

6
Detection of Architecturally-Relevant Code Anomalies with
Architectural-Sensitive Information

Chapters 4 and 5 discussed how code anomalies (Fowler et al., Chapter 3)

can be related to architectural degradation symptoms in systems structured

independently of the kind of modularization technique. In particular, Chapter 5

evidenced the inaccuracy of the conventional detection strategies to identify

architecturally-relevant code anomalies. This inaccuracy has two main causes.

First, the measures used in the conventional strategies quantify only properties of

code elements derived from the syntax of programming languages. Consequently,

these strategies disregard how the system implementation relates to its

architecture.

Second, the conventional strategies are limited to detect only single

occurrences of code anomalies. In other words, the conventional strategies do not

analyze relationships among anomalous code elements (e.g. inheritance, method

call) to indicate their harmful impact on the implemented architecture. However,

analyzing single anomalous code elements is not accurate enough to reveal their

harmful impact on the implemented architecture (Section 5.2). The reason is that

an architectural element is usually implemented by multiple code elements. As a

result, several architectural degradation symptoms, such as Component Concern

Overload, Overused Interface, Redundant Interface, Unwanted Coupling and

Extraneous Connector could only be observed by analyzing inter-related code

elements.

These limitations indicate that the conventional strategies tend to send

developers in wrong directions when addressing architecturally-relevant code

anomalies, making the system maintenance impracticable in extreme cases (Eick

et al., 2001; Maccormack et al., 2006; Knodel et al., 2008). Therefore, there is a

crucial need to provide developers with mechanisms that allow them to localize

where the architecturally-relevant code anomalies are.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

128

In order to overcome the aforementioned limitations of the conventional

strategies and answer the third research question (Section 1.4), How to accurately

identify architecturally-relevant code anomalies?, this chapter and Chapter 8

propose an approach for detecting and distinguishing architecturally-relevant code

anomalies. The proposed approach is based on two novel steps. The first one

comprises the detection of anomalous code elements. The novelty in this step is

the use of architecture-sensitive information in the anomaly detection process to

identify architecturally-relevant code anomalies neglected by the conventional

strategies. Therefore, the goal is to enhance the recall of the conventional

strategies when detecting those relevant code anomalies. This first step is

introduced in this chapter.

The second step of the approach aims at distinguishing where the

architecturally-relevant code anomalies are by analyzing recurrent relationships

among anomalous code elements. The novelty in this step is that the proposed

approach is not limited to detect single code elements. This characteristic will

enable this approach to indicate the architectural degradation symptoms that

emerge from inter-related code anomalies (Section 5.2.4.3). Consequently, the

goal is to guide developers in the correct directions when identifying

architecturally-relevant code anomalies. This second step will be addressed in

Chapter 8.

In order to exploit architecture-sensitive information in the anomaly

detection process, this chapter presents a suite of architecture-sensitive metrics

and detection strategies. Although there are several measures that focus on

quantifying coupling among architectural components, these measures do not

quantify to what extent code elements contribute to this coupling (Briand et al.,

1993; Lakos 1996; Mancoridis et al., 1998; Martin, 2003; Sarkar et al., 2007,

Sant’Anna et al., 2007; Anquetil et al., 2011). Similarly, there are many measures

that quantify the scattering and tangling degree of architectural concerns in the

system implementation (Ducasse et al., 2006; Sant’Anna et al., 2007). However,

these measures do not quantify to what extent properties of code elements (e.g.

complexity and cohesion) are affected by the inappropriate modularization of

architectural concerns. Therefore, there is a clear need for architecture-sensitive

measures; that is, measures that quantify properties of code elements based on

how they relate to the system architecture.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

129

In this context, this chapter starts by introducing a generic system meta-

model (Section 6.1) which is the base for defining the proposed metrics (Section

6.2). Afterwards, the chapter presents a suite of architecture-sensitive detection

strategies in Section 6.3. We evaluated the accuracy of the proposed architecture-

sensitive strategies when identifying architecturally-relevant code anomalies in

Section 6.4. The key points discussed throughout this chapter are discussed in

Section 6.5. The research presented in this chapter has been partially published in

(Macia et al., 2013).

6.1.
Basic Formalism

This section aims at expressing the concepts that will be used in the

proposed detection approach in a consistent and meaningful manner. Some of

these concepts were introduced in Chapter 2, but in this section they are

formalized by means of set theory similarly to other works (Zhao, 2004;

Bartolomei et al., 2006; Figueiredo et al., 2009). The goal of this definition is to

provide the basis on which the architecture-sensitive metrics and architecture-

sensitive detection strategies will be formalized. This chapter focuses on code

anomalies detection, whereas Chapter 7 relies on the formalism introduced in this

section for higher level code anomaly analysis. We seek to define a terminology

and formalisms that are, as much as possible, extensible as well as independent of

the programming language and architectural design (Bryton and Brito, 2007).

6.1.1.
System Meta-Model

Figure 6.1 presents a generic meta-model for the analysis of code anomalies

in the software system implementation. This meta-model, described using the

UML notation (OMG, 2009), is based on previously defined meta-models for

measurement (Bartolomei et al., 2006; Briand et al., 1997, Briand et al., 1999).

Meta-models for aspect-oriented programming languages were also surveyed

(Chavez and Lucena, 2002; Lions et al., 2002; Han et al., 2005). However, for the

sake of simplicity, the proposed meta-model only defines elements that are

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

130

relevant to the scope of the proposed detection approach. Additionally, the meta-

model is kept simple in order to achieve a greater level of generalization.

Code
Anomaly

Architecturally-Relevant
Concern

Code Element

Operation

Attribute

Declaration

Architectural
Component

<<dependson>>

1*

<<has>> 0..* <<implements>>0..*

Module

0..*

0..*

0..*

1

1..*1

Composition Inheritance

Figure 6.1: System meta-model.

An instance of the meta-model presented in Figure 6.1 is called a software

system. An architectural component is associated with code elements. A code

element is an operation, an attribute, a declaration or a module. The meta-model

defines not only the possible relations between the different types of system

elements, but also the mappings of such elements to architecturally-relevant

concerns. It also describes how code elements of the system can suffer from

anomalies.

It is important to note that certain specific information is not included in the

proposed meta-model due to its generality. For instance, architectural components

were not detailed in the generic meta-model because they are specific to the

architectural view used to modeling the system architecture, such as subsystems

and connectors. This issue can be addressed though by specifying the

"Architectural Component" node of the meta-model with all the specific types of

components that can be defined in each architectural view.

The key properties of the proposed meta-model are formalized through

definitions 1 to 4 using a running example, Figure 6.2. The example was extracted

from a logistic system, one of the case studies that will be introduced in Chapter

8. The goal of this system is to manage the oil production that is visualized in

scenarios, which in turn are stored in folders. Users can edit the information

associated with the oil production. Other system details cannot be provided due to

copyright restrictions.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

131

SharedScena

getHistory()
addHistory()

Scenario

isEditable()
isApproved()
getFolder()

Logic

Scenario

getInfo()

CodeAnomaly 1

Concern

Dependency

scenaservice

ScenaInfoDB

readSQL()
setClassMap()
getClassMap()

Server

makeScena()

scenaservice

OpenScena

getUsers()
removeUser()
addUser()

setInfo()

userservice

UserServiceDB

getContext()
setEnabled()
makeContext()

Scenario

Scenario

User

Folder

CodeAnomaly 2

Legend
ScenaTable

makeModel()
addHistory()

ScenaRequest

getName()
getEndDate()
getStartDate()

Client

getScenas()

scenaservice

Scenario

Figure 6.2: A slice of the logistic system design.

Definition 1: System, Architectural Element and Code Element. A

software system, S, consists of a set of architectural components, denoted by ACS.

An architectural component co  ACS is implemented by a set of code elements,

denoted by CEco  CES. A code element can be an attribute, an operation, a

declaration or a module. Let Attco be the set of attributes that implement co, Opco

be the set of operations that implement co, and Decco be the set of declarations

that implement co, CEco := Attco  Opco  Decco.

The notion of architectural component corresponds to those elements into

which the system architecture is decomposed (see Section 6.2.2). Also, a

declaration is usually defined by aspect-oriented languages. For instance, it can be

either a ‘parent declaration’ or a ‘pointcut declaration’ in AspectJ (Kiczales et. al.,

2001). The system illustrated in Figure 6.2 consists of three different architectural

components (Logic, Server, and Client boxes), seven modules (SharedScena,

Scenario, UserServiceDB, ScenaInfoDB, OpenScena, ScenaTable and ScenaRequest

classes), and twenty-four (24) operations, which are defined within these modules.

In that figure, SharedScena and Scenario classes implement the Logic component.

UserServiceDB, ScenaInfoDB, and OpenScena classes implement the Service

component. Finally, ScenaTable and ScenaRequest classes implement the Client

component.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

132

Definition 2: Free and Anomalous Code Element. Code elements in a

software system, S, are often affected by a set of code anomalies denoted by CAS.

Therefore, the code elements in S can be classified in two subsets: ACES, the set of

anomalous code elements affected by at least one anomaly a  CAS and FCES,

the set of code elements free of anomalies, where CES := ACES  FCES. The set

of code elements that: (i) implement an architectural component co  ACS and (ii)

are infected by a particular code anomaly a  CAs, is denoted by CEcoa.

