
 

4 
Impact of Code Anomalies on Architectural Degradation 

As discussed in Chapter 2, the violation of modularity principles during the 

implementation of software systems has been highlighted by several authors as a 

cause of architectural degradation. For instance, code elements that are tightly 

coupled often demand a significant maintenance effort, leading systems to be 

redesigned in extreme cases (Eick et al., 2001; MacCormack et al., 2006). The 

indicators of maintenance problems in the system implementation are referred to 

as code anomalies (Fowler et al., 1999). These anomalies can manifest themselves 

in systems implemented using any modularization technique. Catalogs of code 

anomalies for object-oriented systems have been widely documented (Webster, 

1995; Riel, 1996; Fowler et al., 1999). On the other hand, catalogs of code 

anomalies for aspect-oriented systems are only beginning to appear (Section 

3.2.1). Chapter 3 expanded further the existing catalogs by documenting six new 

aspect-oriented anomalies. 

A number of studies have investigated the occurrences of code anomalies 

under different perspectives. These studies vary from (i) understanding the 

manifestations of code anomalies throughout the system evolution to (ii) assessing 

their correlation with change-proneness, fault-proneness, and maintenance effort 

(Chapters 2 and 3). However, the impact of code anomalies on architectural 

degradation has mostly been ignored by existing studies, despite of several 

authors having called attention to it. This adverse impact could be considered as 

even more critical due to its silence - in the sense that it does not affect the 

system’s behavior, such as fault-proneness, and it can potentially lead to a 

complete redesign of the system. 

In this context, this chapter presents an empirical study that investigates the 

interplay of code anomalies and architecture degradation. In other words, this 

chapter aims at answering our first research question (Section 1.4): What is the 

relationship between code anomalies and architectural degradation  throughout 

the evolution of software systems? To this end, the study to be described 
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investigates which characteristics of code anomalies are more likely to indicate 

their harmful impact on the architecture of a system. This study also analyzes to 

what extent refactoring is applied for removing architecturally-relevant code 

anomalies.  

In order to address the aforementioned goals, the study involves a sample of 

nearly 2100 anomalous code elements
4
 distributed in 40 versions of 6 industry-

software systems. The anomalous code elements encompassed heterogeneous 

forms of code anomaly manifestation. In particular, the study assesses code 

anomalies that infect aspect-oriented and also object-oriented implementations. 

This kind of investigation could be performed thanks to: (i) our analysis on when 

and to what extent code anomalies infect aspect-oriented systems (Chapter 3) and 

(ii) several reports that document recurrent occurrences of code anomalies in 

object-oriented systems (Section 2.3.3). The results of this study have been 

published in two technical papers (Macia et al., 2011b; Macia et al., 2012b). 

The remainder of this chapter is structured in four main sections. Section 4.1 

describes the study definition and design. Section 4.2 discusses the findings 

associated with the impact of code anomalies on architectural degradation 

symptoms. Section 4.3 presents the limitations of the study. Finally, Section 4.4 

presents a summary of the key points discussed throughout the chapter. 

 

4.1. 
Study Definition and Design 

The study presented in this chapter aims to answer the first research 

question of this thesis: What is the relationship between code anomalies and the 

degradation of the actual architecture, throughout the evolution of software 

systems? This research question was decomposed into three research questions 

(RQ):  

RQ1.1: To what extent are anomalous code elements related to architectural 

degradation in the actual architecture and vice versa? 

RQ1.2: Which characteristics of code anomalies are indicators of their 

relationship with architectural degradation symptoms? 

                                                 
4
 fragments of programming code such as: attributes, operations and declarations 
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RQ1.3: How often are architecturally-relevant code anomalies removed by 

means of refactorings? 

A sample of nearly 2100 code anomalies and 1030 architectural degradation 

symptoms was considered to answer RQ1.1 (Section 4.2.1). This sample includes 

aspect-oriented (AO) and object-oriented (OO) code anomalies as well as 

architectural degradation symptoms observed in these implementations.  

For RQ1.2, two characteristics of code anomalies were analyzed: their type 

(Section 4.2.2.1), and the earliness of their occurrence in a software project 

history (Section 4.2.2.2). In the context of this study, a code anomaly is 

considered to be early if it was introduced in the first version of a system. The 

motivation for the former analysis is that certain types of code anomalies tend to 

occur more often than others (D’Ambros et al., 2009; Khomh et al., 2009). 

However, there is no knowledge about how often code anomaly types (Srivisut 

and Muenchaisri, 2007; Piveta et al., 2006; Chapter 3, Fowler et al., 1999) are 

sources of architectural degradation symptoms (Garcia et al., 2009; Stal, 2010). 

The motivation for the later analysis is to understand if code anomalies introduced 

early in a software project are harmful (or not) to system’s architecture; if so, this 

implies that developers should watch out for harmful early anomalies and 

anticipate their removal through early refactorings.  

Finally, for RQ1.3, a sample of 700 refactorings were considered, including 

those performed in both object-oriented (Fowler et al., 1999) and aspect-oriented 

systems (Iwamoto and Zhao, 2003; Hannemann et al., 2005) (Section 4.2.3). 

In this context, following Wohlin et al. suggestion (2000), we defined our 

study and its goals using the GQM format (Basili et al., 1994) as: 

Analyze: code anomalies 

For the purpose of: understanding their impact on system's architecture and 

how often they are removed by means of refactoring 

With respect to: architectural violations and architectural anomalies  

From the viewpoint of: systems architects and developers and researchers 

In the context of: six (06) software systems from different domains, 

implemented with using different modularization techniques and following 

different architectural decompositions. 

 

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA



81 

 

4.1.1. 
Hypotheses 

In order to answer the three aforementioned research questions, we have 

defined the null and alternative hypotheses as shown in Table 4.1. 

Table 4.1: Research questions and hypotheses of the study. 

Research Questions Hypotheses 

RQ1.1 

For each of the code anomalies studied: 

Null Hypothesis, H10: The code anomaly is not significantly related to 

architectural degradation symptoms. 

Alternative Hypothesis, H1A: The code anomaly is significantly related 

to architectural degradation symptoms. 

RQ1.2 

Null Hypothesis, H20: Type and earliness are not good indicators of 

architectural degradation symptoms in the context of the studied code 

anomalies. 

Alternative Hypothesis, H2A: Type and earliness are good indicators of 

architectural degradation symptoms in the context of the studied code 

anomalies. 

RQ1.3 

Null Hypothesis, H30: Refactorings are not often applied to remove the 

studied code anomalies related to architectural degradation symptoms. 

Alternative Hypothesis, H3A: Refactorings are often applied to remove 

the studied code anomalies related to architectural degradation symptoms. 

 

4.1.2. 
Variable Selection 

The following independent and dependent variables have defined the 

following in order to test our hypotheses. 

