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APÊNDICE A 

A1 
Método de gradiente reduzido generalizado (GRG) 

O método GRG aplica-se a problemas de otimização nãolinear (Edgar e 

Himmelblau, 2001) com restrições na forma: 

                                                                     ( )Minimizar f x   (A.1)  

 

Sujeito a: 

 

                                  
( ) 0 ( 1,2,..., )k ih x k m    (A.2)  

 

                                   ( ) 0 ( 1, 2,..., )jg x j m    (A.3)  

 

                                   ( 1,2,..., )i i il x u i n     (A.4)  

 

O método transforma o problema de otimização em problemas apenas com 

restrições de igualdade, através da introdução de uma variável de folga para cada 

restrição de desigualdade: 

 

                                  
( ) 0 ( 1,2,..., )k ih x k m    (A.5)  

 

                                   ( ) 0 ( 1, 2,..., )j j ng x x j m     (A.6)  

 

                                   ( 1,2,..., )i i il x u i n     (A.7)  

 

                                   0 ( 1, 2,..., )j nx j n     (A.8)  
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A equação (A.6) requer a adição de m  variáveis de folga não negativas o 

que origina um aumento no numero de variáveis. 

O vetor x  contém agora as n variáveis originais mais as m  variáveis de 

folga. Por conveniência, deve-se escrever x  da seguinte forma: 

 

                                  
z

x
y

 
  
 

  (A.9)  

 

Em que z  é o vetor das  in m  variáveis independentes e y é o vetor das 

 im m  variáveis dependentes. 

Simplifica-se, assim, o problema, uma vez que agora, existem somente 

restrições de igualdade: 

                                         ( , )Minimizar f z y   (A.10)  

 

Sujeito a: 

                                   ( ) 0 ( 1, 2,..., )j ih x j m m     (A.11)  

 

                                   ( 1,2,..., )i i il x u i n m      (A.12)  

 

Em seguida, calcula-se as derivadas da função objetivo e das restrições: 

 

                                   ( ) ( )* ( )*z ydf x f x dz f x dy     (A.13)  

 

( ) ( )* ( )* ( 1,..., )j z j y j idh x h x dz h x dy j m m       (A.14)  

 

Simplificando: 

 

( )z jh x A    (A.15)  

 

( )y jh x B    (A.16)  
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Tem-se que: 

 

( ) * *dh x A dz B dy    (A.17)  

 

Como ( ) 0dh x   para qualquer variação nas variáveis independentes dz  

pode-se obter a correspondente variação dy nas variáveis dependentes: 

 

1 *dy B A dz   (A.18)  

 

Substituindo a equação (A.18) na equação (A.13), vem: 

  

          1( ) ( )* ( ) *T T
z ydf x f x dz f x B A dz        (A.19)  

 

Então, 

         1( )
( ) ( )

T

r y

df x
G f x B A f x

dz
         (A.20)  

 

Esta equação define o gradiente reduzido generalizado rG  e agora pode ser 

utilizado para determinar a direção “ d ”de procura, para utilizar na equação: 

 

  1k k k kx x d     (A.21)  

 

Na forma mais simples, a direção de procura corresponde ao gradiente 

reduzido com sinal negativo: 

  rd G    (A.22)  

 

Pode-se então resumir o método no seguinte algoritmo: 

1 Escolher as variáveis dependentes e independentes. 
2 Calcular o gradiente reduzido rG . 

3  Através do gradiente reduzido, determinar a direção de procura (d) 
nas variáveis de decisão. 

4 Procurando nesta direção, para cada valor de k faz-se a atualização 

do vetor y . 
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5 Determinar 1kx  . 

6 Encontrando um mínimo nesta direção, o processo repete-se até se 
conseguir a convergência. 
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A2 
Incertezas nos modelos de simulação de compressores alternativos 

Neste apêndice é apresentado o procedimento para a estimativa das 

incertezas nos modelos de simulação de compressores alternativos desenvolvidos 

nos capítulos anteriores. 

A melhor estimativa do valor real é normalmente dado pelo valor medido, 

ou pela média, m , caso existam vários valores medidos (Kline e McClintok, 

1953). Uma medida da confiabilidade é dada pela incerteza m . Então uma 

maneira correta de reportar uma medida é: 

 

                                             m m   (A.23)  

 

A determinação da parcela da incerteza m  pode ser realizada por: 

 Testes experimentais onde são feitas várias medidas, a partir das 

quais pode-se calcular o desvio padrão. 