In Figure 6.2 there are two anomalies that affect two classes and three

methods. While Anomaly 1 infects the ScenaTable.makeModel() and

ScenaInfoDB.makeScena() methods, Anomaly 2 affects the OpenScena and Scenario

classes, and the SharedScena.addHistory() method.

Definition 3: Dependency between Code Elements. Let be DS the set of

dependencies between code elements in a system S. A dependency Dij  DS

between two code elements ci  CES and cj  CES is defined as a tuple (ci, cj),

where ci inherits, calls operations, accesses attributes of cj or establishes semantic

relationship with cj.

In Figure 6.2 the SharedScena.getInfo() method depends on the

Scenario.isEditable() method because the former calls the latter. The same situation

occurs with the ScenaTable.getScenas() and ScenaRequest.getStartDate() methods.

Additionally, in Figure 6.2 the UserService and ScenaInfo classes depend on the

Scenario class because the first two classes create objects of the last one.

Definition 4: Architectural Concern. In a software system, S, code

elements implement architectural concerns, which are denoted by CS. Therefore,

an architectural concern Ci is implemented by a set of code elements such that Ci

:= CEi, where CEi ≠ . On the other hand, for a given code element c CES , cCon

denotes the set of architectural concerns that c implements.

An architecturally-relevant concern is defined as an architect’s interest,

architect’s purpose or system functionality that significantly influences the system

architecture (Chapter 2). As it can be noticed, an architectural concern can be

realized by any type of code element – just a single code element or a collection

of different ones. Figure 6.2 depicts the implementation of three architecturally-

relevant concerns: Scenario, Folder and User. These concerns are considered to be

architecturally-relevant because they are important functionalities that ruled the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

133

way in which architects modeled the system architecture. In that figure, the

implementation of Scenario and Folder concerns comprises code elements defined

in various components. The Scenario concern is implemented by all the code

elements in the Logic and Client components and two out of three classes in the

Server component. The Folder concern is implemented by methods defined in the

Logic and Server components. Finally, the User concern is only implemented by the

UserServiceDB class.

6.1.2.
Meta-Model Instantiation

The meta-model (Figure 6.1) is abstract enough to be instantiated for

different architectural views and programming languages. In the previous section

the meta-model was instantiated for a particular software system in order to

exemplify the introduced concepts. This section provides a brief illustration of

how the meta-model can be instantiated to languages targeting different purposes

and levels of abstraction. The depicted instantiation relies on architecture

modeling languages for the component-and-connector and module views (Bass et

al., 1997), and two programming languages, namely Java and AspectJ (Kiczales et

al., 2001). We have chosen these languages for illustration because they are

widely used in practice. The goal of Table 6.1 is to illustrate how the meta-model

elements can be mapped in software systems structured with these languages. In

particular the software system #1 is structured with the component-and-connector

view and Java language, whereas software system #2 is structured with the

module view and AspectJ language. A blank cell means that the abstraction is not

implemented by any element of the language. For example, declarations are

usually valid only for aspect-oriented languages, such as AspectJ (Table 6.1).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

134

Table 6.1: Meta-Model instantiation.

 Software System #1 Software System #2

Concern Data conversion Data management

Architectural Component Component and connector Module

Module Class, Interface and package Class, Interface, package and Aspect

Attribute Class variable and field
Class variable, field and inter-type

declaration.

Operation Method and constructor
Method, constructor, inter-type

declaration and advice

Declaration - Pointcut and declare statement

Code Anomaly Long Method and Large Class. Large Class and Composition Bloat.

6.2.
Architecture-Sensitive Metrics

This section defines a suite of metrics that aims at quantifying information

that can be extracted from the meta-model presented in Figure 6.1. The proposed

metrics can also gathered information from different recovered architectural views

such as: component-and-connector view and module view. Before defining the

architecture-sensitive metrics in detail, Table 6.2 presents a summary of them.

This table provides a catalog with brief definitions for the metrics and their

association with the kind of information they quantify. The goal is to provide the

reader with a big picture of the proposed metrics and also facilitate the reference

to the metric definitions while reading the remainder of the text.

Table 6.2: Summary of the suite of architecture-sensitive metrics.

Information Metric Definition

Architectural

Component

Number of External Elements

(NEE)

Counts the number of external code elements that a

measured code element depends on.

External Fan-out (EFO)
Counts the number of architectural components a

measured code element depends on.

External Fan-in (EFI)
Counts the number of architectural components that

depend on the measured code element.

Architectural Component

Locality (ACL)

Counts the relative number of dependencies that the

measured code element has in its component in

relation to the total number of its dependencies.

Architectural

Concern

Number of Architectural

Concerns (NAC)

Counts the number of architectural concerns a

measured code element implements.

Architectural Concern

Locality (CoL)

Counts the relative number of architectural concerns

implemented by a code element within its own

component in relation to the total number of

architectural concerns it implements.

Architectural Concern

Cohesion (CoC)

Counts the relative number of pairs of methods in

the measured class that implement the same

architectural concern in relation to the total number

of pairs of methods within the class.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

135

As it can be noticed, the proposed metrics are grouped into two categories:

architectural components and architectural concerns. The first category refers to

how architectural components are implemented by the code elements, while the

latter quantifies how architectural concerns are modularized by the code elements.

In other words, the proposed metrics are based on previous knowledge about the

mapping of architectural information (i.e. components and concerns) on the code

elements.

We decided to rely on components and concerns projections due to several

reasons. First, empirical evidence (Chapters 4 and 5) indicates that these

projections are useful to detect those architecturally-relevant code anomalies

neglected by conventional detection strategies. For instance, the projection of

architectural components on the system implementation allows identifying code

elements related to a high coupling degree among architectural components.

Second, the projection of architectural concerns on the system implementation

enables us to analyze which code elements modularize several architectural

purposes. Finally, both kinds of projections can be recovered from the source code

by using third-party tools (Eisenbarth et al., 2003; Maqbool et al., 2007; FEAT,

2009; Garcia et al., 2011; Nguyen et al., 2011). Consequently, the proposed

metrics could be gathered even when the systems architects or the architectural

documentation are not available.

In the following, each metric is described in terms of: (i) an informal

definition, (ii) the measurement purpose, (iii) a formal definition based on set

theory, and (iv) an example. The metrics are formally defined in terms of the

terminology and formalisms introduced in Section 6.1. The goal of formally

definition of the metrics is to express them consistently and unambiguously.

6.2.1.
Metrics for Architectural Components

As presented in Table 6.2, this section documents the following metrics:

Number of External Elements, External Fan-out, External Fan-in and

Architectural Component Locality.

Definition 5: Number of External Elements (NEE). NEE counts the

number of "external" code elements used by the measured code element. A code

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

136

element is considered to be external when it belongs to a component different

from that where the measured code element belongs. The goal of this metric is to

allow engineers to identify cases of code elements that depend on many different

external elements.

Formal Definition of NEE. Given a system, S,  c1  CES , NEE(c1) is

represented as:

NEE(c1) = |{ c2 | (c1, c2)  DS  ( co1  ACS  co2  ACS | co1 ≠ co2 

 c1  CEco1  c2  CEco2)}|

Example. According to Figure 6.3, the value of NEE for the ScenaTable

class is one (01) because its methods depend on two classes, ScenaRequest and

Scenario, where only the last one is external. That is, the Scenario class is defined

in Logic component, whereas the ScenaTable class is defined in the Client

component. Note that this metric differs from the conventional coupling metrics.

SharedScena

getHistory()
addHistory()

Scenario

isEditable()
isApproved()
getFolder()

Logic

Scenario

getInfo()

CodeAnomaly 1

Concern

Dependency

scenaservice

ScenaInfoDB

readSQL()
setClassMap()
getClassMap()

Server

makeScena()

scenaservice

OpenScena

getUsers()
removeUser()
addUser()

setInfo()

userservice

UserServiceDB

getContext()
setEnabled()
makeContext()

Scenario

Scenario

User

Folder

CodeAnomaly 2

Legend
ScenaTable

makeModel()
addHistory()

ScenaRequest

getName()
getEndDate()
getStartDate()

Client

getScenas()

scenaservice

Scenario

Figure 6.3: A slice of the logistic system design.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

137

We have already presented the slice of the logistic system design. We repeat

it here in order to facilitate referring to it during the following discussion.

Definition 6: External Fan-out (EFO). EFO counts the number of

components used by the measured code element. The goal of this metric is to

allow engineers to identify code elements that depend on many different

architectural components. Note that unlike NEE, which focuses on quantifying the

number of code elements, EFO quantifies the number of architectural

components.

Formal Definition of EFO. Given a system, S,  c1  CES , EFO(c1) is

represented as:

EFO(c1) = |{ co2 | (c1, c2)  DS  ( co1  ACS  co2  ACS | co1 ≠ co2 

 c1  CEco1  c2  CEco2)}|

Example. In Figure 6.3, the value of EFO for the UserServiceDB class is one

(01) because it depends on a class that is defined in the Logic component.

Definition 7: External Fan-in (EFI). EFI quantifies the opposite property

quantified by the EFO metric. That is, EFI counts the number of architectural

components that depend on the measured code element. The idea behind this

metric is to enable engineers to identify code elements that might be the source of

undesirable ripple effects over the system architecture.

Formal Definition of EFI. Given a system, S,  c1  CES , EFO(c1) is

represented as:

EFI(c1) = |{ co2 | (c2, c1)  DS  ( co1  ACS  co2  ACS | co1 ≠ co2 

 c1  CEco1  c2  CEco2)}|

Example. In Figure 6.3, the value of EFI for the Scenario.Scenario

constructor is two (02) because there are three classes that depend on it, where two

of them belong to different architectural components: Client and Server.

