

4
Impact of Code Anomalies on Architectural Degradation

As discussed in Chapter 2, the violation of modularity principles during the

implementation of software systems has been highlighted by several authors as a

cause of architectural degradation. For instance, code elements that are tightly

coupled often demand a significant maintenance effort, leading systems to be

redesigned in extreme cases (Eick et al., 2001; MacCormack et al., 2006). The

indicators of maintenance problems in the system implementation are referred to

as code anomalies (Fowler et al., 1999). These anomalies can manifest themselves

in systems implemented using any modularization technique. Catalogs of code

anomalies for object-oriented systems have been widely documented (Webster,

1995; Riel, 1996; Fowler et al., 1999). On the other hand, catalogs of code

anomalies for aspect-oriented systems are only beginning to appear (Section

3.2.1). Chapter 3 expanded further the existing catalogs by documenting six new

aspect-oriented anomalies.

A number of studies have investigated the occurrences of code anomalies

under different perspectives. These studies vary from (i) understanding the

manifestations of code anomalies throughout the system evolution to (ii) assessing

their correlation with change-proneness, fault-proneness, and maintenance effort

(Chapters 2 and 3). However, the impact of code anomalies on architectural

degradation has mostly been ignored by existing studies, despite of several

authors having called attention to it. This adverse impact could be considered as

even more critical due to its silence - in the sense that it does not affect the

system’s behavior, such as fault-proneness, and it can potentially lead to a

complete redesign of the system.

In this context, this chapter presents an empirical study that investigates the

interplay of code anomalies and architecture degradation. In other words, this

chapter aims at answering our first research question (Section 1.4): What is the

relationship between code anomalies and architectural degradation throughout

the evolution of software systems? To this end, the study to be described

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

79

investigates which characteristics of code anomalies are more likely to indicate

their harmful impact on the architecture of a system. This study also analyzes to

what extent refactoring is applied for removing architecturally-relevant code

anomalies.

In order to address the aforementioned goals, the study involves a sample of

nearly 2100 anomalous code elements
4
 distributed in 40 versions of 6 industry-

software systems. The anomalous code elements encompassed heterogeneous

forms of code anomaly manifestation. In particular, the study assesses code

anomalies that infect aspect-oriented and also object-oriented implementations.

This kind of investigation could be performed thanks to: (i) our analysis on when

and to what extent code anomalies infect aspect-oriented systems (Chapter 3) and

(ii) several reports that document recurrent occurrences of code anomalies in

object-oriented systems (Section 2.3.3). The results of this study have been

published in two technical papers (Macia et al., 2011b; Macia et al., 2012b).

The remainder of this chapter is structured in four main sections. Section 4.1

describes the study definition and design. Section 4.2 discusses the findings

associated with the impact of code anomalies on architectural degradation

symptoms. Section 4.3 presents the limitations of the study. Finally, Section 4.4

presents a summary of the key points discussed throughout the chapter.

4.1.
Study Definition and Design

The study presented in this chapter aims to answer the first research

question of this thesis: What is the relationship between code anomalies and the

degradation of the actual architecture, throughout the evolution of software

systems? This research question was decomposed into three research questions

(RQ):

RQ1.1: To what extent are anomalous code elements related to architectural

degradation in the actual architecture and vice versa?

RQ1.2: Which characteristics of code anomalies are indicators of their

relationship with architectural degradation symptoms?

4
 fragments of programming code such as: attributes, operations and declarations

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

80

RQ1.3: How often are architecturally-relevant code anomalies removed by

means of refactorings?

A sample of nearly 2100 code anomalies and 1030 architectural degradation

symptoms was considered to answer RQ1.1 (Section 4.2.1). This sample includes

aspect-oriented (AO) and object-oriented (OO) code anomalies as well as

architectural degradation symptoms observed in these implementations.

For RQ1.2, two characteristics of code anomalies were analyzed: their type

(Section 4.2.2.1), and the earliness of their occurrence in a software project

history (Section 4.2.2.2). In the context of this study, a code anomaly is

considered to be early if it was introduced in the first version of a system. The

motivation for the former analysis is that certain types of code anomalies tend to

occur more often than others (D’Ambros et al., 2009; Khomh et al., 2009).

However, there is no knowledge about how often code anomaly types (Srivisut

and Muenchaisri, 2007; Piveta et al., 2006; Chapter 3, Fowler et al., 1999) are

sources of architectural degradation symptoms (Garcia et al., 2009; Stal, 2010).

The motivation for the later analysis is to understand if code anomalies introduced

early in a software project are harmful (or not) to system’s architecture; if so, this

implies that developers should watch out for harmful early anomalies and

anticipate their removal through early refactorings.

Finally, for RQ1.3, a sample of 700 refactorings were considered, including

those performed in both object-oriented (Fowler et al., 1999) and aspect-oriented

systems (Iwamoto and Zhao, 2003; Hannemann et al., 2005) (Section 4.2.3).

In this context, following Wohlin et al. suggestion (2000), we defined our

study and its goals using the GQM format (Basili et al., 1994) as:

Analyze: code anomalies

For the purpose of: understanding their impact on system's architecture and

how often they are removed by means of refactoring

With respect to: architectural violations and architectural anomalies

From the viewpoint of: systems architects and developers and researchers

In the context of: six (06) software systems from different domains,

implemented with using different modularization techniques and following

different architectural decompositions.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

81

4.1.1.
Hypotheses

In order to answer the three aforementioned research questions, we have

defined the null and alternative hypotheses as shown in Table 4.1.

Table 4.1: Research questions and hypotheses of the study.

Research Questions Hypotheses

RQ1.1

For each of the code anomalies studied:

Null Hypothesis, H10: The code anomaly is not significantly related to

architectural degradation symptoms.

Alternative Hypothesis, H1A: The code anomaly is significantly related

to architectural degradation symptoms.

RQ1.2

Null Hypothesis, H20: Type and earliness are not good indicators of

architectural degradation symptoms in the context of the studied code

anomalies.

Alternative Hypothesis, H2A: Type and earliness are good indicators of

architectural degradation symptoms in the context of the studied code

anomalies.

RQ1.3

Null Hypothesis, H30: Refactorings are not often applied to remove the

studied code anomalies related to architectural degradation symptoms.

Alternative Hypothesis, H3A: Refactorings are often applied to remove

the studied code anomalies related to architectural degradation symptoms.

4.1.2.
Variable Selection

The following independent and dependent variables have defined the

following in order to test our hypotheses.