Independent Variables. Independent variables are those variables 

manipulated and controlled in the study (Wohlin et al., 2000). There is a Boolean 

variable for H10, Ci,j, that indicates whether (or not) the code element i suffers 

from at least one anomaly in version vj. There are as many independent variables 

for H20 as there are types of code anomalies analyzed in this study (Section 4.1.4). 

Each variable, Ci,k,j, indicates the number of times that a code element i suffers 

from a code anomaly k in version vj. Finally, there is a variable or H30, Rj, 

representing the number of refactorings applied in version vj. As will be 

mentioned in Section 4.1.4, all code anomaly occurrences used when testing these 

hypotheses were confirmed by developers. Section 4.2.3, presents the process 

followed to identify the applied refactorings in target systems. 
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Dependent Variables. Dependent variables refer to those variables that we 

want to study to observe the effect of changes in the independent variables 

(Wohlin et al., 2000). There are two Boolean dependent variables, Vi,j and Ai,j, for 

H10 that indicate whether (or not) the code element i is related to any violation 

(i.e. architectural erosion) or architectural anomaly in the implemented 

architecture (i.e. architectural drift) in version vj, respectively. There are as many 

dependent variables for H20 as there are kinds of architectural violations and 

architectural anomalies. The dependent variables Vi,k,j and Ai,k,j indicate whether 

the code element i affected by the code anomaly k is related to any violation or 

architectural anomaly in version vj, respectively. Finally, there is a variable for 

H30, ERj, representing the number of refactorings that were effective to remove at 

least one architecturally-relevant code anomaly in version vj. The term 

architecturally-relevant code anomaly, used throughout this text, refers to those 

code anomalies related to architectural degradation symptoms. 

 

4.1.3. 
Selection Criteria and Target Systems 

Several criteria were established to support the selection of suitable 

software systems to this study. The criteria used are presented in Table 4.2. 

Table 4.2: Criteria used for the selection of target systems. 

 The target system: 

C1 was modeled using documented guidelines or well known architecture styles. 

C2 has the intended architecture design available.  

C3 has the original architects and developers available.  

C4 has a manageable size.  

C5 is infected by a rich set of code anomalies.  

C6 presents a rich set of architectural degradation symptoms. 

C7 has undergone changes.  

C8 was implemented by developers with different levels of programming skills. 

C9 was implemented using different programming languages and modularization techniques. 

 

Criterion C1 avoids the analysis of code anomalies and architectural 

degradation symptoms introduced due to poor software engineering practices. 

Criteria C2, C3, C4, C5 and C6 allow carrying out a better in depth analysis of code 

anomaly causes and their impact on the actual architecture design since a variety 

of code anomalies and architectural degradation symptoms are analyzed. 
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Additionally, the impact of code anomalies on the actual architecture was 

validated by system architects and developers, which was also important for 

increasing the reliability of our analysis. Criterion C7 allows analyzing the 

harmfulness of code anomalies on architecture design that evolved in different 

ways and the proportion of refactored anomalies. Criterion C8 supports the 

observation of whether (or not) architecturally-relevant code anomalies were 

introduced by specific to developers with certain programming skill level. Finally, 

criterion C9 ensures the observation of whether (or not) the impact of code 

anomalies on architectural degradation symptoms is specific to programming 

languages or modularization techniques. 

Based on these criteria, six (06) software systems, totaling 40 versions, 

were selected. Two of these systems, Aspectual Health Watcher and Aspectual 

Mobile Media, were introduced in the previous chapter (Section 3.3.1). The third 

and fourth systems are the Java versions of Health Watcher and Mobile Media. 

The fifth system, named MIDAS, is a lightweight middleware platform 

implemented in C++ for distributed, event-based sensor applications (Malek et al., 

2006; Garcia et al., 2009). Two versions of MIDAS were assessed in this study, 

which are the before and after versions of a major restructuring with the widest 

impact in this system evolution. A high number of architectural and code elements 

suffered changes in this transition. The last system is a web-based application 

implemented in C# that allows scenographers to plan and manage scenic sets in 

television productions. To preserve copyright constraints, the fictitious name of 

PDP is used in this thesis to refer to it. Similarly to MIDAS, both selected 

versions of PDP are the before and after versions representing the major changes 

in this system evolution. The main characteristics of these systems are presented 

in Appendix A. 

 

4.1.4. 
Procedures for Data Collection 

In order to analyze the impact of code anomalies on architectural 

degradation symptoms the actual architecture was recovered through reverse 

engineering. The recovered architecture was then compared with the intended 

architecture, in order to identify architectural violations; i.e. symptoms of 
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architectural erosion (Section 2.2). In addition, the recovered architecture was 

analyzed to detect architectural anomalies - i.e., symptoms of architectural drift 

(Section 2.2). Then, the recovered architecture was analyzed to detect 

architectural anomalies and finally, code anomalies were identified. The last 

activity encompassed the analysis of the impact of code anomalies on architectural 

degradation. These activities were performed for each version of the target 

systems, as presented bellow.  

Recovering the Architectural Components Design. This activity was 

based on a semi-automatic process. We used Sonar (2009), Understand (2009) and 

NDepend (2009) to support the recovery of the actual architecture from the source 

code (Section 2.2.2) in the target systems. We relied on those tools because they 

support architecture and code analysis, helping architects and developers to 

measure modularity in both levels. Additionally, these tools are complementary: 

Sonar analyzes Java programs, while NDepend and Understand analyze C++ and 

C# programs, respectively. 

Furthermore, Sonar, Understand and NDepend provide mechanisms to 

extract the relationships (i.e. mappings) between code elements and architectural 

elements in different granularity levels. That is, by using these tools we could 

extract the set of code elements (e.g. packages, sets of classes defined or not in the 

same package) that are in charge of implementing an architectural component 

(Section 2.1). These mappings allow to better trace and, hence, understand the 

influence of a code anomaly on the actual architecture design. 

Recovering the Architectural Concerns. The recovery of architectural 

concerns encompassed two main steps: the selection of architectural concerns and 

their projection on the system implementation. Architects and developers selected 

only architectural concerns that were clearly relevant according to their 

knowledge of the target systems. As a result, six architectural concerns were 

chosen from Aspectual Watcher and Health Watcher: Concurrency, Distribution, 

Persistence, Complaint, Health Unit, and View; nine architectural concerns were 

selected from AspectualMedia and MobileMedia: Security, Concurrency, Screen, 

Persistence, Photo, Music, Video, Sorting, and Favorite; four architectural concerns 

were selected from MIDAS: Fault Tolerance, Service Discovery, Dynamic Adaptation, 

and Engine; and six architectural concerns were selected from PDP: Transaction, 
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Persistence, Service, Photo, Area, and Attachment. Descriptions of these concerns 

are provided in Table 4.3.  