 Estimativa das incertezas dos instrumentos fornecida pelos 

fabricantes. 

 

A2.1 
Propagação de incertezas 

Considere medições independentes, das variáveis 1 2, , ..., nx x x  , que serão 

utilizadas para calcular algum resultado R . A incerteza relativa a cada grandeza, 

medida independentemente, é estimada como iu . Desejamos analisar como as 

incertezas nos ix  propagam-se no cálculo de R  a partir dos valores medidos. Em 

geral R pode ser expresso como: 

 

                                             1 2( , , ...., )nR R x x x     (A.24)  

 

Kline e McCkintock (1953) descrevem um método para o cálculo da 

incerteza relativa em função da soma quadrática das incertezas individuais: 
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22 2

1 2
1 2

...r n
n

R R R
w x x x

x x x

      
                 

   (A.25)  

 

onde  
1 2

, , ... ,
n

R R R

x x x

  
  

 são as derivadas em relação as variáveis 

1 2, ,..., nx x x , utilizadas no cálculo de R . Tambem, 1 2, ,..., nx x x   , representam 

as incertezas dos instrumentos utilizados para medir os valores das variáveis 

1 2, ,..., nx x x . 

 

A2.2 
Propagação de incertezas no modelo de simulação do compressor 
automotivo 

Como resultado do modelo de simulação do compressor automotivo, foram 

obtidas duas variáveis: i) Vazão mássica do fluido refrigerante, rm  ii). 

Temperatura na descarga do compressor, 4T . 

Para determinar as incertezas no cálculo da vazão mássica do fluido 

refrigerante, é preciso obter uma função R  a partir das variáveis que contribuem 

na propagação de incertezas. Esta função é expressa da seguinte forma: 

 

                             1 1 4 4( , , , , )
rmR f P T P T RPM     (A.26)  

 

O mesmo procedimento é utilizado na propagação das incertezas no cálculo 

da temperatura na descarga. 

 

                             
4 1 1 4( , , , , )T rR f m P T P RPM      (A.27)  

 

onde 1P e 1T  são a pressão e temperatura na sucção, 4P e 4T  pressão e 

temperatura na descarga e RPM é velocidade angular de compressão. 
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a) Vazão mássica do fluido refrigerante 

A incerteza relativa da vazão mássica do fluido refrigerante é obtida a partir 

da seguinte equação:  

 

2 2 2 2 2

1 1 4 4

1 1 4 4

r r r r r
r

m m m m m
m P T P T RPM

P T P T RPM

    
          

    

         
        
        

    
 (A.28)  

 

onde a contribuição para a incerteza em rm  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  

 

Utilizando a equação (2.25), se tem: 

                              0,42861
1 2

1 1,75
rm

P P
P

  
    


    (A.29)  

 

Substituindo as equações (2.12) e (2.13) na equação (2.11) 

                              
1,25

2,252
3 1

1 0,8
rm

T T
T

  
    


    (A.30)  

 

Utilizando a equação (2.26), tem-se: 

                              0,42863
3 4

4 1,75
rm

P P
P

  
     


    (A.31)  

 

Substituindo as equações (2.13) e (2.15) na equação (2.14) 

                              
1,25

2,254
4 2

4 0,8
rm

T T
T

  
     


    (A.32)  

 

E, utilizando a equação (2.29), chega-se a: 

                             23 2

60
v dr Vm

RPM

       


    (A.33)  

 

onde os valores de 1 , 2 , 3  e 4  são obtidos mediante as seguintes 

equações: 
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0,571

1
1 0,25

12CP




 
   

 
    (A.34)  

                             12
2 0,667 0,333 0,467

12 1 1 1

2

p

Q

CH k c  

 
    

 


    (A.35)  

                             

0,571

4
3 0,25

34CP




 
   

 
    (A.36)  

                             34
4 0,667 0,333 0,467

34 4 4 4

2

p

Q

CH k c  

 
    

 


    (A.37)  

 

b) Temperatura na descarga 

A incerteza relativa à temperatura na descarga é obtida a partir da 

substituição das equações (2.13) e (2.15) na equação (2.14). A nova expressão 

para estimar a propagação da incerteza da temperatura na descarga, 4T , é dada 

por: 

                                         0,8
4 2 1 rT T m         (A.38)  

 

34
5 0,667 0,333 0,467

34 4 4 4

2

p

Q

CH k c  

 
    

 


  (A.39)  

 

onde k  é a condutividade térmica,   é a viscosidade dinâmica, pc é o calor 

específico do fluido na saída do compressor, 34CH  é o parâmetro característico de 

transferência de calor relativo ao volume de controle na descarga e 34Q é a taxa de 

transferência de calor na descarga. 