Independent Variables. Independent variables are those variables

manipulated and controlled in the study (Wohlin et al., 2000). There is a Boolean

variable for H10, Ci,j, that indicates whether (or not) the code element i suffers

from at least one anomaly in version vj. There are as many independent variables

for H20 as there are types of code anomalies analyzed in this study (Section 4.1.4).

Each variable, Ci,k,j, indicates the number of times that a code element i suffers

from a code anomaly k in version vj. Finally, there is a variable or H30, Rj,

representing the number of refactorings applied in version vj. As will be

mentioned in Section 4.1.4, all code anomaly occurrences used when testing these

hypotheses were confirmed by developers. Section 4.2.3, presents the process

followed to identify the applied refactorings in target systems.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

82

Dependent Variables. Dependent variables refer to those variables that we

want to study to observe the effect of changes in the independent variables

(Wohlin et al., 2000). There are two Boolean dependent variables, Vi,j and Ai,j, for

H10 that indicate whether (or not) the code element i is related to any violation

(i.e. architectural erosion) or architectural anomaly in the implemented

architecture (i.e. architectural drift) in version vj, respectively. There are as many

dependent variables for H20 as there are kinds of architectural violations and

architectural anomalies. The dependent variables Vi,k,j and Ai,k,j indicate whether

the code element i affected by the code anomaly k is related to any violation or

architectural anomaly in version vj, respectively. Finally, there is a variable for

H30, ERj, representing the number of refactorings that were effective to remove at

least one architecturally-relevant code anomaly in version vj. The term

architecturally-relevant code anomaly, used throughout this text, refers to those

code anomalies related to architectural degradation symptoms.

4.1.3.
Selection Criteria and Target Systems

Several criteria were established to support the selection of suitable

software systems to this study. The criteria used are presented in Table 4.2.

Table 4.2: Criteria used for the selection of target systems.

 The target system:

C1 was modeled using documented guidelines or well known architecture styles.

C2 has the intended architecture design available.

C3 has the original architects and developers available.

C4 has a manageable size.

C5 is infected by a rich set of code anomalies.

C6 presents a rich set of architectural degradation symptoms.

C7 has undergone changes.

C8 was implemented by developers with different levels of programming skills.

C9 was implemented using different programming languages and modularization techniques.

Criterion C1 avoids the analysis of code anomalies and architectural

degradation symptoms introduced due to poor software engineering practices.

Criteria C2, C3, C4, C5 and C6 allow carrying out a better in depth analysis of code

anomaly causes and their impact on the actual architecture design since a variety

of code anomalies and architectural degradation symptoms are analyzed.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

83

Additionally, the impact of code anomalies on the actual architecture was

validated by system architects and developers, which was also important for

increasing the reliability of our analysis. Criterion C7 allows analyzing the

harmfulness of code anomalies on architecture design that evolved in different

ways and the proportion of refactored anomalies. Criterion C8 supports the

observation of whether (or not) architecturally-relevant code anomalies were

introduced by specific to developers with certain programming skill level. Finally,

criterion C9 ensures the observation of whether (or not) the impact of code

anomalies on architectural degradation symptoms is specific to programming

languages or modularization techniques.

Based on these criteria, six (06) software systems, totaling 40 versions,

were selected. Two of these systems, Aspectual Health Watcher and Aspectual

Mobile Media, were introduced in the previous chapter (Section 3.3.1). The third

and fourth systems are the Java versions of Health Watcher and Mobile Media.

The fifth system, named MIDAS, is a lightweight middleware platform

implemented in C++ for distributed, event-based sensor applications (Malek et al.,

2006; Garcia et al., 2009). Two versions of MIDAS were assessed in this study,

which are the before and after versions of a major restructuring with the widest

impact in this system evolution. A high number of architectural and code elements

suffered changes in this transition. The last system is a web-based application

implemented in C# that allows scenographers to plan and manage scenic sets in

television productions. To preserve copyright constraints, the fictitious name of

PDP is used in this thesis to refer to it. Similarly to MIDAS, both selected

versions of PDP are the before and after versions representing the major changes

in this system evolution. The main characteristics of these systems are presented

in Appendix A.

4.1.4.
Procedures for Data Collection

In order to analyze the impact of code anomalies on architectural

degradation symptoms the actual architecture was recovered through reverse

engineering. The recovered architecture was then compared with the intended

architecture, in order to identify architectural violations; i.e. symptoms of

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

84

architectural erosion (Section 2.2). In addition, the recovered architecture was

analyzed to detect architectural anomalies - i.e., symptoms of architectural drift

(Section 2.2). Then, the recovered architecture was analyzed to detect

architectural anomalies and finally, code anomalies were identified. The last

activity encompassed the analysis of the impact of code anomalies on architectural

degradation. These activities were performed for each version of the target

systems, as presented bellow.

Recovering the Architectural Components Design. This activity was

based on a semi-automatic process. We used Sonar (2009), Understand (2009) and

NDepend (2009) to support the recovery of the actual architecture from the source

code (Section 2.2.2) in the target systems. We relied on those tools because they

support architecture and code analysis, helping architects and developers to

measure modularity in both levels. Additionally, these tools are complementary:

Sonar analyzes Java programs, while NDepend and Understand analyze C++ and

C# programs, respectively.

Furthermore, Sonar, Understand and NDepend provide mechanisms to

extract the relationships (i.e. mappings) between code elements and architectural

elements in different granularity levels. That is, by using these tools we could

extract the set of code elements (e.g. packages, sets of classes defined or not in the

same package) that are in charge of implementing an architectural component

(Section 2.1). These mappings allow to better trace and, hence, understand the

influence of a code anomaly on the actual architecture design.

Recovering the Architectural Concerns. The recovery of architectural

concerns encompassed two main steps: the selection of architectural concerns and

their projection on the system implementation. Architects and developers selected

only architectural concerns that were clearly relevant according to their

knowledge of the target systems. As a result, six architectural concerns were

chosen from Aspectual Watcher and Health Watcher: Concurrency, Distribution,

Persistence, Complaint, Health Unit, and View; nine architectural concerns were

selected from AspectualMedia and MobileMedia: Security, Concurrency, Screen,

Persistence, Photo, Music, Video, Sorting, and Favorite; four architectural concerns

were selected from MIDAS: Fault Tolerance, Service Discovery, Dynamic Adaptation,

and Engine; and six architectural concerns were selected from PDP: Transaction,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

85

Persistence, Service, Photo, Area, and Attachment. Descriptions of these concerns

are provided in Table 4.3.