Definition 8: Architectural Component Locality (ACL). ACL counts the

relative number of dependencies that the measured code element has in its own

component in relation to the total number of its dependencies. The goal of AEL is

to help engineers to decide whether a code element depends more on external

code elements than on those defined in its own architectural component. This

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

138

situation may indicate that the code element introduce undesirable dependencies

among components or it should be moved to another component.

Formal Definition of ACL. Given a system, S,  c  CES, ACL(c) is

represented as:

ACL(c) = NEE(c) / |{c2 | (c,c2)  DS  c2  CES }|

Example. In Figure 6.3, the value of ACL for the SharedScenario class is 0.5.

The reason is because this class depends on two classes, Scenario and

ScenaRequest, where the last one is external.

6.2.2.
Metrics for Architectural Concerns

As presented in Table 6.2, this section documents the following metrics:

Number of Architectural Concerns, Architectural Concern Locality and

Architectural Concern Cohesion.

Definition 9: Number of Architectural Concerns (NAC). NAC counts the

number of architectural concerns that the measured code element modularizes.

The goal of NAC is to help engineers to identify code elements that deal with

many architectural concerns. A high value of this metric suggests that the

measured code element violates the principle of a single functionality, affecting

the cohesion of its enclosing component.

Formal Definition of NAC. Given a system, S,  c  CE, NAC(c) is

represented as:

NAC(c) = |{cCon}|

Example. In Figure 6.3, the value of NAC for the

UserServiceDB.makeContext() method is two (02) because it implements User and

Folder architectural concerns. The value of NAC in the Scenario class is also two

(02). The reason is that, for classes, the metric is computed as the total number of

distinct concerns implemented by its methods and attributes.

Definition 10: Architectural Concern Locality (CoL). CoL counts the

relative number of architectural concerns implemented by a code element within

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

139

its own component in relation to the total number of architectural concerns it

implements. The purpose of CoL is to support engineers for distinguishing

whether a code element implements more external architectural concerns than

those implemented within its enclosed architectural component. A concern is

considered to be external when it is implemented by external code elements.

Formal Definition of CoL. Given a system, S,  c  CEco, CoL(c) is

represented as:

CoL(c) = |{cr |  co ACS  cr CS  cr coCon  cr cCon }| / NAC(c)

Example. In Figure 6.3, the UserServiceDB class implements two

architectural concerns: Folder and User, where Folder concern is external because it

is also implemented by external code elements (e.g. Scenario). Therefore, the

value of CoL for UserServiceDB is 0.5.

Definition 11: Architectural Concern Cohesion (CoC). CoC is defined as

the relative number of pairs of methods in the measured class that implement the

same set of architectural concerns in relation to the total number of pairs of

methods within the class. The purpose of this metric is to enable engineers to

identify classes whose methods do not implement the same architectural concerns.

When the methods in a class implement distinct concerns, the class can suffer

from effects coming from changes associated with any of the concerns

implemented within it.

Formal Definition of CoC. Given a system, S, consider a class c  CES. In

order to define CoC(c) two additional functions are required,

MethodPairsSameConcerns(c) and MethodsPairs(c). The former function returns the

number of pair of methods that modularize the same set of concerns, whereas the

latter returns the number of pairs of methods in a given class.

CoC(c) = MethodPairsSameConcerns(c) / MethodsPairs(c)

Example. In Figure 6.3, the value of the metric CoC for the Scenario class is

0.33. The reason is that, from the three pairs of methods in this class only one of

them (i.e. isEditable, isApproved) implements the same set of architectural

concerns: Scenario concern. As shown in Figure 6.3, the other pairs of methods

realize different concerns (i.e. Folder and Scenario).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

140

6.3.
Architecture-Sensitive Detection Strategies

This section presents a suite of eight (08) detection strategies that support

engineers while identifying architecturally-relevant code anomalies. It is our

intention to reduce the shortcomings of conventional detection strategies

discussed in Chapter 5. Specifically, the presented strategies detect the object-

oriented code anomaly types that were related to architectural degradation

symptoms in the context of previous studies (Chapters 4 and 5). However,

architecture-sensitive strategies can also be defined in order to identify

occurrences of a different set of code anomalies.

The proposed strategies combine information gathered from architecture-

sensitive metrics (Section 6.2) and conventional code metrics (Chidamber and

Kemerer, 1994; Li and Henry, 1993; Lanza and Marinescu, 2006). The goal of

these strategies is to enhance the low recall rates of the conventional strategies

when identifying architecturally-relevant code anomalies (Chapter 5).

Additionally, our intention is to avoid neglecting the detection of code anomalies

that do not influence the system architecture. The reason is that code anomalies

might induce other maintainability problems (e.g. error-proneness) and are likely

to be indicators of architectural degradation symptoms in later versions of the

system (Section 4.2.2.2). However, engineers can still distinguish the

architecturally-relevant code anomalies using architecture-sensitive strategies.

Engineers can focus on using the parts of the detection strategy that explore the

architecture-sensitive metrics. Additionally, engineers can use the architecture-

sensitive strategies jointly with the mechanism to be presented in Chapter 7 in

order to distinguish the architecturally-relevant code anomalies.

Similarly to the aspect-oriented strategies presented in Chapter 3, the

architecture-sensitive strategies defined in this section are structured in the form

name<entity> := condition. The name corresponds to the type of the code

anomalies detected by the strategy. The entity indicates the type of the code

element over which the strategy is applied. The condition part encompasses the

combination of one or more measure outcomes related to the code element under

analysis. The condition parts related to the architecture-sensitive metrics are

highlighted in gray in the following descriptions of the strategies. Additionally,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

141

the definition of the strategies relies on symbolic constants in the place of

thresholds (e.g. LOW and HIGH). The choice of these values will depend on the

characteristics of the system and programmers styles.

Furthermore, it is discussed how each proposed strategy would help to

identify code elements that may harmfully impact the implemented architecture.

In the next sections, the proposed strategies are grouped according to categories

presented in Lanza and Marinescu (2006): element anomalies and collaborative

anomalies. The Element Anomalies category refers to those code anomalies that

can be detected by looking at the code element as a single entity. The

Collaborative Anomalies category groups those code anomalies that emerge from

relationships among code elements.

6.3.1.
Detection Strategies for Element Anomalies

This section describes the architecture-sensitive strategies proposed to

identify element anomalies. Specifically, the proposed strategies detect the

following code anomalies: Feature Envy, Misplaced Class, Long Method and God

Class.

6.3.1.1.
Feature Envy (FE)

Feature Envy (Fowler et al., 1999) refers to methods which are more

interested in the data of other classes than the one it is actually in. This might be a

sign that the infected method was misplaced and that it should be moved to

another class. This situation favors the architectural degradation when the

accessed data and the infected method are not as architecturally close as they

should be (Godfrey and Lee, 2000; Knodel et al., 2008). The reason is that this

remote data-method increases the coupling degree, ripple effects and faults among

the architectural components.

The goal of the architecture-sensitive strategy is to ensure the detection of

Feature Envy occurrences that should be moved to another component. This

detection cannot be ensured by using the conventional strategy (Lanza and

Marinescu, 2006) because it does not consider whether the measured method and

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

142

the accessed data belong to different architectural components. In fact, the

conventional strategy only focuses on measuring the number of attributes a given

method accesses (using the ATFD clause) (Chapter 5), without considering in

which architectural component these attributes are defined.

The architecture-sensitive strategy is a step beyond because it considers

different types of accessed code elements, such as attributes and methods using

the NEE clause. In particular, it looks for methods that access a great amount of

code elements from a few components. To this end, the architecture-sensitive

strategy first verifies whether the method accesses more external code elements

than internal ones (using the ACL clause). Moreover, it checks whether the

accessed code elements are located in a few components (using the EFO clause).

The combination of these types of information suggests that the measured code

element should be defined in another component.

FE<method> := (ATFD > FEW or NEE > FEW) and
 (LAA > ONE THIRD or ACL < THIRD) and
 (FDP < FEW or EFO < FEW)

where,

ATFD (Access to Foreign Data): The number of distinct attributes the measured operation

accesses.

LAA (Locality of Attribute Accesses): The relative number of attributes that the measured

operation accesses on its class.

FDP (Foreign Data Providers): The number of classes where the accessed attributes belong

to.

6.3.1.2.
Misplaced Class (MC)

Misplaced Class (Fowler et al., 1999) occurs when a class depends on

classes from other packages more than on those from its own package. This

anomaly is very similar to Feature Envy (Fowler et al., 1999), but it occurs at the

class level. Classes that strongly depend on external ones are likely to have

harmful impact on the system architecture since they may introduce unwanted

coupling between components as well as architectural anomalies, such as

Scattered Parasitic Functionality. Thereby, it leads to unwanted ripple effects

over different parts of the system architecture (Eick et al., 2001; Knodel et al.,

2008).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

143

In this context, the purpose of the architecture-sensitive strategy for

Misplaced Class is to complement the conventional one in order to detect classes

that depend more on external classes than on those defined in their component. To

this end, the conventional detection strategy for Misplaced Class (Lanza and

Marinescu, 2006) is enriched with architecture-sensitive metrics, such as ACL,

NEE and EFO. These metrics quantify different kinds of information extracted

from the relationships among external code elements.