A contribuição para a incerteza em 4T  devido a incertezas em cada variável 

utilizada em seu cálculo é dado por: 
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2 2 2 2 2

4 4 4 4 4
4 1 1 4

1 1 4
r

r

T T T T T
T m P T P RPM

m P T P RPM

                                            



  (A.40) 

 

onde a contribuição para a incerteza em 4T devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  

 

Utilizando a equação (A.38), se tem: 

                              1,84
50,8 r

r

T
m

m


  





    (A.41)  

 

Substituindo à equação (2.4), (2.26), (2.29) e (2.11) em (A.38), tem-se, 

respectivamente: 

                        1,5711 344
1 1 2

1 34

0,571
QT

P P
P CP

  
     


    (A.42)  

 

                          1,45710,84
3 5 3 4

4

0,4571
T

P P
P


   


    (A.43)  

 

                    

0,8
1,823 24

50,8
60

v dVT
RPM

RPM

  
        

    (A.44)  

 

                    54

1 2

T

T


 

 
    (A.45)  

 

c) Resultados do cálculo da propagação de incertezas do 

compressor automotivo 

 

A tabela A2.1 apresenta os valores das incertezas dos instrumentos de 

medição utilizados para o cálculo da propagação de incertezas. 
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Tabela A2.1 – Incertezas dos instrumentos utilizados nos testes experimentais do 

compressor automotivo 

Psu Pds mr RPM Tsu,Tds 

[kPa] [kPa] [%] [RPM] [oC] 
2,068 3,447 0,1 0,5 0,2 
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Tabela A2.2 – Propagação de incertezas na medida da vazão mássica do compressor automotivo operando com R134a 

Vazão mássica do fluido refrigerante R134a 

Test 
(δmr/δP1)*δP1 (δmr/δT1)*δT1 (δmr/δP4)*δP4 (δmr/δT4)*δT4 (δmr/δRPM)*δRPM δmr δmr/m

[kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [%] 
I45 0,0275 0,00009 -0,0006 -0,0001 0,0000144 0,0276 2,8 
L45 0,0174 0,00010 -0,0005 -0,0001 0,0000100 0,0174 1,7 
M45 0,0143 0,00009 -0,0004 -0,0001 0,0000078 0,0143 1,4 
I50a 0,0285 0,00009 -0,0006 -0,0001 0,0000157 0,0286 2,9 
I35a 0,0266 0,00011 -0,0005 -0,0001 0,0000159 0,0266 2,7 
L35a 0,0166 0,00011 -0,0004 -0,0001 0,0000110 0,0166 1,7 
M35a 0,0137 0,00011 -0,0003 -0,0001 0,0000087 0,0137 1,4 

I40c-3C 0,0266 0,00007 -0,0006 -0,0001 0,0000122 0,0266 2,7 

 

Tabela A2.3 – Propagação de incertezas na medida da vazão mássica do compressor automotivo operando com R1234yf 

Vazão mássica do fluido refrigerante R1234yf 

Test 
(δmr/δP1)*δP1 (δmr/δT1)*δT1 (δmr/δP4)*δP4 (δmr/δT4)*δT4 (δmr/δRPM)*δRPM δmr δmr/m

[kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [%] 
I45 0,0278 0,00012 -0,0006 -0,0001 0,0000176 0,0278 2,8 
L45 0,0175 0,00014 -0,0005 -0,0002 0,0000128 0,0175 1,7 
M45 0,0141 0,00015 -0,0004 -0,0002 0,0000105 0,0141 1,4 
I50a 0,0283 0,00013 -0,0006 -0,0002 0,0000190 0,0283 2,8 
I35a 0,0268 0,00015 -0,0005 -0,0002 0,0000185 0,0268 2,7 
L35a 0,0167 0,00017 -0,0004 -0,0002 0,0000134 0,0167 1,7 
M35a 0,0134 0,00017 -0,0003 -0,0002 0,0000110 0,0134 1,3 