These architectural concerns were chosen because (i) influenced the key

architects’ design decisions or (ii) represent important functionalities of the

system modularized in architectural components, and (iii) are different in terms of

functionality, scattering degrees, and granularity levels. Therefore, the selection

and assessment of different kinds of architectural concerns were important to

enable us to observe the relationship between code anomalies and architectural

problems.

Table 4.3: Architectural concerns considered in the study.

System
Architectural

Concern
Description

Health Watcher

Complaint It manages all kind of complaints in the system.

Concurrency
It provides a control for avoiding inconsistent information

stores in the system database.

Distribution
It externalizes the system services at the server side and

supporting their distribution to the clients.

Health Unit It manages information regarding health units.

Persistence
It retrieves and stores the information manipulated by the

system.

View It processes the web requests submitted by the system users.

MobileMedia

Concurrency
It provides a control for avoiding inconsistent information

stores in the system database.

Favorite It provides services to set favorite media and visualize them.

Music It manages all the music data stored in the system.

Persistence
It retrieves and stores the information manipulated by the

system.

Photo It manages all the pictures stored in the system.

Screen It processes the requests submitted by users.

Security
It improves the user’s privacy and requires authentication to

access to albums (i.e. login and password).

Sorting
It provides a service for sorting media by the number of

accesses.

Video It manages all the video data stored in the system.

MIDAS

Dynamic

Adaptation

It provides flexible configuration of resources and optimizes

the performance of mobile applications.

Engine It provides the core services of the middleware.

Fault Tolerance
It delivers the system services to their recipients under all

conditions.

Service Discovery
It supports the ability of a client to discover or invoke a

service without prior knowledge of its physical location.

PDP

Attachment It manages all the utility equipment in the system.

Area It manages all the film sets in the system.

Photo It manages all the pictures stored in the system.

Persistence
It retrieves and stores the information manipulated by the

system.

Service It manages all the service interfaces in the system.

Transaction It manages all the transactions in the system.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

86

A second step was dedicated to manually produce the projection of these

architectural concerns on the system implementation. To this end, architects and

developers of the target systems worked together for more than 4 months on

carefully reviewing the system code to produce such projections. This stage had to

be conducted manually since architecture recovery tools do not support the

extraction of architectural concerns (Section 2.1) from the system implementation.

Some tools were used to mapped the extracted concerns such as ConcernMapper

(2010) and Cide (2010). The main motivation for the architectural concern

extraction is that there are several architectural anomalies documented in the

literature (Garcia et al., 2009, Stal, 2009), which are related to the inappropriate

modularization of architectural concerns. Therefore, the mappings between code

elements and architectural concerns allow identifying whether and how the

inappropriate modularization of such concerns in the code is related to

degradation symptoms in the recovered architecture.

Identifying Architectural Degradation Symptoms. In order to identify

symptoms of architectural erosion (Section 2.2) we used the Software Reflexion

Model (Murphy et al., 2001). The comparison of the actual, extracted architecture

(EA), and the intended architecture (IA) was supported by two groups of

architects: (i) those that defined the original intended architecture, and (ii)

independent reviewers of the system architecture. We measured the architecture

conformance in terms of convergence (a component or relationship that is in both

EA and IA), divergence (a component or relationship that is in EA but not in IA),

and absence relationships (a component or relationship that is in IA but not in

EA). Although absence and divergence classifications are natural suspects of

possible architectural violations, they must be validated with systems architects

and developers. Certain absence and divergence classifications can be motivated

by mistakes or wrong decisions introduced in the IA that are subsequently

corrected in the EA. Therefore, in those cases, absence and divergence

classifications cannot be classified as violations. In the context of our study all the

absence classifications were confirmed by architects and developers as violations.

That did not occur with divergences, which were only classified as violations in

certain cases.

Furthermore, symptoms of architectural drift (Section 2.2.3) were detected

by architects in the EA based mainly on: (i) a visual inspection, and (ii) a careful

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

87

analysis of the mappings between code elements and architecture elements in that

architecture, due to the lack of tools for doing so automatically (Section 2.2.4.2).

We also asked the system architects to indicate other architectural drift symptoms

observed in the EA beyond those documented in existing catalogs, such as cyclic

dependencies. This helped us to better judge whether and which code anomalies

are good indicators of architecture problems.

As a result of this stage, architects provided reports describing the

architectural problems observed in each system version. These reports described,

for instance, the architecture degradation symptom, its location in the design, the

architectural elements related to it and, in some cases, an explanation of the

problem cause. The final subset of architectural drift symptoms (i.e. architectural

anomalies) encompassed those architectural anomalies that were identified by

architects in the target systems of our study. These anomalies are summarized in

Table 4.4.

Table 4.4: Architectural anomalies analyzed in the study.

Architectural Anomaly Definition

Ambiguous Inteface
The interface offers only a single general entry-point and, hence, it can

handle more requests than it should actually process

Extraneous Connector Connectors of different types are used to link a pair of components

Cyclic Dependency
A relation between two or more architectural elements that depend on

each other either directly or indirectly.

Connector Envy
A component realizes functionality that should be assigned to a

connector

Scattered Parasitic

Functionality

A high-level concern is spread over multiple modules that implement

different concerns.

Redundant Interface Interface that require the same information of other interfaces

Overused Interface Interface that requires a lot of data or is required by several interfaces.

Component Concern

Overload

A component is responsible for realizing two or more unrelated

system’s concerns

Detecting Code Anomalies. As a first step, code anomalies were

automatically identified using conventional detection strategies (Marinescu, 2004)

- similarly to other studies (Khomh et al., 2009; Olbrich et al., 2009; Olbrich et

al., 2010; D'Ambros et al., 2010). Therefore, we studied code anomalies for each

conventional documented detection strategy. These anomalies are summarized in

Table 4.5. However, existing tools for applying detection strategies (Ratiu et al.,

2004; Marinescu et al., 2010; Moha et al., 2010; Mara et al., 2011) suffer from

limitations that hinder their practical use. First, they do not support all the

published strategies. Second, they do not allow developers to adjust metrics and

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

88

thresholds according to the particularities of a system. Thus, we decided to collect

code metrics used in the strategies with well-known code analyzers (Together,

2009; Understand, 2009) and then, combine their outcome according to the

strategy definition. We relied on these code analyzers because they complement

each other and together collect all the required metrics.

Table 4.5: Code anomalies analyzed in the study.

Code Anomaly Definition

Anonymous Pointcut occurs whenever a pointcut is directly defined in the advice signature.

Composition Bloat
is a complex base computation that is advised by multiple aspects and

leads to complex advice implementations in one or more aspects

Disperse Coupling refers to a code element that accesses many other code elements.