MC<class> := (CL > LOW or ACL > LOW) and

 (NOED > HIGH or NEE > FEW) and

 (EFO > LOW)

where,

CL (Class Locality): The relative number of dependencies that a class has in its own

package.

NOED (Number Of External Dependencies): The number of classes from other packages

on which the measured class depends.

Furthermore, we proposed a second detection strategy for Misplaced Class.

The new strategy exploits information regarding the architectural concerns a given

class modularizes. It verifies whether the measured class modularizes more

external concerns than those that are implemented in its enclosing component. If

so, the measured class may introduce a scattered concern over components and,

hence, it should be moved to another component. Note that this strategy could be

defined in the scope of the previous one by using the OR logical operator.

However, we opted for documenting it in an independent fashion to facilitate its

understanding.

MC<class> := (CoL > LOW) and (NAC > LOW)

6.3.1.3.
Long Method (LC)

Long Method (Fowler et al., 1999) occurs when a method has grown too

large. This kind of methods is difficult to reuse. However, certain methods need to

be large due to their nature (e.g. transactional methods), but they do not affect the

system architecture. In particular, long methods tend to adversely impact the

software architecture when they modularize concerns that should be implemented

by external code elements. (Fowler et al., 1999). In critical cases, methods dealing

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

144

with many concerns can get out of control and make their enclosing component

hard to maintain.

In this context, the purpose of the architecture-sensitive strategy for Long

Method is to complement the conventional one in order to detect the

architecturally-relevant occurrences. To this end, the strategy is not limited to

quantify complex methods in terms of their size (i.e. Lines Of Code) and

cyclomatic complexity (using the CYCLO clause) as the conventional strategy

does (Lanza and Marinescu, 2006). Besides, the architecture-sensitive strategy

analyzes the number of architectural concerns that the measured method

modularizes (using the NAC clause). This strategy is based on the following

hypothesis: the higher the number of architectural concerns a method implements,

the higher the likelihood of that method to be dealing with a concern that should

be modularized in another component is.

LM<method> := (LOC > HIGH or CYCLO > HIGH) and (NAC > LOW)

where,

CYCLO (Cyclomatic Complexity): The number of linearly independent paths through a

measured method source code.

LOC (Lines Of Code): The number of lines of code the measured method contains.

6.3.1.4.
God Class (GC)

God Class (Martin, 2002) occurs when a class centralizes the system

functionalities. However, classes can be large and complex even when

implementing a single concern. These classes are not likely to be indicators of

deeper design problems (Olbrich et al., 2010, Chapter 4). On the other hand, the

existence of God Classes modularizing more than one concern may indicate that

their enclosing component suffers from the Component Concern Overload

anomaly. In addition, when these classes are implementing concerns that are also

modularized by external elements, it may indicate the introduction of Scattered

Concern Functionality.

In this context, the architecture-sensitive strategy for God Class is not

limited to measure the complexity of a class in terms of number and complexity of

its methods, as the conventional strategies does. The architecture-sensitive

strategy verifies whether a complex class modularizes more than one architectural

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

145

concern (using the NAC clause). Additionally, it quantifies the cohesion of the

class based on the architectural concerns shared by its methods (using CoC

clause). This quantification is motivated because the TCC measure (Marinescu,

2004) used in the conventional strategy (Appendix B) has proved to be inaccurate

when quantifying a class cohesion (Chae et al., 2006). The fact that two methods

use a common attribute does not necessarily imply that they modularize the same

concern.

GC<class> := (WMC > MANY and NAC > LOW and CoC < LOW)

where,

WMC (Weighted Method Count): The sum of the complexity of all methods in a class.

6.3.2.
Detection Strategies for Collaborative Anomalies

This section describes the architecture-sensitive strategies proposed to

identify various collaborative anomalies. Specifically, the proposed strategies

detect the following code anomalies: Shotgun Surgery, Intensive Coupling, and

Dispersed Coupling. These code anomalies were chosen because they were good

indicators of architectural degradation symptoms in previous studies (Chapter 4).

6.3.2.1.
Shotgun Surgery (SS)

Shotgun Surgery occurs when a method or a class has many other code

elements depending on it (Fowler et al., 1999). The problem is that if a change in

the infected code element occurs, other code elements might need to change as

well. This scenario makes the software architecture harder to maintain when the

required changes are scattered over different components (Eick et al., 2001;

Maccormack et al., 2006). The reason is because changes may be required on

components that modularize different concerns or have been implemented by

different developers. Therefore, it is expected that these changes demand more

time and effort to be performed than if they were concentrated in methods or

classes belonging to the same component, thus increasing the likelihood of

missing an important change.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

146

The purpose of the architecture-sensitive strategy for Shotgun Surgery is to

complement the conventional one in order to detect those occurrences that would

significantly impact several parts of the system architecture. The conventional

strategy for Shotgun Surgery (Lanza and Marinescu, 2006) does not ensure that

kind of detection because it counts only the number of affected classes (using the

CC clause) and methods (using the CM clause), without distinguishing whether

such methods and classes belong to the same component or not (Chapter 5). The

architecture-sensitive strategy is a step forward because it is not limited to only

analyze methods as the conventional strategy does. The proposed strategy can be

also applied to other code elements like classes. In addition, it quantifies the

number of client components a given code element has (using the EFI clause). A

high EFI value means that there are code elements defined in several components

that depend on the measured code element.

Furthermore, the proposed strategy verifies whether the measured code

element modularizes several architectural concerns (using the NAC clause). The

motivation for this verification is that whenever the measured code element

implements more architectural concerns, it is likely to be changed more often.

Therefore, changes performed in the infected code element could be propagated to

components that do not necessarily modularize the modified concern, affecting

independent parts of the system architecture.

SS<element> := (CM >FEW and CC > FEW) or (EFI >LOW and NAC > LOW)

where,

element can be instantiated as a method or a class.

CM (Changing Methods): The number of methods that call the measured element.

CC (Changing Classes): The number of classes in which the methods that call the

measured element are defined.

6.3.2.2.
Intensive Coupling (IC)

Intensive Coupling refers to a class or method strongly depends on methods

scattered in few classes (Lanza and Marinescu, 2006). The infected element is

likely to be the source of architecture degradation symptoms when it depends on

external methods (Godfrey and Lee, 2000; Eick et al., 2001; van Gurp and Bosch,

2002; Maccormack et al., 2006; Sarkar et al., 2009b). The reason is that when

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

147

Intensive Coupling is introduced among components, it affects the reusability of

these components and changes performed in one component might be propagated

to the others.

In this context, the purpose of the architecture-sensitive strategy is to

complement the conventional one in order to ensure the detection of Intensive

Coupling at the architecture level. This kind of detection cannot be ensured by

using the conventional strategy because it only considers the number of classes

(using the CINT clause) and methods (using the CDISP clause) coupled to the

measured method (Chapter 5). That is, the conventional strategy is limited to

identify methods as instances of Intensive Coupling and does not verify whether

the accessed elements: (i) are instances of other elements such as classes and (ii)

belong to the same component. Unlike the conventional strategy, the architecture-

sensitive one first verifies whether the measured code element, not limited to

method, accesses many external code elements (using the NEE clause). Secondly,

the proposed strategy checks whether the accessed code elements are defined in

less than few components (using the EFO clause).

IC<element> := (CINT > SHORT and NEE > MANY) and
 (CDISP < FEW or EFO < FEW)

where,

element can be instantiated as a method or a class.

CINT (Coupling Intensity): The number of distinct methods called by the measured

element.

CDISP (Coupling Dispersion): The number of classes in which the called methods are

defined is divided by CINT.

6.3.2.3.
Dispersed Coupling

A class or a method suffers from Dispersed Coupling when it accesses

many other classes or methods (Lanza and Marinescu, 2006). Classes or methods

infected by Dispersed Coupling are likely to be changed due to different reasons

(Lanza and Marinescu, 2006). However, not all the Dispersed Coupling instances

impact the system architecture. Code elements that depend on several components

impact the system architecture more than those code elements that only depend on

local ones (Eick et al., 2001; van Gurp and Bosch, 2002). The reason is because

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

148

the former code elements are likely to be associated with Overused Interface

anomaly and thus, are targeted as a result of changes performed in different

components (Chapter 4). Additionally, code elements that depend on several

components are hard to be reused because several external elements must be

referenced to as well. In extreme situations, Dispersed Coupling among

components leads software systems to their complete redesign (Eick et al., 2001;

van Gurp and Bosch, 2002; Maccormack et al., 2006; Sarkar et al., 2009b).

In this context, the purpose of the architecture-sensitive strategy is to ensure

the detection of Disperse Coupling at the architecture level. To this end, the

architecture-sensitive strategy looks for classes and methods that access more than

few external elements (using the NEE clause). Additionally, it verifies whether the

accessed code elements belong to more than few components (using the EFO

clause). Note that this detection is not supported by the conventional strategy

(Lanza and Marinescu, 2006) because it only considers methods that access other

methods (using the CINT clause) from many classes (using the CDISP clause). In

other words, the conventional strategy: (i) is limited to consider only methods as

instances of Dispersed Coupling and (ii) does not verify whether the accessed

classes belong to different components.

DC<element> := (CINT > SHORT or NEE > FEW) and
 (CDISP > FEW or EFO > FEW)

where,

element can be instantiated as a method or a class.