I40c-3C 0,0269 0,00011 -0,0006 -0,0001 0,0000149 0,0269 2,7 
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Tabela A2.4 – Propagação de incertezas na medida da temperatura na descarga do compressor automotivo operando com R134a 

Temperatura na descarga com o fluido R134a 

Test 
(δT4/δP1)*δP1 (δT4/δP4)*δP4 (δT4/δmr)*δmr δT4/δRPM (δT4/δT1)*δT1 δT4/T4

[oC] [oC] [oC] [oC] [oC] [oC] 
I45 0,00000010 1,249 -0,0534 -0,019 -0,169 1,26 
L45 0,00000006 0,894 -0,0678 -0,012 -0,170 0,91 
M45 0,00000005 0,749 -0,0727 -0,009 -0,170 0,77 
I50a 0,00000010 1,262 -0,0549 -0,019 -0,170 1,27 
I35a 0,00000007 0,736 -0,0451 -0,016 -0,168 0,76 
L35a 0,00000004 0,561 -0,0592 -0,010 -0,169 0,59 
M35a 0,00000003 0,469 -0,0636 -0,008 -0,168 0,50 

I40c-3C 0,00000011 1,347 -0,0520 -0,018 -0,169 1,36 
 

Tabela A2.5 – Propagação de incertezas na medida da temperatura na descarga do compressor automotivo operando com R1234yf 

Temperatura da descarga do fluido R1234yf 

Test 
(δT4/δP1)*δP1 (δT4/δP4)*δP4 (δT4/δmr)*δmr δT4/δRPM (δT4/δT1)*δT1 δT4/T4

[oC] [oC] [oC] [oC] [oC] [oC] 
I45 0,00000007 0,831 -0,0441 -0,015 -0,171 0,86 
L45 0,00000003 0,565 -0,0557 -0,010 -0,171 0,60 
M45 0,00000002 0,441 -0,0601 -0,007 -0,169 0,48 
I50a 0,00000007 0,844 -0,0458 -0,016 -0,172 0,87 
I35a 0,00000005 0,536 -0,0378 -0,013 -0,168 0,57 
L35a 0,00000003 0,384 -0,0488 -0,008 -0,168 0,43 
M35a 0,00000002 0,309 -0,0540 -0,007 -0,166 0,36 

I40c-3C 0,00000008 0,940 -0,0431 -0,015 -0,170 0,97 
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Os resultados nas Tabelas A2.2 e A2.3 podem ser apresentadas nas Figuras 

A2.1 e A2.2, a seguir:  

 

 

Figura A2.1 – Incertezas da vazão mássica obtido pelo modelo de simulação para 

o compressor automotivo, operando com o fluido R134a. 

 

 

Figura A2.2 – Incertezas da vazão mássica obtido pelo modelo de simulação para 

o compressor automotivo, operando com o fluido R1234yf. 
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Os resultados nas Tabelas A2.4 e A2.5 podem ser apresentadas nas Figuras 

A2.3 e A2.4.  

 

Figura A2.3 – Incertezas da temperatura na descarga obtido pelo modelo de 

simulação para o compressor automotivo, operando com o fluido R134a. 

 

Figura A2.4 – Incertezas da temperatura na descarga obtido pelo modelo de 

simulação para o compressor automotivo, operando com o fluido R1234yf. 
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As incertezas para determinação da vazão mássica do fluido refrigerante 

apresentadas, nas Figuras (A2.1) e (A2.2), e para a temperatura na descarga 

apresentadas nas Figuras (A2.3) e (A2.4), obtida pelo modelo de simulação do 

compressor automotivo operando com os fluidos R134a e R1234yf, situaram-se 

na faixa do limite superior e inferior estabelecido pela comparação dos dados 

numéricos e experimentais nas Figuras 2.14, 2.15 e Figuras 2.16, 2.17, 

respectivamente, o que confirma que o modelo consegue prever as condições de 

operação estabelecidas para o compressor automotivo tipo  “swash plate”. 