Duplicate Pointcut
is associated with full pointcut expressions equivalent to others that

have already been defined.

Feature Envy
refers to a method that seems to be more interested in the data of other

elements than those available in its class.

Forced Join Point
is associated with elements (attributes or methods) in the base code that

are only exposed to be used by aspects

God Aspect occurs when an aspect is realizing more than one concern.

God Class
occurs when a class centralizes the system functionalities (realizes more

than one purpose).

God Pointcut
occurs when a pointcut has either a complex expression and the

respective advice has a complex implementation.

Idle Pointcut refers to pointcuts that do not match any join point

Intensive Coupling
refers to a code element that has tight coupling with other methods, and

these methods are defined in the context of few classes.

Lazy Aspect is an aspect that has either none or only fragmented responsibility

Long Method occurs when a method has grown too large.

Lazy Class
refers to classes that are not doing much useful work and should be

eliminated.

Long Parameter List
refers to a long list of parameters in a procedure or function make

readability and code quality worse.

Misplaced Class
refers to a class that depends on classes from other packages more than

those from its own package.

Redundant Pointcut
is associated with partial (not full) pointcut expressions equivalent to

others that have already been defined.

Shotgun Surgery
refers to a method that has many other code elements depending on it,

hindering the reusability of the infected method.

In this process we selected metrics and thresholds that have shown high

accuracy to identify these code anomalies in previous studies (Lanza and

Marinescu, 2006; Khomh et al., 2009; Olbrich et al., 2009; Olbrich et al., 2010;

D'Ambros et al., 2010). In some cases, the thresholds suffered some minor

adjustments in order to maximize the strategy’s accuracy. For instance, certain

thresholds were calibrated according to the specific programming styles and

system characteristics. The goal was to get the best possible accuracy rates with

the conventional detection strategies at hand, according to our knowledge on the

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

89

software systems. If needed, the changes in the original detection strategies were

discussed with the system developers. A complete list of the employed detection

strategies and their corresponding thresholds is available in Appendix B.

As a second step, the list of suspects identified by conventional strategies

was validated by the developers. That is, developers analyzed whether the

detected code structure was really infected by a given anomaly. At least three

developers were involved in this process for each system. All the developers had

previous experience on the identification and refactoring of code anomalies. As a

result, we considered those code structures that were confirmed by all the

developers involved in this process. This validation was motivated by the fact that

conventional detection strategies present false positives and false negatives when

identifying code anomalies (Marinescu, 2004). Consequently, by mixing

automatic with manual detection, we aimed at finding a reliable set of code

anomalies.

Analyzing the Impact of Code Anomalies on the Architecture. In order

to analyze the relationships (i.e. correlation and cause-effect) between code

anomalies and architecture degradation symptoms, developers and researchers

first analyzed reports provided by the architects. As previously detailed, these

reports included fine-grained and accurate details about identified architecture

problems, facilitating the correlation analysis. Moreover, the following heuristics

were also systematically applied to infer each cause-effect relationship: first, we

observed whether the same structural modifications caused simultaneously a code

anomaly and an architecture problem. Second, we checked whether the definition

of an anomalous code element introduced an architectural problem. Finally, we

examined whether changes performed considering the evolution of an anomalous

code element caused an architecture problem. In the context of this thesis, the

term "anomalous" refers to those code elements infected by at least one code

anomaly.

The analysis also relied on a set of criteria to validate the cause-effect

relationship between code anomalies and architecture problems. First, the cause-

effect relationship was recurrently inferred in almost all systems versions, and for

many of the involved code anomaly occurrences and architecture problems.

Second, the cause-effect relationship was observed in different components of the

same system and, additionally, these components involved the contribution of

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

90

different developers. Lastly, all the inferred cause-effect relationships were

confirmed by architects and developers involved in this activity. As a result, we

produced a ground truth of architecturally-relevant code anomalies for each target

system. These lists included fine-grained and accurate details about the code

anomalies facilitating further analyses (e.g. Chapter 5). For instance, these lists

described the code elements affected by anomalies, the code anomalies type, and

the architectural problems such affected code elements are related to.

4.2.
Findings on the Impact of Code Anomalies

The following sections present and discuss the main findings associated

with each of the aforementioned research questions (Section 4.1). Section 4.2.1

discusses whether anomalous code elements are related to architectural

degradation symptoms. Section 4.2.2 reports the observations about the impact of

two anomaly characteristics (type and earliness) in the architectural degradation

symptoms. Finally, Section 4.2.3 discusses whether and to what extent

refactorings were effectively applied to remove architecturally-relevant code

anomalies in the target systems.

4.2.1.
Are Anomalous Code Elements Architecturally-Relevant?

In order to investigate whether anomalous code elements (classes, aspects,

methods and pointcuts) are more related to architectural degradation symptoms

than anomaly-free code elements, Fisher’s exact test (Shesking, 2007) was first

applied. It checks whether the proportion of architectural degradation symptoms

varies across classes and aspects with or without code anomalies. This test was

selected because the study deals with small samples. Therefore, the use of another

test, such as Chi2 (Shesking, 2007) could produce erroneous results because of the

approximation.

We have also calculated the Odds Ratio (ORs) (Shesking, 2007) to check

whether anomalous classes and aspects have the same probability to be related to

architecture problems that anomaly-free code elements. Results of Fisher’s test for

both architectural violations and architectural anomalies are presented in Tables

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

91

4.6 and 4.7, respectively. Note that Table 4.6 shows the impact of code anomalies

on decisions of the intended architecture, while Table 4.7 shows their impact on

the implemented architecture. In these tables, the versions of MIDAS and PDP

named as "BEF" and "AFT" correspond to the version before and after applying

major changes, respectively. Also, lower p-values indicate that code elements with

code anomalies adversely impact architecture design more than anomaly-free code

elements. Data for MIDAS and PDP are not presented in Table 4.6 as no violation

occurred in these systems. This finding was expected as the development process

in these projects strictly enforced architecture conformance.

Table 4.6: Fisher’s test results for architectural violations.

Releases p-values ORs Releases p-values ORs

Aspectual Watcher Health Watcher

1.0 < 0.05 0.8 1.0 < 0.05 4.2

4.0 < 0.05 2.4 4.0 < 0.05 6.0

7.0 < 0.05 3.3 7.0 < 0.05 5.1

10.0 < 0.05 3.9 10.0 < 0.05 2.8

Aspectual Media MobileMedia

1.0 0.29 1.7 1.0 0.063 2.0

3.0 0.38 2.5 3.0 0.169 2.3

5.0 < 0.05 4.2 5.0 < 0.05 2.9

8.0 < 0.05 7.3 8.0 < 0.05 3.1

Table 4.7: Fisher’s test results for architectural anomalies.