These architectural concerns were chosen because (i) influenced the key 

architects’ design decisions or (ii) represent important functionalities of the 

system modularized in architectural components, and (iii) are different in terms of 

functionality, scattering degrees, and granularity levels. Therefore, the selection 

and assessment of different kinds of architectural concerns were important to 

enable us to observe the relationship between code anomalies and architectural 

problems. 

Table 4.3: Architectural concerns considered in the study. 

System 
Architectural 

Concern 
Description 

Health Watcher 

Complaint It manages all kind of complaints in the system.  

Concurrency 
It provides a control for avoiding inconsistent information 

stores in the system database. 

Distribution 
It externalizes the system services at the server side and 

supporting their distribution to the clients. 

Health Unit It manages information regarding health units. 

Persistence 
It retrieves and stores the information manipulated by the 

system. 

View It processes the web requests submitted by the system users. 

MobileMedia 

Concurrency 
It provides a control for avoiding inconsistent information 

stores in the system database. 

Favorite It provides services to set favorite media and visualize them. 

Music It manages all the music data stored in the system. 

Persistence 
It retrieves and stores the information manipulated by the 

system. 

Photo It manages all the pictures stored in the system. 

Screen It processes the requests submitted by users. 

Security 
It improves the user’s privacy and requires authentication to 

access to albums (i.e. login and password). 

Sorting 
It provides a service for sorting media by the number of 

accesses. 

Video It manages all the video data stored in the system. 

MIDAS 

Dynamic 

Adaptation 

It provides flexible configuration of resources and optimizes 

the performance of mobile applications. 

Engine It provides the core services of the middleware. 

Fault Tolerance 
It delivers the system services to their recipients under all 

conditions. 

Service Discovery 
It supports the ability of a client to discover or invoke a 

service without prior knowledge of its physical location. 

PDP 

Attachment It manages all the utility equipment in the system. 

Area It manages all the film sets in the system. 

Photo It manages all the pictures stored in the system. 

Persistence 
It retrieves and stores the information manipulated by the 

system. 

Service It manages all the service interfaces in the system. 

Transaction It manages all the transactions in the system. 
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A second step was dedicated to manually produce the projection of these 

architectural concerns on the system implementation. To this end, architects and 

developers of the target systems worked together for more than 4 months on 

carefully reviewing the system code to produce such projections. This stage had to 

be conducted manually since architecture recovery tools do not support the 

extraction of architectural concerns (Section 2.1) from the system implementation. 

Some tools were used to mapped the extracted concerns such as ConcernMapper 

(2010) and Cide (2010). The main motivation for the architectural concern 

extraction is that there are several architectural anomalies documented in the 

literature (Garcia et al., 2009, Stal, 2009), which are related to the inappropriate 

modularization of architectural concerns. Therefore, the mappings between code 

elements and architectural concerns allow identifying whether and how the 

inappropriate modularization of such concerns in the code is related to 

degradation symptoms in the recovered architecture.  

Identifying Architectural Degradation Symptoms. In order to identify 

symptoms of architectural erosion (Section 2.2) we used the Software Reflexion 

Model (Murphy et al., 2001). The comparison of the actual, extracted architecture 

(EA), and the intended architecture (IA) was supported by two groups of 

architects: (i) those that defined the original intended architecture, and (ii) 

independent reviewers of the system architecture. We measured the architecture 

conformance in terms of convergence (a component or relationship that is in both 

EA and IA), divergence (a component or relationship that is in EA but not in IA), 

and absence relationships (a component or relationship that is in IA but not in 

EA). Although absence and divergence classifications are natural suspects of 

possible architectural violations, they must be validated with systems architects 

and developers. Certain absence and divergence classifications can be motivated 

by mistakes or wrong decisions introduced in the IA that are subsequently 

corrected in the EA. Therefore, in those cases, absence and divergence 

classifications cannot be classified as violations. In the context of our study all the 

absence classifications were confirmed by architects and developers as violations. 

That did not occur with divergences, which were only classified as violations in 

certain cases. 

Furthermore, symptoms of architectural drift (Section 2.2.3) were detected 

by architects in the EA based mainly on: (i) a visual inspection, and (ii) a careful 

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA



87 

 

analysis of the mappings between code elements and architecture elements in that 

architecture, due to the lack of tools for doing so automatically (Section 2.2.4.2). 

We also asked the system architects to indicate other architectural drift symptoms 

observed in the EA beyond those documented in existing catalogs, such as cyclic 

dependencies. This helped us to better judge whether and which code anomalies 

are good indicators of architecture problems.  

As a result of this stage, architects provided reports describing the 

architectural problems observed in each system version. These reports described, 

for instance, the architecture degradation symptom, its location in the design, the 

architectural elements related to it and, in some cases, an explanation of the 

problem cause. The final subset of architectural drift symptoms (i.e. architectural 

anomalies) encompassed those architectural anomalies that were identified by 

architects in the target systems of our study. These anomalies are summarized in 

Table 4.4. 

Table 4.4: Architectural anomalies analyzed in the study. 

Architectural Anomaly Definition 

Ambiguous Inteface 
The interface offers only a single general entry-point and, hence, it can 

handle more requests than it should actually process 

Extraneous Connector Connectors of different types are used to link a pair of components 

Cyclic Dependency 
A relation between two or more architectural elements that depend on 

each other either directly or indirectly. 

Connector Envy 
A component realizes functionality that should be assigned to a 

connector 

Scattered Parasitic 

Functionality 

A high-level concern is spread over multiple modules that implement 

different concerns.  

Redundant Interface Interface that require the same information of other interfaces 

Overused Interface Interface that requires a lot of data or is required by several interfaces. 

Component Concern 

Overload 

A component is responsible for realizing two or more unrelated 

system’s concerns 

 

Detecting Code Anomalies. As a first step, code anomalies were 

automatically identified using conventional detection strategies (Marinescu, 2004) 

- similarly to other studies (Khomh et al., 2009; Olbrich et al., 2009; Olbrich et 

al., 2010; D'Ambros et al., 2010). Therefore, we studied code anomalies for each 

conventional documented detection strategy. These anomalies are summarized in 

Table 4.5. However, existing tools for applying detection strategies (Ratiu et al., 

2004; Marinescu et al., 2010; Moha et al., 2010; Mara et al., 2011) suffer from 

limitations that hinder their practical use. First, they do not support all the 

published strategies. Second, they do not allow developers to adjust metrics and 
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thresholds according to the particularities of a system. Thus, we decided to collect 

code metrics used in the strategies with well-known code analyzers (Together, 

2009; Understand, 2009) and then, combine their outcome according to the 

strategy definition. We relied on these code analyzers because they complement 

each other and together collect all the required metrics. 

Table 4.5: Code anomalies analyzed in the study. 

Code Anomaly Definition 

Anonymous Pointcut occurs whenever a pointcut is directly defined in the advice signature. 