As it can be noticed, the strategy for Dispersed Coupling relies on the same

metrics used by the strategy for Intensive Coupling. However, unlike the former,

Dispersed Coupling uses the FEW constant associated with the measure NEE in

the first clause. The reason is that such strategy does not need to enhance a strong

coupling with external code elements. Additionally, Dispersed Coupling uses the

“greater than” operator in the second clause because the strategy needs to ensure

that the dependencies of the measured class or method are not concentrated in a

few components.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

149

6.4.
Assessment of Architecture-Sensitive Strategies

This section describes a study conducted to evaluate the proposed

architecture-sensitive detection strategies. Specifically, the study aims at partially

answering the fourth and last research question of this work (Section 1.4): To

what extent leveraging architecture-sensitive information and inter-relationships

among code anomalies improves the accuracy of conventional strategies when

identifying architecturally-relevant code anomalies? In this study, this research

question was decomposed into three research questions (RQ):

RQ4.1: Can the proposed architecture-sensitive detection strategies

accurately identify architecturally-relevant code anomalies?

RQ4.2: If so, to what extent each kind of architecture-sensitive information

is useful in this process?

RQ4.3: To what extent the different granularity levels of architectural

concern mappings influence the accuracy of architecture-sensitive detection

strategies?

While there are many tools available to recover mappings between

architectural components and code elements, just a few of them is devoted to

recover the architectural concerns. In this context, the goal of RQ4.2 is to

understand the contribution of both kinds of architecture-sensitive information in

the detection of architecturally-relevant code anomalies. This knowledge allows

engineers to be aware of the amount of architecturally-relevant code anomalies

that could be missed if a particular kind of architectural information is not

leveraged in the detection process.

Concern mappings on the system implementation can be specified at a wide

range of levels, from low-level (e.g. code statements) to high-level (e.g. whole

packages). It is acknowledged that specifying concerns at method-level is much

more time and resource consuming than at class-level. Thus, one could expect that

architects and developers prefer to project concerns at class-level instead of at

method-level in order to save effort. In this context, the goal of RQ4.3 is to

understand to what extent it is worth to invest efforts on projecting concerns at

method-level in order to get an accurate identification of architecturally-relevant

code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

150

In this context, we defined our study and its goals as:

Analyze: the proposed architecture-sensitive detection strategies

For the purpose of: evaluating their accuracy

With respect to: the identification of architecturally-relevant code

anomalies

From the viewpoint of: systems architects, developers and researchers

In the context of: software systems from different domains and following

different architectural decompositions.

6.4.1.
Hypotheses

In order to answer the three aforementioned research questions, we have

defined the null and alternative hypotheses as shown in Table 6.3.

Table 6.3: Research questions and hypotheses of the study.

Research Questions Hypotheses

RQ4.1

For each of the architecture-sensitive strategies proposed:

Null Hypothesis, H10: The architecture-sensitive strategy does not

significantly enhance the accuracy of the conventional ones when

detecting architecturally-relevant code anomalies.

Alternative Hypothesis, H1A: The architecture-sensitive strategy

significantly enhances the accuracy of the conventional ones when

detecting architecturally-relevant code anomalies.

RQ4.2

For each kind of the architecture-sensitive information used in the

detection strategies proposed:

Null Hypothesis, H20: The kind of architecture-sensitive information

does not significantly increase the accuracy of the architecture-sensitive

strategies.

Alternative Hypothesis, H2A: The kind of architecture-sensitive

information significantly increases the accuracy of the architecture-

sensitive strategies.

RQ4.3

Null Hypothesis, H30: The accuracy of the architecture-sensitive

strategies is higher when using concerns mapping at method-level than at

class-level.

Alternative Hypothesis, H3A: The accuracy of the architecture-sensitive

strategies is not higher when using concerns mapping at method-level

than at class-level.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

151

6.4.2.
Variable Selection

The following independent and dependent variables have defined the

following in order to test our hypotheses.

Independent Variables. In H10, there are as many independent variables as

there are architecturally-relevant code anomalies detected by the proposed

strategies. Each variable, ASi,j, indicates the number of times that the proposed

strategy i detects architecturally-relevant code anomalies in version vj. As

described in Section 6.4.4, all thresholds used when testing the architecture-

sensitive detection strategies were confirmed by the architects and developers

involved in this process.

In H20, there are two independent variables, CPi,j and CNi,j, indicating the

number of times the proposed strategy i detects architecturally-relevant code

anomalies using only component and concern projections in version vj,

respectively. In H30, there are also two independent variables. CMi,j indicates the

number of architecturally-relevant code anomalies detected by the strategy i using

only concern mappings at the method-level in version vj. Similarly, CCi,j,

indicates the number of architecturally-relevant code anomalies detected by the

strategy i using only concern mappings at the class-level in version vj. Section

6.4.4 describes how the concern projection tasks were conducted.

Dependent Variables. This study assesses the accuracy of the proposed

strategies when detecting architecturally-relevant code anomalies. Therefore, there

is only one Boolean dependent variable, ARi,j, for all the null hypotheses,

indicating whether the code element i is considered to be architecturally-relevant

in version vj. As described in Section 6.4.4, all the architecturally-relevant code

anomalies used in testing these hypotheses were confirmed by the involved

architects and developers of the target systems.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

152

6.4.3.
Selection Criteria and Target Systems

Several criteria were established for selecting suitable software systems to

this study. The criteria used are presented in Table 6.4.

Table 6.4: Criteria used for the selection of target systems.

 The target system:

C1 was modeled using documented guidelines or well-known architecture styles.

C2 has the intended architecture design available.

C3 has the architects and developers available.

C4 has a manageable size.

C5 is infected by a rich set of code anomalies.

C6 presents multiple symptoms of architectural degradation.

C7 underwent changes.

C8 was implemented by developers with different levels of programming skills.

C9 has architectural concerns implemented at different granularity levels.

C10 has architectural components structured in different groups of code elements.

As it can be noticed, criteria C1-C8 have been used in previous studies

(Chapters 4 and 5). Similarly to these studies, we needed to ensure that the target

systems were affected by code anomalies and architectural degradation symptoms.

Criterion C9 was added to the criteria list because we wanted to observe whether

the projection of concerns at different granularity levels affected the accuracy of

the proposed strategies. Finally, criterion C10 allows analyzing the accuracy of the

proposed strategies when components are implemented by different groups of

code elements such as: a single package or a group of classes belonging to

different packages.

Based on these criteria, five (05) software systems have been studied.

Three of them are desktop applications implemented in Java that aimed at

managing oil operations (e.g. production, stock and distribution). Since there are

copyright constraints, the fictitious name of S1, S2 and S3 are used in this thesis

to refer to them. The main characteristics of these systems are described in

Appendix A. The fourth and fifth systems correspond to Health Watcher and

MobileMedia, respectively. This study considers only systems implemented using

object-oriented programming. Systems implemented using aspect-oriented

programming and in accordance with the aforementioned criteria were not found

available.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

153

6.4.4.
Procedures for Data Collection and Analysis

As the assessment of architecture-sensitive strategies relies on some

systems used in previous studies (e.g. Health Watcher and MobileMedia), part of

the information gathered in these studies was considered. Additionally, as shown

below, we replicated some of the data collection tasks performed in these previous

studies to assess the accuracy of architecture-sensitive strategies.

Recovering the Architecture Design. Similarly to previous studies, we

counted on the help of architects and developers of S1, S2 and S3 in order to

document their architecture design and get information about its correspondence

with the system implementation. We spent around ten months in collaborative

work with S1, S2 and S3 architects and developers in order to gather that detailed

information. Finally, we produced the mappings of the architectural components

on the code elements for each target system. In these systems, architectural

components were implemented by different sets of code elements, such as groups

of classes constituting a single package and classes that belong to different

packages.

Recovering the Architectural Concerns. In this stage, for Health

Watcher and MobileMedia, we considered the architectural concerns selected n

previous studies. In the context of S1, S2 and S3 systems, we asked their

architects and developers to select the architectural concerns according to the

same criteria used in the previous studies. In other words, architectural concerns

that: (i) are clearly relevant according to their knowledge of these systems, (ii) are

involved in different important functionalities, (iii) present different scattering

degree in the architectural design, and (iv) are projected in the source code at

different granularity levels. For each system we counted on at least three

architects and developers that had experience on maintaining it for more than four

years. Additionally, two researchers were dedicated to support systems architects

and developers in that task. All the involved people have deep knowledge on: (i)

recovering and documenting system architectures and (ii) guidelines for modeling

and implementing software systems.

In the study, we considered six architectural concerns for Health Watcher:

Concurrency, Distribution, Persistence, Complaint, Health Unit, and View; nine

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

154

architectural concerns for MobileMedia: Security, Concurrency, Screen, Persistence,

Photo, Music, Video, Sorting, and Favorite; five architectural concerns for S1:

Exportation, Folder, Importation, Scenario, and User; five architectural concerns for

S2: Logger, Notification, Route, Point, and Transaction; five architectural concerns for

S3: Concurrency, Mixture, Product, Report, and Scenario. Descriptions of the

architectural concerns documented for S1, S2 and S3 are provided in Table 6.5,

whilst descriptions of concerns documented for Health Watcher and MobileMedia

are given in Table 4.3.

Table 6.5: Architectural concerns considered in this study for S1, S2 and S3.

System
Architectural

Concern
Description

S1

Export Manages and defines the rules of products export.

Folder Manages and defines rules about how scenarios are stored.

