al., 2011; Novais et al. 2011; Carneiro et al. 2010). In this

direction, it would be interesting to analyze whether existing

visualization techniques help engineers in the analysis of code anomaly

patterns and, if necessary, propose new visual representations to this

end.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

238

In conclusion, this thesis represents a first investigation that focuses on the

relationship between anomalous code elements and architectural degradation

symptoms in software systems implementation. In order to reach this macro goal,

this work achieved a set of contributions (Section 8.1). In particular, this thesis

has initiated a new avenue in architecture revision based on the analysis of

anomalous code structures and their relationships. Nevertheless, as

aforementioned, there are also uncovered research topics to be explored in the

future.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