Composition Bloat 
is a complex base computation that is advised by multiple aspects and 

leads to complex advice implementations in one or more aspects 

Disperse Coupling refers to a code element that accesses many other code elements. 

Duplicate Pointcut 
is associated with full pointcut expressions equivalent to others that 

have already been defined. 

Feature Envy 
refers to a method that seems to be more interested in the data of other 

elements than those available in its class.  

Forced Join Point 
is associated with elements (attributes or methods) in the base code that 

are only exposed to be used by aspects 

God Aspect occurs when an aspect is realizing more than one concern. 

God Class 
occurs when a class centralizes the system functionalities (realizes more 

than one purpose). 

God Pointcut 
occurs when a pointcut has either a complex expression and the 

respective advice has a complex implementation. 

Idle Pointcut refers to pointcuts that do not match any join point 

Intensive Coupling 
refers to a code element that has tight coupling with other methods, and 

these methods are defined in the context of few classes. 

Lazy Aspect is an aspect that has either none or only fragmented responsibility 

Long Method occurs when a method has grown too large. 

Lazy Class 
refers to classes that are not doing much useful work and should be 

eliminated. 

Long Parameter List 
refers to a long list of parameters in a procedure or function make 

readability and code quality worse. 

Misplaced Class 
refers to a class that depends on classes from other packages more than 

those from its own package. 

Redundant Pointcut 
is associated with partial (not full) pointcut expressions equivalent to 

others that have already been defined. 

Shotgun Surgery 
refers to a method that has many other code elements depending on it, 

hindering the reusability of the infected method. 

 

In this process we selected metrics and thresholds that have shown high 

accuracy to identify these code anomalies in previous studies (Lanza and 

Marinescu, 2006; Khomh et al., 2009; Olbrich et al., 2009; Olbrich et al., 2010; 

D'Ambros et al., 2010). In some cases, the thresholds suffered some minor 

adjustments in order to maximize the strategy’s accuracy. For instance, certain 

thresholds were calibrated according to the specific programming styles and 

system characteristics. The goal was to get the best possible accuracy rates with 

the conventional detection strategies at hand, according to our knowledge on the 
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software systems. If needed, the changes in the original detection strategies were 

discussed with the system developers. A complete list of the employed detection 

strategies and their corresponding thresholds is available in Appendix B.  

As a second step, the list of suspects identified by conventional strategies 

was validated by the developers. That is, developers analyzed whether the 

detected code structure was really infected by a given anomaly. At least three 

developers were involved in this process for each system. All the developers had 

previous experience on the identification and refactoring of code anomalies. As a 

result, we considered those code structures that were confirmed by all the 

developers involved in this process. This validation was motivated by the fact that 

conventional detection strategies present false positives and false negatives when 

identifying code anomalies (Marinescu, 2004). Consequently, by mixing 

automatic with manual detection, we aimed at finding a reliable set of code 

anomalies. 

Analyzing the Impact of Code Anomalies on the Architecture. In order 

to analyze the relationships (i.e. correlation and cause-effect) between code 

anomalies and architecture degradation symptoms, developers and researchers 

first analyzed reports provided by the architects. As previously detailed, these 

reports included fine-grained and accurate details about identified architecture 

problems, facilitating the correlation analysis. Moreover, the following heuristics 

were also systematically applied to infer each cause-effect relationship: first, we 

observed whether the same structural modifications caused simultaneously a code 

anomaly and an architecture problem. Second, we checked whether the definition 

of an anomalous code element introduced an architectural problem. Finally, we 

examined whether changes performed considering the evolution of an anomalous 

code element caused an architecture problem. In the context of this thesis, the 

term "anomalous" refers to those code elements infected by at least one code 

anomaly. 

The analysis also relied on a set of criteria to validate the cause-effect 

relationship between code anomalies and architecture problems. First, the cause-

effect relationship was recurrently inferred in almost all systems versions, and for 

many of the involved code anomaly occurrences and architecture problems. 

Second, the cause-effect relationship was observed in different components of the 

same system and, additionally, these components involved the contribution of 
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different developers. Lastly, all the inferred cause-effect relationships were 

confirmed by architects and developers involved in this activity. As a result, we 

produced a ground truth of architecturally-relevant code anomalies for each target 

system. These lists included fine-grained and accurate details about the code 

anomalies facilitating further analyses (e.g. Chapter 5). For instance, these lists 

described the code elements affected by anomalies, the code anomalies type, and 

the architectural problems such affected code elements are related to. 

 

4.2. 
Findings on the Impact of Code Anomalies 

The following sections present and discuss the main findings associated 

with each of the aforementioned research questions (Section 4.1). Section 4.2.1 

discusses whether anomalous code elements are related to architectural 

degradation symptoms. Section 4.2.2 reports the observations about the impact of 

two anomaly characteristics (type and earliness) in the architectural degradation 

symptoms. Finally, Section 4.2.3 discusses whether and to what extent 

refactorings were effectively applied to remove architecturally-relevant code 

anomalies in the target systems. 

 

4.2.1. 
Are Anomalous Code Elements Architecturally-Relevant? 

In order to investigate whether anomalous code elements (classes, aspects, 

methods and pointcuts) are more related to architectural degradation symptoms 

than anomaly-free code elements, Fisher’s exact test (Shesking, 2007) was first 

applied. It checks whether the proportion of architectural degradation symptoms 

varies across classes and aspects with or without code anomalies. This test was 

selected because the study deals with small samples. Therefore, the use of another 

test, such as Chi2 (Shesking, 2007) could produce erroneous results because of the 

approximation. 

We have also calculated the Odds Ratio (ORs) (Shesking, 2007) to check 

whether anomalous classes and aspects have the same probability to be related to 

architecture problems that anomaly-free code elements. Results of Fisher’s test for 

both architectural violations and architectural anomalies are presented in Tables 

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA



91 

 

4.6 and 4.7, respectively. Note that Table 4.6 shows the impact of code anomalies 

on decisions of the intended architecture, while Table 4.7 shows their impact on 

the implemented architecture. In these tables, the versions of MIDAS and PDP 

named as "BEF" and "AFT" correspond to the version before and after applying 

major changes, respectively. Also, lower p-values indicate that code elements with 

code anomalies adversely impact architecture design more than anomaly-free code 

elements. Data for MIDAS and PDP are not presented in Table 4.6 as no violation 

occurred in these systems. This finding was expected as the development process 

in these projects strictly enforced architecture conformance. 

Table 4.6: Fisher’s test results for architectural violations. 

Releases p-values ORs Releases p-values ORs 

Aspectual Watcher Health Watcher 

1.0 < 0.05 0.8 1.0 < 0.05 4.2 

4.0 < 0.05 2.4 4.0 < 0.05 6.0 

7.0 < 0.05 3.3 7.0 < 0.05 5.1 

10.0 < 0.05 3.9 10.0 < 0.05 2.8 

Aspectual Media MobileMedia 

1.0 0.29 1.7 1.0 0.063 2.0 

3.0 0.38 2.5 3.0 0.169 2.3 

5.0 < 0.05 4.2 5.0 < 0.05 2.9 

8.0 < 0.05 7.3 8.0 < 0.05 3.1 

 

Table 4.7: Fisher’s test results for architectural anomalies. 