 

A2.3 
Propagação de incertezas no modelo de simulação do compressor 
hermético 

A propagação de incertezas no compressor hermético, é baseada na 

metodologia utilizada para o compressor automotivo (A2.2). A função para o 

cálculo da incerteza da vazão mássica do fluido refrigerante 
rmR   fica em função 

da pressão e temperatura na sucção, ( 1 1,P T ), pressão e temperatura na descarga,    

( 7 7,P T ), e o consumo de energia ( E ). 

 

                             1 1 7 7( , , , , )
rmR f P T P T E     (A.46)  

 

A equação (A.46) pode-se rescrever da seguinte forma: 

 

                             1 7( , , )
rmR f h h E     (A.47)  

 

onde 1 1 1( , )h f P T  e 7 7 7( , )h f P T . Os valores da incerteza obtidos para 

as entalpias na entrada, 1h , e saída, 7h , foram obtidas mediante o software EES 

(Engineering Equation Solver), onde 1 0,18h kJ kg   e 7 0,22h kJ kg  . 

 

A função para o cálculo da incerteza da temperatura na descarga 
7TR é dada 

pela equação: 
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7 1 7( , , , )T rR f h P m E      (A.48)  

 

a) Vazão mássica do fluido refrigerante 

A incerteza relativa da vazão mássica do fluido refrigerante é obtida a partir 

da equações (3.1), a qual pode-se rescrever da seguinte forma: 

 

                            1
1 7( )( )r cam Q E h h        (A.49)  

 

onde a contribuição para a incerteza em rm  devido à incerteza de cada 

variável utilizada em seu cálculo, é dada por:  

 

22 2

1 7
1 7

r r r
r

m m m
m h h E

h h E

                     

     (A.50)  

 

                      2
1 7

1

( )( )r
ca

m
Q E h h

h


   

      (A.51)  

 

                      2
1 7

7

( )( )r
ca

m
Q E h h

h


  

      (A.52)  

 

                      
1 7

1rm

E h h


 

 


    (A.53)  

 

b) Temperatura na descarga  

A incerteza relativa da temperatura na descarga é obtida substituindo-se a 

equação (3.4) em (3.30). 

 

0,2 0,8
7 1 2 7 1

0,8 0,8 0,8
1 1 1

( )wt r r

r pe r pm r w

T T m h h m E

m Q m Q m Q



  

     

  

 
    

  (A.54)  
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                             1 0,667 0,333 0,467
67 6 6 6

1

pCH k c  

 
    

 
    (A.55)  

 

onde a contribuição para a incerteza em 7T  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  

 

 

22 2 2

7 7 7 7
7 1 7

1 7
r

r

T T T T
T h P m E

h P m E

                              



  (A.56)  
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0
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    (A.57)  
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    (A.58)  
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  (A.59)  

 

                      0,87
1 r

T
m

E


 


     (A.60)  

 

c) Consumo de energia  

A incerteza relativa para o cálculo do consumo de energia é obtida a partir 

da equação (3.1):  

 

                            1 7ca r rE Q m h m h         (A.61)  

 

Onde a contribuição para a incerteza em E  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  
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22 2

1 7
1 7

r
r

E E E
E h h m

h h m
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                




  (A.62)  
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    (A.65)  

 

d) Resultados do cálculo da propagação de incertezas do 

compressor hermético 

 

A tabela A2.6 apresenta os valores das incertezas dos instrumentos de 

medição utilizados para o cálculo da propagação de incertezas. 

 

Tabela A2.6 – Incertezas dos instrumentos utilizados nos testes experimentais 

para o compressor hermético 

Psu Pds mr E Tsu,Tds 

[kPa] [kPa] [%] [kW] [oC] 
2,068 3,447 0,1 0,0032 0,2 

 

Os resultados do cálculo de incertezas da vazão mássica, temperatura na 

descarga e o consumo de energia são apresentados nas tabelas A2.7, A2.8 e A2.9. 