Releases p-values ORs Releases p-values ORs

Aspectual Watcher Health Watcher

1.0 0.36 1.8 1.0 < 0.05 2.6

4.0 < 0.05 2.4 4.0 < 0.05 2.0

7.0 < 0.05 3.1 7.0 < 0.05 4.2

10.0 < 0.05 3.9 10.0 < 0.05 10.2

Aspectual Media MobileMedia

1.0 < 0.05 2.3 1.0 < 0.05 3.3

3.0 < 0.05 2.1 3.0 < 0.05 3.2

5.0 < 0.05 4.5 5.0 < 0.05 6.4

8.0 < 0.05 3.6 8.0 < 0.05 9.1

MIDAS PDP

BEF 0.07 1.9 BEF < 0.05 3.8

AFT < 0.05 2.1 AFT < 0.05 3.2

Architectural Significance of Code Anomalies. Our analysis revealed a

statistically-significant relationship between anomalous code elements and

architectural degradation symptoms in 77.5% of the analyzed versions, according

to the desired level of confidence (i.e. 0.05). Also, the odds ratio revealed that

anomalous code elements were related to architectural degradation symptoms with

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

92

two or more times higher probability than anomaly-free code elements. However,

the significance of this relationship was not statistically confirmed in the first

version of certain systems. In these first versions, anomalous code elements were

scattered through all the architecture components, while architecture problems

were only found on certain components. On the other hand, degradation

symptoms emerged in multiple components over time as a consequence of

changes performed on anomalous code elements. Thus, the relationship between

anomalous code elements and architectural degradation symptoms was

statistically confirmed in later versions. This finding reveals that developers

should be more concerned with refactoring anomalous code elements in the first

system version. Certain early code anomalies require special attention even when

they do not represent a threat to the architecture design (Section 4.2.2.2). Taking

into consideration Fisher’s test results and the aforementioned gathered evidence,

H10 can be rejected according to the desired level of confidence (i.e. 0.05).

Upstream and Downstream Analyses. In order to complement the

Fisher’s test analysis, we analyzed the upstream and downstream relationships

between code anomalies and architectural degradation symptoms. The upstream

analysis refers to what extent code anomalies were related to architectural

degradation symptoms, while the downstream corresponds to what extent

architectural degradation symptoms were related to code anomalies. These

analyses are useful because they show: (i) the proportion of code anomalies that is

critical for the system architecture, and (ii) the proportion of architectural

degradation symptoms that could be fixed by refactoring code anomalies. The

upstream analysis showed that up to 81% of analyzed code anomalies were

correlated to architecture problems in Health Watcher, 72% in MobileMedia, 68%

in Aspectual Watcher, 65% in PDP, 63% in Aspectual Media and 51% in MIDAS.

As we can notice, a considerable proportion of code anomalies did not impact the

architecture design in the analyzed systems. This finding highlights the need for

understanding whether certain characteristics of the code anomaly were more

likely to be related to the source of architecture problems (Section 4.2.2).

On the other hand, a downstream analysis revealed that up to 86% of all

architecture problems were caused by code anomalies in Health Watcher, 83% in

Aspectual Media, 80% in Mobile Media, 75% in Aspectual Watcher, 71% in PDP,

and 70% in MIDAS. These results indicated that the vast majority of problems in

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

93

the extracted architecture were caused by anomalous code elements. We found

high cause-effect rates through the evolution of components where conformance

of architectural rules was strictly enforced in the source code, which was

particularly surprising. The MIDAS project is the best example for such finding:

although design rules were not violated, many occurrences of anomalies in the

extracted architecture emerged over time. They were found in anomalous code

elements with low cohesion and high coupling. Even though most of these code

elements implemented a single architectural component, they realized multiple

scattered architectural concerns. This phenomenon was often caused by broadly

scoped scattered architectural concerns, such as Service Discovery, Fault

Tolerance Policies, and Dynamic Adaptation. Each of these architectural concerns

should have been modularized in a single component.

The results of these multi-dimensional analyses seem to confirm that the

detection of code anomalies is useful to locate potential sources of architectural

erosion and drift (Section 2.2). This suggests in turn that the early application of

systematic code refactoring could effectively contribute to combat symptoms of

architecture degradation. This observation is even more relevant for projects

where there is neither effort on proactive maintenance of architecture

documentation nor investment on using heavyweight architectural conformance

tools (Section 2.2.2). We also found that a considerable proportion of all code

anomalies, about 40%, were not indicators of relevant design problems. This

means that refactorings cannot be chosen arbitrarily when architecture revisions of

the source code are being carried out. Developers should be equipped with

guidance and tool support to identify and rank code anomalies according to their

relevance to architecture degradation. In this context, the next section discusses

whether certain characteristics of code anomalies were better indicators of

architecture problems in the analyzed systems.

4.2.2.
Are Particular Characteristics of Code Anomalies Indicators of
Architectural Degradation Symptoms?

Once confirmed that anomalous code elements were often related to

architectural degradation symptoms in the target systems, we investigated the role

played by the type and earliness of code anomalies in this context. Additionally,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

94

the results of the previous section also reinforced the importance of studying the

earliness of code anomalies.

4.2.2.1.
Type of Code Anomalies

A logistic regression model (Hosmer and Lemeshow, 2000) was used to

investigate to what extent particular types of code anomalies were related to

degradation symptoms in both system architectures. This method was selected

because it predicts whether code elements infected by a particular type of code

anomaly are likely to be related to architectural degradation symptoms. The closer

the value of the regression model is to 1, the higher is the likelihood that the code

anomaly relates to an architectural degradation symptom. Differently from the

Fisher’s test, in this method we considered only those cases where the cause-effect

relationship between code anomalies and architectural degradation symptoms

were confirmed by architects and developers (Section 4.1.4).

We use regression models as an alternative to the Analysis Of Variance

(ANOVA) for dichotomous variables. Then, for each code anomaly and for the 40

analyzed versions, we count the number of times that the p-values obtained by the

regression model were significant. In this sense, as the regression model demands,

we discarded variables that were highly correlated to others. Therefore, the model

contains a non-redundant set of code anomalies.

Tables 4.8 and 4.9 show the results of the logistic regression model for the

contribution of each type of code anomaly on architectural degradation symptoms.

In particular, these tables summarize the total number of analyzed releases for

which each type of anomaly was statistically-significant in the regression model.