Releases p-values ORs Releases p-values ORs 

Aspectual Watcher Health Watcher 

1.0 0.36 1.8 1.0 < 0.05 2.6 

4.0 < 0.05 2.4 4.0 < 0.05 2.0 

7.0 < 0.05 3.1 7.0 < 0.05 4.2 

10.0 < 0.05 3.9 10.0 < 0.05 10.2 

Aspectual Media MobileMedia 

1.0 < 0.05 2.3 1.0 < 0.05 3.3 

3.0 < 0.05 2.1 3.0 < 0.05 3.2 

5.0 < 0.05 4.5 5.0 < 0.05 6.4 

8.0 < 0.05 3.6 8.0 < 0.05 9.1 

MIDAS PDP 

BEF 0.07 1.9 BEF < 0.05 3.8 

AFT < 0.05 2.1 AFT < 0.05 3.2 

 

Architectural Significance of Code Anomalies. Our analysis revealed a 

statistically-significant relationship between anomalous code elements and 

architectural degradation symptoms in 77.5% of the analyzed versions, according 

to the desired level of confidence (i.e. 0.05). Also, the odds ratio revealed that 

anomalous code elements were related to architectural degradation symptoms with 
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two or more times higher probability than anomaly-free code elements. However, 

the significance of this relationship was not statistically confirmed in the first 

version of certain systems. In these first versions, anomalous code elements were 

scattered through all the architecture components, while architecture problems 

were only found on certain components. On the other hand, degradation 

symptoms emerged in multiple components over time as a consequence of 

changes performed on anomalous code elements. Thus, the relationship between 

anomalous code elements and architectural degradation symptoms was 

statistically confirmed in later versions. This finding reveals that developers 

should be more concerned with refactoring anomalous code elements in the first 

system version. Certain early code anomalies require special attention even when 

they do not represent a threat to the architecture design (Section 4.2.2.2). Taking 

into consideration Fisher’s test results and the aforementioned gathered evidence, 

H10 can be rejected according to the desired level of confidence (i.e. 0.05). 

Upstream and Downstream Analyses. In order to complement the 

Fisher’s test analysis, we analyzed the upstream and downstream relationships 

between code anomalies and architectural degradation symptoms. The upstream 

analysis refers to what extent code anomalies were related to architectural 

degradation symptoms, while the downstream corresponds to what extent 

architectural degradation symptoms were related to code anomalies. These 

analyses are useful because they show: (i) the proportion of code anomalies that is 

critical for the system architecture, and (ii) the proportion of architectural 

degradation symptoms that could be fixed by refactoring code anomalies. The 

upstream analysis showed that up to 81% of analyzed code anomalies were 

correlated to architecture problems in Health Watcher, 72% in MobileMedia, 68% 

in Aspectual Watcher, 65% in PDP, 63% in Aspectual Media and 51% in MIDAS. 

As we can notice, a considerable proportion of code anomalies did not impact the 

architecture design in the analyzed systems. This finding highlights the need for 

understanding whether certain characteristics of the code anomaly were more 

likely to be related to the source of architecture problems (Section 4.2.2). 

On the other hand, a downstream analysis revealed that up to 86% of all 

architecture problems were caused by code anomalies in Health Watcher, 83% in 

Aspectual Media, 80% in Mobile Media, 75% in Aspectual Watcher, 71% in PDP, 

and 70% in MIDAS. These results indicated that the vast majority of problems in 
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the extracted architecture were caused by anomalous code elements. We found 

high cause-effect rates through the evolution of components where conformance 

of architectural rules was strictly enforced in the source code, which was 

particularly surprising. The MIDAS project is the best example for such finding: 

although design rules were not violated, many occurrences of anomalies in the 

extracted architecture emerged over time. They were found in anomalous code 

elements with low cohesion and high coupling. Even though most of these code 

elements implemented a single architectural component, they realized multiple 

scattered architectural concerns. This phenomenon was often caused by broadly 

scoped scattered architectural concerns, such as Service Discovery, Fault 

Tolerance Policies, and Dynamic Adaptation. Each of these architectural concerns 

should have been modularized in a single component. 

The results of these multi-dimensional analyses seem to confirm that the 

detection of code anomalies is useful to locate potential sources of architectural 

erosion and drift (Section 2.2). This suggests in turn that the early application of 

systematic code refactoring could effectively contribute to combat symptoms of 

architecture degradation. This observation is even more relevant for projects 

where there is neither effort on proactive maintenance of architecture 

documentation nor investment on using heavyweight architectural conformance 

tools (Section 2.2.2). We also found that a considerable proportion of all code 

anomalies, about 40%, were not indicators of relevant design problems. This 

means that refactorings cannot be chosen arbitrarily when architecture revisions of 

the source code are being carried out. Developers should be equipped with 

guidance and tool support to identify and rank code anomalies according to their 

relevance to architecture degradation. In this context, the next section discusses 

whether certain characteristics of code anomalies were better indicators of 

architecture problems in the analyzed systems. 

 

4.2.2. 
Are Particular Characteristics of Code Anomalies Indicators of 
Architectural Degradation Symptoms? 

Once confirmed that anomalous code elements were often related to 

architectural degradation symptoms in the target systems, we investigated the role 

played by the type and earliness of code anomalies in this context. Additionally, 

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA



94 

 

the results of the previous section also reinforced the importance of studying the 

earliness of code anomalies. 

 

4.2.2.1. 
Type of Code Anomalies 

A logistic regression model (Hosmer and Lemeshow, 2000) was used to 

investigate to what extent particular types of code anomalies were related to 

degradation symptoms in both system architectures. This method was selected 

because it predicts whether code elements infected by a particular type of code 

anomaly are likely to be related to architectural degradation symptoms. The closer 

the value of the regression model is to 1, the higher is the likelihood that the code 

anomaly relates to an architectural degradation symptom. Differently from the 

Fisher’s test, in this method we considered only those cases where the cause-effect 

relationship between code anomalies and architectural degradation symptoms 

were confirmed by architects and developers (Section 4.1.4). 

We use regression models as an alternative to the Analysis Of Variance 

(ANOVA) for dichotomous variables. Then, for each code anomaly and for the 40 

analyzed versions, we count the number of times that the p-values obtained by the 

regression model were significant. In this sense, as the regression model demands, 

we discarded variables that were highly correlated to others. Therefore, the model 

contains a non-redundant set of code anomalies. 

Tables 4.8 and 4.9 show the results of the logistic regression model for the 

contribution of each type of code anomaly on architectural degradation symptoms. 