 

Tabela A2.7 – Propagação de incertezas na medida da vazão mássica do 

compressor hermético operando com R134a 

Vazão mássica do fluido refrigerante R134a 

Test (δmr/δh1)*δh1 (δmr/δh7)*δh7 (δmr/δE)*δE δmr δmr/mr 

[kg/s] [kg/s] [kg/s] [g/s] [%] 
45°C/-25°C 4,54E-06 -5,57E-06 4,561E-05 4,62E-02 4,62 
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45°C/-15°C 8,74E-06 -1,06E-05 5,04E-05 5,23E-02 5,23 
45°C/-5°C 1,52E-05 -1,81E-05 5,34E-05 5,84E-02 5,84 

55°C/-25°C 3,97E-06 -5,01E-06 4,33E-05 4,38E-02 4,38 
55°C/-15°C 7,64E-06 -9,57E-06 4,65E-05 4,81E-02 4,81 
55°C/-5°C 1,32E-05 -1,62E-05 4,85E-05 5,28E-02 5,28 

65°C/-25°C 3,31E-06 -4,33E-06 4,10E-05 4,14E-02 4,14 
65°C/-15°C 5,67E-06 -7,29E-06 3,78E-05 3,89E-02 3,89 
65°C/-5°C 1,18E-05 -1,51E-05 4,54E-05 4,93E-02 4,93 
 

 

Tabela A2.8 – Propagação de incertezas da temperatura da descarga do 

compressor hermético operando com R134a 

Temperatura da descarga do fluido R134a 

Test (δT7/δh1)*δh1 (δT7/δP7)*δP7 (δT7/δmr)*δmr (δT7/δE)*δE δT7 

[oC] [oC] [oC] [oC] [oC] 
45°C/-25°C 0 0 -0,150 4,592 4,59 
45°C/-15°C 0 0 -0,151 3,007 3,01 
45°C/-5°C 0 0 -0,156 2,072 2,08 

55°C/-25°C 0 0 -0,157 4,801 4,80 
55°C/-15°C 0 0 -0,162 3,071 3,08 
55°C/-5°C 0 0 -0,170 2,093 2,10 

65°C/-25°C 0 0 -0,160 5,209 5,21 
65°C/-15°C 0 0 -0,199 3,198 3,20 
65°C/-5°C 0 0 -0,181 2,114 2,12 

 

Tabela A2.9 – Propagação de incertezas do consumo de energia do compressor 

hermético operando com R134a 

Consumo de energia do compressor hermético operando com o fluido 
R134a 

Test (δE/δh1)*δh1 (δE/δh7)*δh7 (δE/δmr)*δmr δE δE/E 
[kW] [kW] [kW] [kW] [%] 

45°C/-25°C -0,0003 0,00039096 3,24E-03 0,0033 0,3 
45°C/-15°C -0,0006 0,00067392 3,32E-03 0,0034 0,3 
45°C/-5°C -0,0009 0,00108432 3,50E-03 0,0038 0,4 

55°C/-25°C -0,0003 0,00037074 3,23E-03 0,0033 0,3 
55°C/-15°C -0,0005 0,00065785 3,31E-03 0,0034 0,3 
55°C/-5°C -0,0009 0,0010704 3,48E-03 0,0037 0,4 

65°C/-25°C -0,0003 0,0003381 3,23E-03 0,0033 0,3 
65°C/-15°C -0,0005 0,00062517 3,29E-03 0,0034 0,3 
65°C/-5°C -0,0008 0,0010626 3,47E-03 0,0037 0,4 
 

Os resultados nas Tabelas A2.7 e A2.8 e A2.9 podem ser apresentadas nas 

Figuras A2.5, A2.6 eA2.7. 
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Figura A2.5 – Incertezas da vazão mássica obtido pelo modelo de simulação para 

o compressor hermético, operando com o fluido R134a. 

 

 

Figura A2.6 – Incertezas da temperatura na descarga obtido pelo modelo de 

simulação para o compressor hermético, operando com o fluido R134a. 
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Figura A2.7 – Incertezas do consumo de energia obtido pelo modelo de simulação 

para o compressor hermético, operando com o fluido R134a. 

 

Os resultado das incertezas para a vazão mássica do fluido refrigerante 

apresentada na Figura (A2.5) e temperatura na descarga apresentada na Figura 

(A2.6), obtidos pelo modelo de simulação do compressor hermético operando 

com o fluido R134a, ficaram na faixa do limite superior e inferior estabelecido 

pela comparação dos dados numéricos e experimentais, validando o modelo de 

simulação para o compressor hermético. Entretanto, os valores obtidos para o 

consumo de energia na Figura (A2.7) mostram valores de incerteza muito 

pequenos, o que demonstra que, mesmo os valores estimados fiquem dentro da 

faixa do limite superior e inferior obtidos na comparação com os dados 

experimentais, os modelo de simulação não consegue prever satisfatoriamente o 

consumo de energia.  
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A2.4 
Propagação de incertezas no modelo de simulação do compressor 
semi-hermético 