Importation Manages and defines the product import rules.

Scenario
Visualizes and groups the results of all operations (e.g.

importation, exportation) in a given time window.

User
Manages the user’s access control, privacy and

authentication.

S2

Logger Saves information about program execution and/or errors.

Notification Defines a system notification to users (i.e. email).

Route
Represents a route of products between two points in the

logistics context.

Point Manages all the points in the system.

Transaction
Stores and recovers data from the database and ensuring

ACID properties.

S3

Concurrence
Provides a control for avoiding inconsistent information

stores in the system database.

Mixture Manages all the compositions of products in the system.

Product Manages all the products in the system.

Report Represents the report exhibition, exportation and printing.

Scenario
Visualizes and groups the results of all operations (e.g.

importation, exportation) in a given time window.

Applying the Conventional Detection Strategies. The conventional

detection strategies were only applied in S1, S2, and S3 systems, as we reused the

results gathered for Health Watcher and MobileMedia in Chapter 5. In order to

apply the conventional strategies in S1, S2 and S3, we followed the same

procedures used in previous studies. In other words, we first selected the

conventional detection strategies that were used in these studies. Then, we decided

to gather the code metrics used in the strategies with well-known code analyzers

(Sonar, 2009; Understand, 2009). The outcomes of these metrics were combined

according to the strategy definition. Similarly to previous studies, we relied on

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

155

these code analyzers because they altogether collect all the required metrics.

Regarding the threshold selection, we followed the methodology described in

Section 4.1.4. Finally, all the used thresholds were validated with systems

architects and developers and, are available in Appendix B.

Applying the Architecture-Sensitive Detection Strategies. The

application of the architecture-sensitive detection strategies was supported by our

tool, SCOOP (Section 7.7). This tool supports the collection of all proposed

architecture-sensitive metrics (Section 6.2). Additionally, SCOOP offers a

Domain-Specific Language, allowing engineers to tailor a set of specific

thresholds according to the system characteristics. As mentioned before, the

thresholds of the proposed metrics were first calibrated using guidelines reported

in the literature. Additionally, different thresholds were employed in order to

select those that presented the best accuracy rates, similarly to the conventional

strategies (Section 4.1.4).

Identifying the Ground Truth of Architecturally-Relevant Code

Anomalies. The ground truth of architecturally-relevant code anomalies was built

to analyze the accuracy of architecture-sensitive strategies and, the conventional

ones when identifying architecturally-relevant anomalies. In order to build the

ground truth, architects, developers and researchers worked altogether, similarly

to previous studies (Chapter 5). A phase was devoted to identify the architecture

degradation symptoms in each target system. Additionally, a code review was

performed to reveal the architecturally-relevant code anomalies in these systems.

It took around six months to build the ground truth, considering a team of four

people. We only considered in the ground truth those anomalous code elements

whose impact on the architecture design was confirmed by all the architects and

developers involved in this task.

Analyzing the Accuracy of Detection Strategies. This analysis was

carried out similarly to its counterpart presented in Section 5.1.4. We measured

the accuracy of the architecture-sensitive strategies by calculating precision and

recall rates after providing a list of anomalous code elements candidates. The

purpose of precision is to verify to what extent the proposed detection strategies

are able to select only the code elements that harmfully impact the architecture.

On the other hand, recall measures verify if the strategies are able to detect all

these critical code elements. The precision and recall measures were computed

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

156

manually based on the list of code anomalies provided by the architecture-

sensitive strategies and the ground truth identified by architects and developers.

Equations detailing how the precision and recall rates were calculated can be

found in Section 5.1.4. A similar process was conducted for analyzing the

accuracy of the conventional detection strategies in S1, S2 and S3 systems.

6.4.5.
Findings on Architecture-Sensitive Detection Strategies

This section discusses the main findings associated with the three research

questions presented in Section 6.4. In particular, Section 6.4.5.1 discusses whether

and to what extent architecture-sensitive strategies help engineers to detect

architecturally-relevant code anomalies. Section 6.4.5.2 reports the contributions

of each kind of architecture-sensitive information (i.e. architectural component

and architectural concern projections) in the detection of architecturally-relevant

code anomalies. Finally Section 6.4.5.5 analyzes the influence of projecting

architectural concerns at different granularity levels on the accuracy of

architecture-sensitive strategies.

6.4.5.1.
Accurate Detection of Architecturally-Relevant Code Anomalies

Similarly to the assessment of the conventional detection strategies in

Chapter 5, we considered that an architecture-sensitive strategy that detects code

anomalies of type T achieves 100% of precision and 100% of recall if, and only if,

it pinpoints all anomalies of type T identified in the ground truth. The precision

and recall of both architecture-sensitive and conventional strategies on detecting

architecturally-relevant code anomalies are presented in Table 6.4. The token '-' is

used to represent the cases of code anomalies that did not occur in the target

systems.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

157

Table 6.6: Results for the architecture-sensitive detection strategies analyzed.

Code Anomaly
True Positives False Positives False Negatives Precision Recall

HW MM S1 HW MM S1 HW MM S1 HW MM S1 HW MM S1

Disperse Coupling 23 6 40 14 3 17 3 2 8 0.62 0.67 0.70 0.88 0.86 0.93

Feature Envy 16 7 34 14 4 9 4 2 14 0.52 0.64 0.79 0.80 0.78 0.71

God Class 5 6 26 1 2 12 0 2 8 0.83 0.75 0.68 1.00 0.75 0.76

Intensive Coupling 20 7 40 9 3 21 4 2 12 0.69 0.70 0.66 0.83 0.78 0.77

Long Method 41 12 42 21 7 22 0 5 10 0.57 0.63 0.66 1.00 0.71 0.81

Misplaced Class 3 3 - 2 1 - 0 0 - 0.60 0.75 - 1.00 1.00 -

Shotgun Surgery 11 7 19 7 3 8 4 2 5 0.61 0.70 0.70 0.73 0.78 0.79

 S2 S3 S2 S3 S2 S3 S2 S3 S2 S3

Disperse Coupling 27 15 10 7 3 1 0.73 0.68 0.89 0.94

Feature Envy 46 40 10 6 5 2 0.82 0.87 0.91 0.95

God Class 75 72 12 20 13 15 0.86 0.78 0.84 0.83

Intensive Coupling 25 42 7 19 2 9 0.76 0.69 0.91 0.82

Long Method 44 48 15 14 22 20 0.74 0.77 0.67 0.71

Misplaced Class - - - - - - - - -

Shotgun Surgery 20 26 15 14 6 4 0.57 0.65 0.77 0.87

Table 6.7: Results for the conventional detection strategies analyzed.

Code Anomaly
True Positives False Positives False Negatives Precision Recall

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Disperse Coupling 31 12 8 82 32 10 17 18 9 0.27 0.27 0.44 0.65 0.40 0.48

Feature Envy 19 24 18 21 32 19 29 27 24 0.48 0.43 0.48 0.40 0.47 0.43

God Class 15 39 31 17 43 52 19 49 56 0.47 0.47 0.37 0.44 0.44 0.36

Intensive Coupling 30 18 26 66 7 44 21 9 25 0.31 0.22 0.37 0.59 0.66 0.51

Long Method 29 33 32 107 92 61 22 33 36 0.21 0.26 0.34 0.57 0.50 0.47

Misplaced Class - - - - - - - - - - - - - - -

Shotgun Surgery 10 20 14 10 25 13 24 15 16 0.51 0.44 0.52 0.42 0.56 0.46

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

158

Precision Analysis. In terms of precision, the results in Table 6.6 show that

the architecture-sensitive strategies were highly accurate. They consistently

detected architecturally-relevant code anomalies in all analyzed systems. In 87%

of the cases, the precision of these strategies was higher than 60% when

identifying architecturally-relevant anomalies. On the other hand, in 72% of the

cases, the conventional strategies presented precision rates (much) lower than

45% (Table 6.7). Therefore, the architecture-sensitive strategies significantly

improved the precision rates of conventional ones when identifying

architecturally-relevant code anomalies. On average, the precision rate of the

conventional strategies was enhanced in more than 35%. These results suggest

that exploiting architecture-sensitive information to detect code anomalies would

help engineers to save time when reviewing code that may harmfully impact the

system architecture.

Recall Analysis. In terms of recall, Table 6.6 shows that the architecture-

sensitive strategies were also accurate to detect architecturally-relevant anomalies

in all target systems. Architecture-sensitive strategies achieved recall rates higher

than 60% in 100% of the cases. On the other hand, conventional strategies (Table

6.7) presented recall rates lower than 50% in 72% of the cases. Therefore, the

recall of the conventional strategies was improved in around 50%. We verified

that this superiority of architecture-sensitive strategies was directly related to their

ability to better identify those code elements relevant to the architecture

decomposition.

We observed that exploiting architecture-sensitive information in the

detection strategies had a stronger influence in the recall rates than in the precision

ones. We suspect that this occurs because our strategies were built to not only

detect architecturally-relevant code anomalies (Section 6.3). That is, they also

detect code anomalies that can harm the system in other perspectives (e.g. fault-

proneness)are . Therefore, the architecture-sensitive strategies were also able to

better detect anomalous code elements that were not necessarily related to

architectural degradation symptoms.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

159

6.4.5.2.
Impact of Architecture-Sensitive Information is Manifold

Once the precision and recall rates were analyzed, this study investigated the

role of each kind of architecture-sensitive information in these rates.