In particular, these tables summarize the total number of analyzed releases for 

which each type of anomaly was statistically-significant in the regression model. 

For instance, Table 4.9 shows that Long Method was statistically-significant for 

causing architectural anomalies in 8 of out 10 versions of Health Watcher. Most 

of the Long Methods detected in Health Watcher implemented tangled concerns. 

We highlight in boldface those anomalies that present a significant p-value for at 

least 70% of the releases where they occurred. This threshold was previously 

documented in the literature and used in other studies with similar analytical 

purposes (Khomh et al., 2009). 
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Table 4.8: Significant p-values for architectural violations. 

Type of Code Anomalies AW HW AM MM 

Anonymous Pointcut 5 - 3 - 

Composition Bloat 3 - 4 - 

Disperse Coupling 5 7 5 5 

Duplicate Pointcut 4 - 4 - 

Feature Envy 1 2 2 2 

Forced Join Point 2 - 1 - 

God Aspect 4 - 2 - 

God Class 3 5 7 5 

God Pointcut 7 - 4 - 

Idle Pointcut 0 - 0 - 

Intensive Coupling 6 9 5 8 

Lazy Aspect 0 - 0 - 

Lazy Class 4 3 3 6 

Long Method 7 8 4 6 

Long Parameter List 7 2 5 3 

Misplaced Class 1 1 2 3 

Redundant Pointcut 4 - 3 - 

Shotgun Surgery 3 2 4 5 

Lazy Class 4 3 3 6 

 

Table 4.9: Significant p-values for architectural anomalies. 

Type of Code Anomalies AW HW AM MM MIDAS PDP 

Anonymous Pointcut 4 - 2 - - - 

Composition Bloat 7 - 5 - - - 

Disperse Coupling 4 6 2 5 2 2 

Duplicate Pointcut 3 - 3 - - - 

Feature Envy 2 2 1 1 0 1 

Forced Join Point 2 - 2 - - - 

God Aspect 5 - 5 - - - 

God Class 4 7 4 5 2 2 

God Pointcut 3 - 6 - - - 

Idle Pointcut 0 - 0 - - - 

Intensive Coupling 4 7 5 5 2 2 

Lazy Aspect 3 - 2 - - - 

Lazy Class 4 4 3 6 2 1 

Long Method 5 8 4 7 2 2 

Long Parameter List 1 2 2 1 0 0 

Misplaced Class 1 1 2 0 - 0 

Redundant Pointcut 2 - 4 - - - 

Shotgun Surgery 2 7 3 4 2 2 

 

A first analysis of Tables 4.8 and 4.9 suggests that none of the types of 

code anomalies (Fowler et al., 1999; Chapter 3) stand out as the best indicator of 

architectural degradation symptoms. None of them were clearly the best indicator 

across all the systems. Thus, the second null hypothesis, H20, cannot be rejected 

for the type anomaly characteristic. However, certain types of anomalies were 

significantly related to architectural degradation symptoms. In certain cases, the 

high cause-effect relation was consistently observed regardless of the analyzed 

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA



96 

 

system. For instance, 77% of God Classes, 71% of Long Methods, and 64% of 

Intensive Coupling instances introduced architectural degradation symptoms.  

There were also situations where the high cause-effect relationship was 

observed in the majority of, albeit not all, the systems. This is the case of code 

anomalies such as Long Parameter List and Lazy Class, which presented 

interesting and distinct effects. For instance, about 63% and 22% of Long 

Parameter List introduced architectural violations in later versions of aspect-

oriented and object-oriented systems, respectively. Artificial parameters had to be 

created through aspect-oriented system evolution allowing aspects to access 

restricted contextual information, thereby breaking the intended encapsulation. 

This finding suggests that certain types of code anomalies could have been a 

typical source of architecture degradation symptoms, depending on the type of the 

adopted programming language and architecture decomposition; however, this 

suggestion should be tested in further studies. 

Our results reveal that no code anomaly type stands out as the best 

indicator of the code anomaly harmfulness on architectural designs. Other 

characteristics associated with the code anomaly evolution may be indicators of 

architectural degradation symptoms. For instance, the incremental increase in the 

number of changes that a method suffers over time can indicate the presence of 

Disperse Coupling. Therefore, the harmful nature of certain types of code 

structures might be only confirmed over time. In this context, the next section 

analyzes whether the earliness of anomalies is a better indicator of their harmful 

impact on both system architectures. 

 

4.2.2.2. 
Earliness of Code Anomalies 

Interesting results emerged when analyzing the influence of early code 

anomalies on architecture degradation. We defined early code anomalies as those 

anomalies that appeared in the first version of each system. In order to analyze the 

impact of early code anomalies over the systems evolutions we used history-

sensitive tools for anomaly detection (Mara et al., 2011; Ratiu et al., 2004). They 

allowed us to analyze to what extent changes performed on code elements, 
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infected by early anomalies, resulted in architectural degradation symptoms in 

later versions. 

Harmfulness of Early Anomalies. Our analysis revealed that more than 

18% of all architecturally-relevant code anomalies emerged from anomalous code 

elements in the systems first version. Although 18% is not a high percentage for 

applying any statistical method and, hence, reject H20, these early code anomalies 

were critical to the system architecture: they were related to more than 37% and 

31% of all violations and architectural anomalies, respectively. In particular, early 

code anomalies induced architectural anomalies, which in turn led to violations. 

Both proportions point out the importance of understanding the impact of certain 

categories of early code anomalies. Thereby, developers should be able to detect 

occurrences of architecturally-relevant code anomalies as early as possible and 

remove them through refactoring. 

Figure 4.1 depicts an example of the evolution of the method 

MediaController.handleCmd(..), an early Long Method extracted from the 

MobileMedia system. This figure shows the major changes performed on this 

method in terms of: (i) coupling strength, and (ii) its contribution to implement 

system concerns. The width of each arrow is linearly proportional to the 

cardinality of low-level dependencies abstracted in the corresponding edge 

(Lungu and Lanza, 2007). Low-level dependencies, in this context, refer to 

method invocations, type references and attributes accesses from other classes that 

a given method executes. Figure 4.1 also relies on the distribution map (Ducasse, 

2006), a technique for visualizing system properties throughout evolution, where 

colors represent the dominant concern in each class. 
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Figure 4.1: Impact of an early code anomaly through the system evolution. 

As shown in Figure 4.1, the number of concerns implemented by 

components increase over time. In some cases, certain code elements were 

responsible for increasing the number of concerns realized by the same 

component. For instance, all if statements defined in MediaController.handleCmd() 

realize multiple concerns in version 8.0 which are represented by vertical bars of 

different colors. Hence, this method significantly contributed for the introduction 

of the Component Concern Overload and Scattered Parasitic Functionality 

architectural anomalies on the Controller. 