For instance, Table 4.9 shows that Long Method was statistically-significant for

causing architectural anomalies in 8 of out 10 versions of Health Watcher. Most

of the Long Methods detected in Health Watcher implemented tangled concerns.

We highlight in boldface those anomalies that present a significant p-value for at

least 70% of the releases where they occurred. This threshold was previously

documented in the literature and used in other studies with similar analytical

purposes (Khomh et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

95

Table 4.8: Significant p-values for architectural violations.

Type of Code Anomalies AW HW AM MM

Anonymous Pointcut 5 - 3 -

Composition Bloat 3 - 4 -

Disperse Coupling 5 7 5 5

Duplicate Pointcut 4 - 4 -

Feature Envy 1 2 2 2

Forced Join Point 2 - 1 -

God Aspect 4 - 2 -

God Class 3 5 7 5

God Pointcut 7 - 4 -

Idle Pointcut 0 - 0 -

Intensive Coupling 6 9 5 8

Lazy Aspect 0 - 0 -

Lazy Class 4 3 3 6

Long Method 7 8 4 6

Long Parameter List 7 2 5 3

Misplaced Class 1 1 2 3

Redundant Pointcut 4 - 3 -

Shotgun Surgery 3 2 4 5

Lazy Class 4 3 3 6

Table 4.9: Significant p-values for architectural anomalies.

Type of Code Anomalies AW HW AM MM MIDAS PDP

Anonymous Pointcut 4 - 2 - - -

Composition Bloat 7 - 5 - - -

Disperse Coupling 4 6 2 5 2 2

Duplicate Pointcut 3 - 3 - - -

Feature Envy 2 2 1 1 0 1

Forced Join Point 2 - 2 - - -

God Aspect 5 - 5 - - -

God Class 4 7 4 5 2 2

God Pointcut 3 - 6 - - -

Idle Pointcut 0 - 0 - - -

Intensive Coupling 4 7 5 5 2 2

Lazy Aspect 3 - 2 - - -

Lazy Class 4 4 3 6 2 1

Long Method 5 8 4 7 2 2

Long Parameter List 1 2 2 1 0 0

Misplaced Class 1 1 2 0 - 0

Redundant Pointcut 2 - 4 - - -

Shotgun Surgery 2 7 3 4 2 2

A first analysis of Tables 4.8 and 4.9 suggests that none of the types of

code anomalies (Fowler et al., 1999; Chapter 3) stand out as the best indicator of

architectural degradation symptoms. None of them were clearly the best indicator

across all the systems. Thus, the second null hypothesis, H20, cannot be rejected

for the type anomaly characteristic. However, certain types of anomalies were

significantly related to architectural degradation symptoms. In certain cases, the

high cause-effect relation was consistently observed regardless of the analyzed

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

96

system. For instance, 77% of God Classes, 71% of Long Methods, and 64% of

Intensive Coupling instances introduced architectural degradation symptoms.

There were also situations where the high cause-effect relationship was

observed in the majority of, albeit not all, the systems. This is the case of code

anomalies such as Long Parameter List and Lazy Class, which presented

interesting and distinct effects. For instance, about 63% and 22% of Long

Parameter List introduced architectural violations in later versions of aspect-

oriented and object-oriented systems, respectively. Artificial parameters had to be

created through aspect-oriented system evolution allowing aspects to access

restricted contextual information, thereby breaking the intended encapsulation.

This finding suggests that certain types of code anomalies could have been a

typical source of architecture degradation symptoms, depending on the type of the

adopted programming language and architecture decomposition; however, this

suggestion should be tested in further studies.

Our results reveal that no code anomaly type stands out as the best

indicator of the code anomaly harmfulness on architectural designs. Other

characteristics associated with the code anomaly evolution may be indicators of

architectural degradation symptoms. For instance, the incremental increase in the

number of changes that a method suffers over time can indicate the presence of

Disperse Coupling. Therefore, the harmful nature of certain types of code

structures might be only confirmed over time. In this context, the next section

analyzes whether the earliness of anomalies is a better indicator of their harmful

impact on both system architectures.

4.2.2.2.
Earliness of Code Anomalies

Interesting results emerged when analyzing the influence of early code

anomalies on architecture degradation. We defined early code anomalies as those

anomalies that appeared in the first version of each system. In order to analyze the

impact of early code anomalies over the systems evolutions we used history-

sensitive tools for anomaly detection (Mara et al., 2011; Ratiu et al., 2004). They

allowed us to analyze to what extent changes performed on code elements,

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

97

infected by early anomalies, resulted in architectural degradation symptoms in

later versions.

Harmfulness of Early Anomalies. Our analysis revealed that more than

18% of all architecturally-relevant code anomalies emerged from anomalous code

elements in the systems first version. Although 18% is not a high percentage for

applying any statistical method and, hence, reject H20, these early code anomalies

were critical to the system architecture: they were related to more than 37% and

31% of all violations and architectural anomalies, respectively. In particular, early

code anomalies induced architectural anomalies, which in turn led to violations.

Both proportions point out the importance of understanding the impact of certain

categories of early code anomalies. Thereby, developers should be able to detect

occurrences of architecturally-relevant code anomalies as early as possible and

remove them through refactoring.

Figure 4.1 depicts an example of the evolution of the method

MediaController.handleCmd(..), an early Long Method extracted from the

MobileMedia system. This figure shows the major changes performed on this

method in terms of: (i) coupling strength, and (ii) its contribution to implement

system concerns. The width of each arrow is linearly proportional to the

cardinality of low-level dependencies abstracted in the corresponding edge

(Lungu and Lanza, 2007). Low-level dependencies, in this context, refer to

method invocations, type references and attributes accesses from other classes that

a given method executes. Figure 4.1 also relies on the distribution map (Ducasse,

2006), a technique for visualizing system properties throughout evolution, where

colors represent the dominant concern in each class.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

98

Figure 4.1: Impact of an early code anomaly through the system evolution.

As shown in Figure 4.1, the number of concerns implemented by

components increase over time. In some cases, certain code elements were

responsible for increasing the number of concerns realized by the same

component. For instance, all if statements defined in MediaController.handleCmd()

realize multiple concerns in version 8.0 which are represented by vertical bars of

different colors. Hence, this method significantly contributed for the introduction

of the Component Concern Overload and Scattered Parasitic Functionality

architectural anomalies on the Controller.

Additionally, MediaController.handleCmd(..) handles more types of

commands than it will actually process, by accepting the parameter c, typed as the

generic typeCmd. This generic parameter makes the method harder to understand

because it does not reveal which commands the method is interested in. This

situation worsened over time due to the incremental addition of new commands.