6.4.5.3.
Mappings of Architectural Components and Code Elements

First, we have analyzed the influence of architectural component mappings

on the accuracy of the architecture-sensitive detection strategies when only

considering the architecture-sensitive metrics. To this end, the accuracy of the

strategies was analyzed when detecting code anomalies in architectural

components that match and do not match the implementation-level packages. The

goal was to contrast the accuracy improvement in cases where architectural

component mappings matched or not the package structure in the system

implementation. In particular, we considered the three collaborative code

anomalies (Section 6.3.2) to conduct this investigation; i.e. Shotgun Surgery,

Disperse Coupling and Intensive Coupling. These code anomalies were chosen

because they are particularly harmful to the architecture design when their code

structures introduce relationships between architectural components.

Our analysis revealed that none of the target systems presented a perfect

match between its architectural components and implementation-level packages.

This result confirmed the intuition that packages often do not correspond to

components. Specifically, 64% of the architectural components (45 of 70) did not

match at all the implementation-level packages. In these components, the

architecturally-sensitive strategies significantly improved the accuracy rates of

conventional strategies. Figure 6.3 illustrates this situation in the context of the

precision for each analyzed code anomaly.

In particular, the precision improvement of the architecture-sensitive

strategies in Figure 6.4 was caused by the fact that a single component grouped

several packages. Certain code elements were classified as anomalous by the

conventional strategies because they had relationships with elements defined in

other packages. However, in several cases, all the involved packages belonged to

the same component. Therefore, the relationships introduced by the anomalous

element did not affect the system architecture. For example, the method

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

160

RouteService.recordArchs() in the S1 system was classified as Disperse Coupling by

the conventional strategy. The reason is that the latter uses data from different

packages such as routedb and archdb. However, RouteService.recordArchs() was

correctly neglected by the architecture-sensitive strategy as the packages routedb,

archdb and routeservice (where the method is defined) belonged to the same

component RouteServer. Similar situations were often observed with the other

code anomalies in all target systems.

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

P
re

ci
si

o
n

 R
at

e
s

(%
)

Target Systems

Shotgun Surgery

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

P
re

ci
si

o
n

 R
at

e
s

(%
)

Target Systems

Disperse Coupling

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

P
re

ci
si

o
n

 R
a

te
s

(%
)

Target Systems

Intensive Coupling

Legend

Architecturally-relevant strategy

Conventional strategy

Figure 6.4: Precision rates (%) when components do not match packages.

Figure 6.5 depicts the recall rates of both conventional and architecture-

sensitive strategies in the context of components that do not match packages. The

recall improvement of the architecture-sensitive strategies in that figure was

caused by the fact that several classes defined in the same package were mapped

to different components. Several anomalous code elements were neglected by

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

161

conventional strategies because they introduced dependencies between classes in

the same package. However, in many cases these classes were mapped to different

components. Unlike the conventional strategies, the architecture-sensitive ones

were able to distinguish these relationships as architecturally-relevant. For

example, the method LoginAction.notifyUsers() in the S1 system was not classified

as Disperse Coupling by the conventional strategy. The reason is that this method

accesses data in the classes NotificationData and LoginLocator, which are defined in

the same package client.action. However, LoginAction.notifyUsers() was correctly

detected by the architecture-sensitive strategy as the classes NotificationData and

LoginLocator belonged to different components Notification and Login, respectively.

Similar situations were often observed with the other code anomalies in all target

systems.

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

Re
ca

ll
Ra

te
s

(%
)

Target Systems

Shotgun Surgery

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

R
e

ca
ll

R
at

e
s

(%
)

Target Systems

Disperse Coupling

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

R
e

ca
ll

R
at

e
s

(%
)

Target Systems

Intensive Coupling

Legend

Architecturally-relevant strategy

Conventional strategy

Figure 6.5: Recall rates (%) when components do not match packages.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

162

As expected, architectural component metrics (Section 6.2.1) were more

accurate than conventional code metrics to detect architecturally-relevant Shotgun

Surgeries, Disperse Couplings, and Intensive Couplings. For example, more than

69% of architecturally-relevant Shotgun Surgeries were associated with tight

coupling between components. Interesting cases emerge from analyzing other

detection strategies. Unexpectedly, the concern metric ACL (Section 6.2.2) was

not effective in the detection of some architecturally-relevant Feature Envies. This

occurred because such relevant instances were more related to code elements

defined in their own packages than to external code elements. This is a finding

that should be tested in the future.

Finally, it was observed that the precision and recall rates between

conventional and architecture-sensitive strategies did not significantly vary in

components that perfectly match implementation-level packages. This means that

architecture-sensitive information did not significantly improve the accuracy of

conventional strategies in 36% (15 of 70) of the architectural components. On the

other hand, this observation suggests that a great amount of architecturally-

relevant anomalies would be missed if architecture-sensitive metrics (e.g. NEE,

EFO, EFI) were not used in systems whose architectural decomposition did not

correspond to the implementation packages structure.

6.4.5.4.
Mappings of Architectural Concerns and Code Elements

We observed that some types of code anomalies benefit the most from

concern-sensitive information. Architecture-sensitive strategies for God Class and

Misplaced Class always presented precision and recall rates higher than 65%. A

careful analysis of these occurrences revealed that they were the strongest

indicators of architectural degradation symptoms in the target systems. On

average, 79% of God Classes were related to architectural degradation symptoms,

as well as 67% of Misplaced Classes. Architecture-sensitive strategies were able

to detect on average more than 80% of these critical code elements. However, a

significant proportion of these critical code elements, more than 50%, were not

detected by any conventional strategy.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

163

Complex classes whose methods access attributes in common, but realize

different concerns (e.g. Controller in the MobileMedia system), were only detected

as God Class by the architecture-sensitive strategy. One of the reasons is that the

cohesion metric used by the architecture-sensitive detection strategy (CoC) is

sensitive to the concerns that the class methods implement (Section 6.2.2).

Additionally, the metric helped to identify other architecturally-relevant code

anomalies like occurrences of Feature Envy. For instance, the

Controler.showImageList() and Controller.handleCmd(..) methods contributed to the

low cohesion of the Controller class. An analysis of these methods revealed that

they accessed more data from external classes than from those defined in their

own component to realize an external concern, confirming the Feature Envy

nature.

In particular our results indicated that concern-based metrics (i.e. CoC, NAC

and CoL) were the most effective on the detection of architecturally-relevant God

Classes, Long Methods and Misplaced Classes. On average, 83% of

architecturally-relevant God Classes were related to widely-scoped concerns as

well as 78% of Long Methods and 60% of Misplaced Class. This finding shows

that developers would not be able to accurately detect a significant amount of

critical code elements without considering concern information.

Moreover, we observed that the code anomalies with highest detection

accuracy were often caused by an inappropriate modularization of the

architectural concerns. A deeper analysis of these anomalies revealed that they

were indicators of multiple architectural problems. For instance, God Classes

were related to Connector Envy, Scattered Functionality, Component Concern

Overload and, Overused Interface; Misplaced Classes were related to Cyclic

Dependencies, Ambiguous Interfaces, and Scattered Functionality.

It is important to highlight that strategies for detecting those anomalies

classified in the "Element Anomalies" category were not the only ones that

benefited from the architectural concern information. Such information also

contributed to emphasize the architectural relevance of code anomalies classified

in the "Collaborative Anomalies" category. For instance, around 16% of

architecturally-relevant Intensive Couplings, 23% of architecturally-relevant

Disperse Couplings, and 33% of architecturally-relevant Shotgun Surgeries were

related to the inappropriate modularization of architectural concerns.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

164

The results gathered in this evaluation suggest that mappings of

architectural concerns would help engineers to accurately identify the most critical

anomalous code elements to the architectural design. Therefore, engineers could

rely on using mappings of architectural concerns to better identify which

anomalous code elements should be refactored first.

6.4.5.5.
Impact of Concern Granularity Level

This subsection analyzes the influence of mapping architectural concerns at

different granularity levels (method-level and class-level) on the accuracy of

architecture-sensitive strategies. To this end, we assessed the percentage of

detected architecturally-relevant code anomalies when considering only

architectural concerns projected at method- and class-level.

The results of this analysis are summarized in Figure 6.6. For each analyzed

code anomaly, we show the accuracy of architecture-sensitive strategies when

exploiting architectural concerns projected at method- and class-level in the target

systems. It is important to note that we are only presenting in the figure the results

regarding those strategies that exploit architectural concern information. Thus,

architecture-sensitive strategies for detecting Disperse Coupling and Intensive

Coupling are not analyzed in this context.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

165

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

A
cc

u
ra

cy
 R

at
e

s(
%

)

Target Systems

Shotgun Surgery

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

A
cc

u
ra

cy
 R

at
e

s
(%

)

Target Systems

Feature Envy

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

A
cc

u
ra

cy
 R

at
e

s
(%

)

Target Systems

Long Method

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

A
cc

u
ra

cy

R
a

te
s

(%
)

Target Systems

God Class

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3

A
cc

u
ra

cy
 R

at
e

s
(%

)

Target Systems

Misplaced Class

Legend

Concern projection at method-level

Concern projection at class-level

Figure 6.6: Accuracy rates (%) at different granularity levels of concerns.