Additionally, MediaController.handleCmd(..) handles more types of 

commands than it will actually process, by accepting the parameter c, typed as the 

generic typeCmd. This generic parameter makes the method harder to understand 

because it does not reveal which commands the method is interested in. This 

situation worsened over time due to the incremental addition of new commands. 

Therefore, the Ambiguous Interface was progressively introduced by the changes 

made in the method body. 

Characteristics of Harmful Early Anomalies. Early code anomalies 

were recurrently the source of later relevant problems when they infected the API 

of critical points of the system architecture. Examples of these critical points are 

component interfaces and super-classes. When code anomalies infect component 

interfaces, they might be propagated to the: (i) internal code of the component, 

and (ii) coupled components over system evolution. This situation occurred for 

49% of all relevant code anomalies in Health Watcher, 42% in PDP, 38% in 

MobileMedia, 31% in Aspectual Watcher and MIDAS and 24% in Aspectual 
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Media. These proportions were directly related to the number of code anomalies 

infecting critical points in each system. 

Moreover, when anomalies infect super-classes they might be propagated 

from parents to children in inheritance trees. This situation occurred with 53% of 

all relevant code anomalies in MobileMedia, 50% in Aspectual Media, 45% in 

Health Watcher, 36% in MIDAS, 33% in Aspectual Watcher and 24% in PDP. 

The infected super-classes had a considerably negative effect as the architectural 

violations and architectural anomalies were propagated down through the class 

hierarchies. For instance, the class MediaController inherits the Ambiguous 

Interface occurrence from its parent - the class Controller (Figure 4.1). As 

MediaController overrides the handleCmd method, developers were forced to use if 

statements to handle the commands in which the method is interested.  

Finally, it was observed that early code anomalies emerged in code 

elements that accessed information from classes defined in multiple architecture 

components. These code elements also implemented several system concerns. The 

method MediaController.handleCmd(..) is an example of a code element that suffers 

from this co-occurrence in MobileMedia. About 85% of these code elements 

introduced architecture problems in the analyzed systems. The issue is that these 

code elements were the subject of changes associated with each of the system's 

concerns that they dealt with. Also, the increasing coupling strength was a reason 

why various changes were applied to this method during its evolution. The diverse 

nature of the changes confirmed the harmful impact of this co-occurrence on the 

system architectures. 

Based on the gathered results, H20 cannot be rejected. Although certain 

types of code anomalies were related to architectural degradation symptoms, none 

of them emerged as a reliable indicator of degradation symptoms across all the 

systems. In the context of the earliness characteristic, some anomalies that appear 

in early versions were related to architectural degradation symptoms introduced in 

latter versions. However, those code anomalies did not represent a significant 

proportion of all code anomalies. 
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4.2.3. 
Are Architecturally-Relevant Code Anomalies often Refactored? 

The aforementioned findings motivated us to investigate whether 

performed refactorings were targeted at removing architecturally-relevant 

anomalies in the target systems. To this end we analyzed two groups of 

refactorings: high-level and low-level refactorings (Murphy-Hill et al., 2009). The 

former group involves API-level changes – that is, structural modifications that 

affected interfaces and services. For example Renaming Public Methods and 

Moving Classes fall in this category. The latter group implies narrowly-scoped 

changes, which do not affect the clients of the component being modified. For 

example, Renaming Local Variables or Extracting Private Methods (Fowler et al., 

1999) are considered low-level refactorings. 

We focused on the analysis of both categories of refactoring. Even though 

there are attempts to automate their detection (Dig et al., 2006; Kim et al., 2011), 

such tools are not available yet. Therefore, we needed to partially rely on the 

manual inspection of the source code for identifying their occurrences. We 

analyzed the commit messages that indicated the occurrence of a refactoring in a 

given revision. This analysis was possible because the majority of the commit 

messages followed a template, which allows developers to recover the purpose of 

each particular commit. Also, we relied on using structural diff tools (ydiff, 2010; 

Hashimoto, 2008) to analyze refactorings when commit messages were absent. By 

mixing both strategies we aimed at improving the reliability of our analysis. 

Finally, we analyzed a total of 217 refactorings in Health Watcher, 160 in 

MobileMedia, 112 in PDP, 97 in Aspectual Watcher and 72 in Aspectual Media.  

Figure 4.2 depicts the proportions of refactorings that contribute and do 

not contribute to remove at least one architecturally-relevant code anomaly per 

target system, i.e. effective and non-effective refactorings, respectively. As it can 

be observed a low number of refactorings removed architecturally-relevant code 

anomalies. In particular, refactorings were responsible for removing only up to 

37% of all architecturally-relevant code anomalies. This means that the majority 

of architecturally-relevant code anomalies remained in the code as the system 

evolved. 
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Figure 4.2: Refactorings and architecturally-relevant code anomalies. 

In order to investigate the significance of this finding, the Kolmogorov-

Smirnov (Shesking, 2007) test was first applied. Due to the samples did not 

present a normal distribution, the (non-parametric) Mann-Whitney test (Shesking, 

2007) was then applied. This test was selected because it compares two sets of 

variables and assesses whether their difference is statistically significant. 

Additionally, non-parametric tests do not require any assumption on the 

underlying distributions. In the context of this study, the two samples to be 

compared are: the number of applied refactorings in the target systems and the 

number of refactorings targeting architecturally-relevant code anomalies (Section 

4.1.2). Additionally, we compute the Cohen’s d effect size (Shesking, 2007) to 

indicate the magnitude of the effect of a treatment on the dependent variables. The 

effect size is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and 

large for d ≥ 0.8.  

Table 4.10 reports the results of Mann-Whitney test and Cohen’s effect 

size. As it can be noticed, Mann-Whitney test shows statistically significant 

differences between effective and non-effective refactorings. Moreover, Cohen’s 

d effect size value is large: 2.59. Therefore, the applied refactorings did not 

significantly contribute to remove architecturally-relevant code anomalies and, 

hence, the third null hypothesis, H30, cannot be rejected. 
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Table 4.10: Proportions of effective and non-effective refactorings. 

 Mann-Whitney p-value Cohen's effect d 

Effective vs. Non-Effective Refactorings < 0.01 2.59 

 

A deep analysis of this finding revealed that the low rate of removed 

architecturally-relevant code anomalies may have three main reasons: (i) a low 

frequency of high-level refactorings, (ii) a high frequency of low-level 

refactorings, (iii) the cost and effort to perform complex refactorings, and (iv) the 

inability of current tools for supporting complex refactorings. Even though these 

were not the unique reasons why architectural degradation symptoms were left in 

the code, they were the most frequent ones. 