Therefore, the Ambiguous Interface was progressively introduced by the changes

made in the method body.

Characteristics of Harmful Early Anomalies. Early code anomalies

were recurrently the source of later relevant problems when they infected the API

of critical points of the system architecture. Examples of these critical points are

component interfaces and super-classes. When code anomalies infect component

interfaces, they might be propagated to the: (i) internal code of the component,

and (ii) coupled components over system evolution. This situation occurred for

49% of all relevant code anomalies in Health Watcher, 42% in PDP, 38% in

MobileMedia, 31% in Aspectual Watcher and MIDAS and 24% in Aspectual

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

99

Media. These proportions were directly related to the number of code anomalies

infecting critical points in each system.

Moreover, when anomalies infect super-classes they might be propagated

from parents to children in inheritance trees. This situation occurred with 53% of

all relevant code anomalies in MobileMedia, 50% in Aspectual Media, 45% in

Health Watcher, 36% in MIDAS, 33% in Aspectual Watcher and 24% in PDP.

The infected super-classes had a considerably negative effect as the architectural

violations and architectural anomalies were propagated down through the class

hierarchies. For instance, the class MediaController inherits the Ambiguous

Interface occurrence from its parent - the class Controller (Figure 4.1). As

MediaController overrides the handleCmd method, developers were forced to use if

statements to handle the commands in which the method is interested.

Finally, it was observed that early code anomalies emerged in code

elements that accessed information from classes defined in multiple architecture

components. These code elements also implemented several system concerns. The

method MediaController.handleCmd(..) is an example of a code element that suffers

from this co-occurrence in MobileMedia. About 85% of these code elements

introduced architecture problems in the analyzed systems. The issue is that these

code elements were the subject of changes associated with each of the system's

concerns that they dealt with. Also, the increasing coupling strength was a reason

why various changes were applied to this method during its evolution. The diverse

nature of the changes confirmed the harmful impact of this co-occurrence on the

system architectures.

Based on the gathered results, H20 cannot be rejected. Although certain

types of code anomalies were related to architectural degradation symptoms, none

of them emerged as a reliable indicator of degradation symptoms across all the

systems. In the context of the earliness characteristic, some anomalies that appear

in early versions were related to architectural degradation symptoms introduced in

latter versions. However, those code anomalies did not represent a significant

proportion of all code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

100

4.2.3.
Are Architecturally-Relevant Code Anomalies often Refactored?

The aforementioned findings motivated us to investigate whether

performed refactorings were targeted at removing architecturally-relevant

anomalies in the target systems. To this end we analyzed two groups of

refactorings: high-level and low-level refactorings (Murphy-Hill et al., 2009). The

former group involves API-level changes – that is, structural modifications that

affected interfaces and services. For example Renaming Public Methods and

Moving Classes fall in this category. The latter group implies narrowly-scoped

changes, which do not affect the clients of the component being modified. For

example, Renaming Local Variables or Extracting Private Methods (Fowler et al.,

1999) are considered low-level refactorings.

We focused on the analysis of both categories of refactoring. Even though

there are attempts to automate their detection (Dig et al., 2006; Kim et al., 2011),

such tools are not available yet. Therefore, we needed to partially rely on the

manual inspection of the source code for identifying their occurrences. We

analyzed the commit messages that indicated the occurrence of a refactoring in a

given revision. This analysis was possible because the majority of the commit

messages followed a template, which allows developers to recover the purpose of

each particular commit. Also, we relied on using structural diff tools (ydiff, 2010;

Hashimoto, 2008) to analyze refactorings when commit messages were absent. By

mixing both strategies we aimed at improving the reliability of our analysis.

Finally, we analyzed a total of 217 refactorings in Health Watcher, 160 in

MobileMedia, 112 in PDP, 97 in Aspectual Watcher and 72 in Aspectual Media.

Figure 4.2 depicts the proportions of refactorings that contribute and do

not contribute to remove at least one architecturally-relevant code anomaly per

target system, i.e. effective and non-effective refactorings, respectively. As it can

be observed a low number of refactorings removed architecturally-relevant code

anomalies. In particular, refactorings were responsible for removing only up to

37% of all architecturally-relevant code anomalies. This means that the majority

of architecturally-relevant code anomalies remained in the code as the system

evolved.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

101

0%

20%

40%

60%

80%

100%

HW MM PDP AW AM

Target Systems

Non-Effective Refactoring

Effective Refactoring

Figure 4.2: Refactorings and architecturally-relevant code anomalies.

In order to investigate the significance of this finding, the Kolmogorov-

Smirnov (Shesking, 2007) test was first applied. Due to the samples did not

present a normal distribution, the (non-parametric) Mann-Whitney test (Shesking,

2007) was then applied. This test was selected because it compares two sets of

variables and assesses whether their difference is statistically significant.

Additionally, non-parametric tests do not require any assumption on the

underlying distributions. In the context of this study, the two samples to be

compared are: the number of applied refactorings in the target systems and the

number of refactorings targeting architecturally-relevant code anomalies (Section

4.1.2). Additionally, we compute the Cohen’s d effect size (Shesking, 2007) to

indicate the magnitude of the effect of a treatment on the dependent variables. The

effect size is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and

large for d ≥ 0.8.

Table 4.10 reports the results of Mann-Whitney test and Cohen’s effect

size. As it can be noticed, Mann-Whitney test shows statistically significant

differences between effective and non-effective refactorings. Moreover, Cohen’s

d effect size value is large: 2.59. Therefore, the applied refactorings did not

significantly contribute to remove architecturally-relevant code anomalies and,

hence, the third null hypothesis, H30, cannot be rejected.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

102

Table 4.10: Proportions of effective and non-effective refactorings.

 Mann-Whitney p-value Cohen's effect d

Effective vs. Non-Effective Refactorings < 0.01 2.59

A deep analysis of this finding revealed that the low rate of removed

architecturally-relevant code anomalies may have three main reasons: (i) a low

frequency of high-level refactorings, (ii) a high frequency of low-level

refactorings, (iii) the cost and effort to perform complex refactorings, and (iv) the

inability of current tools for supporting complex refactorings. Even though these

were not the unique reasons why architectural degradation symptoms were left in

the code, they were the most frequent ones.