Our results show that the detection of certain anomalies benefits the most

from the projection of architectural concerns at the method-level. For instance,

architecture-sensitive strategies that exploit concerns projected at the method-

level were able to detect around 40% more Long Methods, 32% more Feature

Envies, and 25% more God Classes than strategies that exploit concerns projected

at the class-level. This occurred because such detection strategies consider

detailed information at the method-level in order to identify anomalous code

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

166

structures. For instance, in order to detect God Classes, the detection strategy

analyzes the class cohesion in terms of the number of common concerns its

methods modularize. At first glance, these results might suggest that detection

strategies exploiting solely concerns projection at the class-level could miss more

than 20% of architecturally-relevant code anomalies.

However, an interesting finding emerges from analyzing the capability of

architecture-sensitive strategies to detect occurrences of other code anomalies,

besides those that the strategy is defined to detect. For instance, an analysis of the

architecturally-relevant God Class detected by exploiting concerns at the class-

level revealed that near to 35% of the architecturally-relevant Long Methods and

around 15% of the Feature Envies manifested in these anomalous classes. A

similar situation was observed for Misplaced Class and Feature Envy anomalies.

In particular, 33% of the architecturally-relevant Feature Envies manifested in

Misplaced Classes. As it can be noticed, this occurred because such code

anomalies manifested simultaneously in these cases.

The above results are interesting because they highlight that certain

anomalous structures might be indicators of other code anomalies. Even more

interesting is the fact that projecting concerns at the class-level could benefit the

detection of architecturally-relevant code anomalies that manifest at both class

and method levels. In particular, detections strategies that consider solely

concerns projected at the class-level would only miss around 17% of those code

anomalies identified by exploiting the concern projection at method-level. This is

a valuable result for the applicability of the architecture-sensitive strategies since

the manual projection of concerns at class-level is much less time and resources

consuming than at method-level. Additionally, it suggests that concerns

automatically recovered at class-level could be used without significantly

affecting the accuracy of the architecture-sensitive detection strategies.

6.4.6.
Imperfections in the Detection of Architecturally-Relevant Anomalies

As shown in Table 6.6, the proposed strategies presented imperfections in

the identification of the architecturally-relevant anomalies. In particular, around

18% of these code elements still remain undetected even after applying our

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

167

strategies. Our analysis indicated that the strategies imperfections are mainly

related to three causes: (i) they were not designed to detect only architecturally-

relevant code anomalies, (ii) inability to analyze relationships between code

anomalies, and (iii) incompleteness and incorrectness of the list of architectural

concerns used in the detection process. Other causes, such as the impact of the

selected thresholds should be analyzed in the future.

As previously mentioned, the architecture-sensitive strategies detect code

anomalies according to their definition, without focusing on a particular anomaly

effect. Additionally, code anomalies might favor other maintainability problems

(e.g. error-proneness) and are likely to be indicators of architectural degradation

symptoms in later versions of the system.

Regarding the second cause, the process of employing architecture-sensitive

detection strategies does not capture the relationship between anomalous code

elements in order to better distinguish their impact on the architecture design. For

instance, the detection of the Redundant Interface architectural anomaly requires

the analysis of multiple component interfaces to identify common dependencies

among them. Since a component interface may be mapped to different classes, the

analysis of a single code element may not be accurate enough; i.e., this analysis

does not distinguish whether it introduces (or not) redundant dependencies. In

particular, it was surprising the proportion of code anomalies related to Redundant

Interface detected in the target systems (66%). This occurred because such

anomalous code elements were associated with code duplications and/or high

coupling degree with external code elements. Similar situations occurred with

anomalous code elements related to Extraneous Connector (Garcia et al., 2009).

Regarding the third cause, several code anomalies were neglected by the

architecture-sensitive strategies due to the incompleteness and incorrectness of the

architectural concern mappings. Certain architectural concerns were incompletely

projected in the systems S2 and S3 (e.g. conversion of data). Therefore, the

architecture-sensitive metrics (Section 6.2) did not present high values. For

instance, instances of Long Method in MobileMedia, S2 and S3 were not detected

because the concern-based metrics reported that those elements were just realizing

a system concern. Similar situations occurred with Misplaced Class in Health

Watcher system, where the concern-based metrics did not reported that the class

was dealing with concerns realized by other components. Moreover, in some

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

168

cases, the value of the concern-based metrics was affected due to mistakes made

during the mappings stage. Some methods and attributes were not mapped to

certain concerns mainly in concern overlapping cases. As a consequence of these

mistakes, certain God Classes were not identified in the S2 system. An interesting

observation is that architectural component-based metrics were not significantly

affected by the projection imperfections. Less than 5% of anomalous code

elements were overlooked due to incorrect values gathered by these metrics.

6.4.7.
Threats to Validity

Threats to construct validity. A first threat concerns the way the ground

truth of code anomalies was identified. We are aware that code anomalies might

be accidentally related to architecture problems. However, we limited such threat

by considering only the architecturally-relevant code anomalies whose impact on

the architecture was confirmed by systems' developers and architects. Another

threat concerns the application of detection strategies. We tried to mitigate this

threat by involving several architects and developers in the selection of the

thresholds. Lastly, construct validity was threatened by how concerns were

selected and identified. We intentionally relied on an imperfect concern mapping

sample, which presented 8% of mapping mistakes similarly to samples provided

by existing feature recovery tools (Eisenbarth et al., 2003; FEAT, 2011; Nguyen

et al., 2011). The reason is because concern mapping mistakes seem to be

unavoidable even when the samples are provided by the system architects and

developers (Nunes et al., 2011).

Conclusion Validity. The number of evaluated systems and assessed

anomalies threats the conclusion validity. Five systems from multiple domains,

with different architecture decompositions and implemented by different teams

were used. Evidently, a higher number of systems is always desired. However, the

analysis of a bigger sample in this study would be impracticable since we relied

on the architecturally-relevant anomalies identified by architects and developers.

Thus, the sample can be seen as appropriate for a first exploratory investigation

(Kitchenham et al., 2006). The second issue is the completeness of code

anomalies and architectural problems. We analyzed a number of code anomalies

and architectural problems similarly to well-known studies (Maccormack et al.,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

169

2006; Moha et al., 2010; Olbrich et al., 2010). In addition, certain code anomalies

were not discussed (e.g. Small Class) since they were not good indicators of

architectural degradation symptoms in previous studies (Chapter 4).

External Validity. The main threat to external validity is related to the nature

of the evaluated systems. In order to minimize this threat we tried to use systems

with different sizes, that suffer from a different set of code anomalies and that

were implemented using different architectural styles and contexts (i.e. academy

and industry). However, we are aware that more studies involving a higher

number of systems should be performed in the future.

6.5.
Summary

By analyzing the state-of-the-art (Chapter 5), we verified that the

conventional detection strategies are unable to accurately detect those code

anomalies related to architectural degradation symptoms. One of the reasons is

that these strategies do not exploit architecture-sensitive information in the

anomaly detection process. In order to fill this gap, a suite of seven (07)

architecture-sensitive metrics was proposed in Section 6.2. This suite of metrics

relies on the proposed formalism (Section 6.1) and quantifies modularity

properties (e.g. coupling and cohesion) of code elements based on the

architectural components and concerns they modularize Additionally, a suite of

eight (08) architecture-sensitive detection strategies was documented in Section

6.3. This suite combines conventional code metrics with the proposed

architecture-sensitive ones to identify code anomalies.

The chapter also described a study performed to investigate to what extent

the architecturally-sensitive strategies improve the accuracy of the conventional

ones on the identification of architecturally-relevant code anomalies. The study

involved a sample of nearly 1500 architecturally-relevant code anomalies

distributed in five (05) industry software systems, which present different

architectural degradation stages (Section 6.4.3). Our results confirmed that

architecture-sensitive detection strategies enhance the accuracy rates of the

conventional ones when identifying architecturally-relevant code anomalies. The

results of such study indicated that using architecture-sensitive information in the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

170

detection of code anomalies would allow engineers to be aware of more

architecturally-relevant code anomalies. This means that engineers could promptly

identify and address such anomalies upfront, avoiding advanced degradation

stages in software projects. This result is even more relevant considering the

inability of conventional detection strategies in the identification of these critical

code anomalies (Chapter 5). The study also revealed that relying on packages is

not an effective approach to detect architecturally-relevant code anomalies. This

was often the case as components tend to not matching the package

implementation boundaries. This finding raises the concern about the

effectiveness of state-of-art mechanisms that are based on such approach

(Bouwers et al., 2011).

A natural concern when using the architecture-sensitive detection strategies

is the cost to generate and maintain the required architecture-sensitive

information. We did not carry out an investigation regarding the cost associated

with generating that information. However, we used a sample of architecture-

sensitive information with a correctness degree similar to those automatically

generated using existing state-of-art tools (Eisenbarth et al., 2003; Garcia et al.,

2011; Maqbool and Babri, 2007). Our results suggest that such tools could be

used to generate the required information, without significantly impacting the

accuracy of the detection strategies. This means that the required information

could be generated without prohibitive costs. Of course this finding must be better

verified in further studies.

Finally, the chapter discussed the imperfections of the proposed detection

strategies. Part of these imperfections is caused by the inability of detection

strategies to analyze relationships between code anomalies. In this sense, the next

chapter (Chapter 7) will document a set of inter-related code anomalies that often

indicate the presence of architectural degradation symptoms. Chapter 7 will also

present SCOOP in detail, the tool used in the study to support the collection of the

proposed architecturally-sensitive metrics and the automation of the

architecturally-sensitive detection strategies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