High-level vs. Low-Level Refactorings. Only 73 of applied refactorings 

were of high-level nature in Health Watcher, 41 in MobileMedia, 12 in Aspectual 

Media, 9 in PDP and 7 in Aspectual Watcher. Thus, less than 34% of refactorings 

were of high-level nature, which implies that only few refactorings had an impact 

of wide scope. The most frequent high-level refactorings were: move public 

member (16%) and extract class or extract super-class (12%). As it can be noticed, 

they represent a minority of the total number of applied refactorings. These 

refactorings are stronger candidates for removing architecturally-relevant code 

anomalies, as they modify the code element signature. However, their application 

was often confined to later versions where instabilities clearly achieved critical 

stages. We considered that instabilities achieved critical stages when changes 

needed to be performed across many code elements, belonging to multiple 

components, in order to add the new features.  

This observation suggests that developers chose to invest their effort on 

architecturally-relevant refactorings on specific versions. This strategy prevailed 

in all systems over the option of distributing the effort through consecutive 

versions. For instance, the highest number of high-level refactorings in 

MobileMedia was applied in version 7.0 in order to support the inclusion of 

different requirements. Otherwise, changes associated with such requirements 

would be scattered and duplicated in many elements belonging to the Controller 

component. Thus, several classes and super-classes were extracted and many 

public methods had their signatures changed. 
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A possible reason for the rare application of high-level refactorings is that 

developers are not equipped with proper tools for automating this task. High-level 

refactorings are associated with changes on code element interfaces, which, in 

some cases, belong to different architectural components. The application of these 

refactorings, without proper tooling support, may imply in higher risks such as: 

unexpected breaks on the client code or undesirable semantic changes. This could 

be one of the reasons why developers need to rely on tools for applying this kind 

of refactoring, rather than applying it manually. However, recent studies have 

shown that developers seldom use refactoring tools (Murphy-Hill et al., 2009; 

Arcoverde et al., 2011), mostly due to usability problems. Specifically, their 

inability to properly visualize the effects of an applied refactoring was pointed out 

as a major problem (Murphy-Hill et al., 2009; Arcoverde et al., 2011). 

On the other hand, more than 60% of refactorings were of low-level 

nature. This implies that the impact of most refactorings was of narrow scope. The 

most frequent low-level refactorings were: rename private members (32%), 

extract local variable (16%), and move private members (12%). As we can notice, 

they represent a high proportion of the total number of refactorings applied. 

However, these refactorings did not contribute significantly to remove 

architecturally-relevant code anomalies. The reason is that modifications were 

often confined to the internal code of the class, whereas the removal of 

architecturally-relevant code anomalies requires modifications in several classes. 

 

4.3. 
Threats to Validity 

This section discusses the threats to validity according to the classification 

proposed by Wohlin et al. (2000). 

Construct validity. A first construct validity threat concerns the way we 

associate code anomalies with architectural problems. We are aware that code 

anomalies might be accidentally related to architecture problems. However, we 

limited such threat by considering only the code anomalies and architecture 

problems whose cause-effect relationship were identified and confirmed by 

developers and architects. Another threat concerns the set of analyzed code 

anomalies and architecture problems. We have tried to mitigate this threat by 
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using systems that suffer from the same set of anomalies than systems used in 

other studies (Khomh et al., 2009; D’Ambros et al., 2010). Lastly, construct 

validity could also be threatened considering how refactorings were identified. As 

we have relied on commit heuristics and diff tools, some refactorings might be 

missing. 

Conclusion and external validity. Threats to conclusion validity are 

concerned with the relationship between the treatment and the outcome. In our 

study all the Fisher test and logistic regression model results were statistically-

significant at the 95% level. On the other hand, threats to external validity concern 

the generalization of the findings. We focused on the analysis of medium-size 

systems. However, the development processes of large-scale systems might differ 

and lead to different results. We have tried to use systems of different types, 

implemented using different programming languages, environments (i.e. academy 

and industry) and with different architecture decompositions. Our target systems 

also present a similar density of code anomalies to large systems that were used in 

previous studies (Khomh et al., 2009; Olbrich et al., 2009, 2010; D’Ambros et al., 

2010). Another external validity threat concerns the generalization of the results. 

We plan to apply this kind of study on large open-source and industry systems. 

 

4.4. 
Summary 

This chapter investigated the relationship between code anomalies and 

architectural degradation symptoms in the implemented architecture. It also 

investigated whether and to what extent applied refactorings contribute to remove 

architecturally-relevant code anomalies. To perform these investigations, a sample 

of nearly 2100 anomalous code elements and 1030 architectural degradation 

symptoms, distributed in 40 versions of six (06) real-life software systems was 

considered. 

Our results showed that the majority of the architectural degradation 

symptoms in the actual architecture emerged from anomalous code elements. 

These results suggest that systematic removal of code anomalies can be used to 

effectively combat symptoms of architecture degradation in the code. Our study 

also revealed how certain kinds of early code anomalies cause adverse impact on 
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the architecture design as the systems evolve. This means that developers should 

promptly identify and address them upfront; otherwise, those code anomalies are 

likely to contribute to the anomaly in coupled components, thereby accelerating 

the architecture degradation processes. 

The key findings of this study are summarized as follows: 

 Approximately 65% of all code anomalies were related to 78% of all 

architecture degradation symptoms. This result seems to confirm that 

detection of code anomalies is useful for locating potential sources of 

architecture degradation. In turn, this suggests that systematic code 

refactoring could contribute to address those symptoms (Section 4.2.1). 

 Certain types of code anomalies were consistently related to architecture 

degradation symptoms (e.g. Long Method, God Class and Composition 

Bloat). However, none of them emerged as the best indicator of 

degradation symptoms across all the systems. Anomalous code elements 

often introduced degradation symptoms when implementing non-cohesive 

functionalities and accessing information from several components; 

regardless of the type of the code anomaly (Section 4.2.2.1). 

 More than 18% of all architecturally-relevant anomalies emerged from 

anomalous code elements in the systems' first version. These early 

anomalies were responsible for introducing more than 33% of all 

architectural problems. This means that certain refactorings should be 

prioritized to remove code anomalies as early as possible (Section 4.2.2.2). 

 About 66% of all refactorings did not contribute to fix architecturally-

relevant code anomalies. These refactorings were usually confined to the 

private members of classes. However, as architecturally-relevant code 

anomalies often infected public members of interfaces and super-classes, 

they could only be removed by applying high-level refactoring (Section 

4.2.3). 

All the aforementioned findings raise questions about the effectiveness of 

state-of-the-art history-sensitive mechanisms for code anomaly detection 

(Marinescu, 2004; Ratiu et al., 2004; Mara et al., 2011). These tools rely on 

change analysis across several system versions to detect anomalies with 

acceptable accuracy. Therefore, they cannot reveal early harmful anomalies, as 
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their detection might occur too late, when anomaly removal might become 

impeditive. That concern is exacerbated by the fact that there is no knowledge 

about the accuracy of current state-of-art mechanisms for identifying 

architecturally-relevant code anomalies. The investigation of this accuracy is 

presented in the next chapter. 
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