High-level vs. Low-Level Refactorings. Only 73 of applied refactorings

were of high-level nature in Health Watcher, 41 in MobileMedia, 12 in Aspectual

Media, 9 in PDP and 7 in Aspectual Watcher. Thus, less than 34% of refactorings

were of high-level nature, which implies that only few refactorings had an impact

of wide scope. The most frequent high-level refactorings were: move public

member (16%) and extract class or extract super-class (12%). As it can be noticed,

they represent a minority of the total number of applied refactorings. These

refactorings are stronger candidates for removing architecturally-relevant code

anomalies, as they modify the code element signature. However, their application

was often confined to later versions where instabilities clearly achieved critical

stages. We considered that instabilities achieved critical stages when changes

needed to be performed across many code elements, belonging to multiple

components, in order to add the new features.

This observation suggests that developers chose to invest their effort on

architecturally-relevant refactorings on specific versions. This strategy prevailed

in all systems over the option of distributing the effort through consecutive

versions. For instance, the highest number of high-level refactorings in

MobileMedia was applied in version 7.0 in order to support the inclusion of

different requirements. Otherwise, changes associated with such requirements

would be scattered and duplicated in many elements belonging to the Controller

component. Thus, several classes and super-classes were extracted and many

public methods had their signatures changed.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

103

A possible reason for the rare application of high-level refactorings is that

developers are not equipped with proper tools for automating this task. High-level

refactorings are associated with changes on code element interfaces, which, in

some cases, belong to different architectural components. The application of these

refactorings, without proper tooling support, may imply in higher risks such as:

unexpected breaks on the client code or undesirable semantic changes. This could

be one of the reasons why developers need to rely on tools for applying this kind

of refactoring, rather than applying it manually. However, recent studies have

shown that developers seldom use refactoring tools (Murphy-Hill et al., 2009;

Arcoverde et al., 2011), mostly due to usability problems. Specifically, their

inability to properly visualize the effects of an applied refactoring was pointed out

as a major problem (Murphy-Hill et al., 2009; Arcoverde et al., 2011).

On the other hand, more than 60% of refactorings were of low-level

nature. This implies that the impact of most refactorings was of narrow scope. The

most frequent low-level refactorings were: rename private members (32%),

extract local variable (16%), and move private members (12%). As we can notice,

they represent a high proportion of the total number of refactorings applied.

However, these refactorings did not contribute significantly to remove

architecturally-relevant code anomalies. The reason is that modifications were

often confined to the internal code of the class, whereas the removal of

architecturally-relevant code anomalies requires modifications in several classes.

4.3.
Threats to Validity

This section discusses the threats to validity according to the classification

proposed by Wohlin et al. (2000).

Construct validity. A first construct validity threat concerns the way we

associate code anomalies with architectural problems. We are aware that code

anomalies might be accidentally related to architecture problems. However, we

limited such threat by considering only the code anomalies and architecture

problems whose cause-effect relationship were identified and confirmed by

developers and architects. Another threat concerns the set of analyzed code

anomalies and architecture problems. We have tried to mitigate this threat by

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

104

using systems that suffer from the same set of anomalies than systems used in

other studies (Khomh et al., 2009; D’Ambros et al., 2010). Lastly, construct

validity could also be threatened considering how refactorings were identified. As

we have relied on commit heuristics and diff tools, some refactorings might be

missing.

Conclusion and external validity. Threats to conclusion validity are

concerned with the relationship between the treatment and the outcome. In our

study all the Fisher test and logistic regression model results were statistically-

significant at the 95% level. On the other hand, threats to external validity concern

the generalization of the findings. We focused on the analysis of medium-size

systems. However, the development processes of large-scale systems might differ

and lead to different results. We have tried to use systems of different types,

implemented using different programming languages, environments (i.e. academy

and industry) and with different architecture decompositions. Our target systems

also present a similar density of code anomalies to large systems that were used in

previous studies (Khomh et al., 2009; Olbrich et al., 2009, 2010; D’Ambros et al.,

2010). Another external validity threat concerns the generalization of the results.

We plan to apply this kind of study on large open-source and industry systems.

4.4.
Summary

This chapter investigated the relationship between code anomalies and

architectural degradation symptoms in the implemented architecture. It also

investigated whether and to what extent applied refactorings contribute to remove

architecturally-relevant code anomalies. To perform these investigations, a sample

of nearly 2100 anomalous code elements and 1030 architectural degradation

symptoms, distributed in 40 versions of six (06) real-life software systems was

considered.

Our results showed that the majority of the architectural degradation

symptoms in the actual architecture emerged from anomalous code elements.

These results suggest that systematic removal of code anomalies can be used to

effectively combat symptoms of architecture degradation in the code. Our study

also revealed how certain kinds of early code anomalies cause adverse impact on

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

105

the architecture design as the systems evolve. This means that developers should

promptly identify and address them upfront; otherwise, those code anomalies are

likely to contribute to the anomaly in coupled components, thereby accelerating

the architecture degradation processes.

The key findings of this study are summarized as follows:

 Approximately 65% of all code anomalies were related to 78% of all

architecture degradation symptoms. This result seems to confirm that

detection of code anomalies is useful for locating potential sources of

architecture degradation. In turn, this suggests that systematic code

refactoring could contribute to address those symptoms (Section 4.2.1).

 Certain types of code anomalies were consistently related to architecture

degradation symptoms (e.g. Long Method, God Class and Composition

Bloat). However, none of them emerged as the best indicator of

degradation symptoms across all the systems. Anomalous code elements

often introduced degradation symptoms when implementing non-cohesive

functionalities and accessing information from several components;

regardless of the type of the code anomaly (Section 4.2.2.1).

 More than 18% of all architecturally-relevant anomalies emerged from

anomalous code elements in the systems' first version. These early

anomalies were responsible for introducing more than 33% of all

architectural problems. This means that certain refactorings should be

prioritized to remove code anomalies as early as possible (Section 4.2.2.2).

 About 66% of all refactorings did not contribute to fix architecturally-

relevant code anomalies. These refactorings were usually confined to the

private members of classes. However, as architecturally-relevant code

anomalies often infected public members of interfaces and super-classes,

they could only be removed by applying high-level refactoring (Section

4.2.3).

All the aforementioned findings raise questions about the effectiveness of

state-of-the-art history-sensitive mechanisms for code anomaly detection

(Marinescu, 2004; Ratiu et al., 2004; Mara et al., 2011). These tools rely on

change analysis across several system versions to detect anomalies with

acceptable accuracy. Therefore, they cannot reveal early harmful anomalies, as

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

106

their detection might occur too late, when anomaly removal might become

impeditive. That concern is exacerbated by the fact that there is no knowledge

about the accuracy of current state-of-art mechanisms for identifying

architecturally-relevant code anomalies. The investigation of this accuracy is

presented in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 0912915/CA