A propagação de incertezas no compressor semi-hermético é baseada na 

mesma metodologia aplicada aos compressores automotivo e hermético: 

a) Vazão mássica do fluido refrigerante 

A incerteza relativa da vazão mássica do fluido refrigerante é obtida a partir 

da equação (4.1), a qual pode ser escrita da seguinte forma: 

 

                            1
1 5( )( )r cam Q E h h        (A.66)  

 

onde a contribuição para a incerteza em rm  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  
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b) Temperatura na descarga  

A incerteza relativa da temperatura na descarga é obtida mediante a equação 

(4.18). 

 

                                   0,2
5 4 1 4( )r wT T m T T       (A.71)  
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0,667 0,333 0,467
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  
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 
    (A.72)  

 

onde a contribuição para a incerteza em 5T  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  
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c) Consumo de energia  

A incerteza relativa para o cálculo do consumo de energia é obtida a partir 

da equação (4.1):  

 

                            1 5ca r rE Q m h m h         (A.78)  

 

onde a contribuição para a incerteza em E  devido à incerteza de cada 

variável utilizada em seu cálculo é dada por:  

 

DBD
PUC-Rio - Certificação Digital Nº 0812240/CA



 327 

22 2

1 5
1 5

r
r

E E E
E h h m

h h m

      
                




  (A.79)  

 

                                                 
1

r

E
m

h


 


     (A.80)  

                                                 
5

r

E
m

h





     (A.81)  

                                                 1 5
r

E
h h

m


   

 
    (A.82)  

 

d) Resultados do cálculo da propagação de incertezas do 

compressor semi-hermético 

 

A tabela A2.10 apresenta os valores das incertezas dos instrumentos de 

medição utilizados para o calculo da propagação de incertezas. 

 

Tabela A2.10 – Incertezas dos instrumentos utilizados nos testes experimentais 

para o compressor semi-hermético 

Psu Pds mr E Tsu,Tds 

[kPa] [kPa] [%] [kW] [oC] 
2,068 3,447 0,1 0,0032 0,2 

 

Os resultados do cálculo de incertezas da vazão mássica, temperatura na 

descarga e o consumo de energia do compressor semi-hermético para aplicações 

de baixa e média temperatura, operando com fluidos não inflamáveis e 

inflamáveis são apresentados nas Tabelas A2.11 até  A2.22. 

 

Tabela A2.11 – Propagação de incertezas na medida da vazão mássica para 

aplicações de baixa temperatura, operando com fluidos não inflamáveis  

Vazão mássica do fluido refrigerante R404a 

Test (δmr/δh1)*δh1 (δmr/δh5)*δh5 δmr/δE δmr δmr/mr 

[kg/s] [kg/s] [kg/s] [kg/s] [%] 
13ºC/-18ºC 0,0001 -0,0002 4,99E-05 0,0002 0,02 
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24ºC/-18ºC 0,0001 -0,0002 4,78E-05 0,0002 0,02 
35ºC/-18ºC 0,0001 -0,0001 4,31E-05 0,0002 0,02 
13ºC/-26ºC 0,0001 -0,0001 4,64E-05 0,0001 0,01 
24ºC/-26ºC 0,0001 -0,0001 4,40E-05 0,0001 0,01 
35ºC/-26ºC 0,0001 -0,0001 4,00E-05 0,0001 0,01 
 

Tabela A2.12 – Propagação de incertezas na medida da vazão mássica para 

aplicações de média temperatura, operando com não inflamáveis 

Vazão mássica do fluido refrigerante R404a 

Test (δmr/δh1)*δh1 (δmr/δh5)*δh5 δmr/δE δmr δmr/mr 

[kg/s] [kg/s] [kg/s] [kg/s] [%] 
13ºC/2ºC 0,0002 -0,0003 9,96E-05 0,0003 0,03 
27ºC/2ºC 0,0002 -0,0002 8,83E-05 0,0003 0,03 
35ºC/2ºC 0,0002 -0,0002 7,76E-05 0,0003 0,03 

13ºC/10ºC 0,0003 -0,0004 1,24E-04 0,0005 0,05 
27ºC/10ºC 0,0003 -0,0004 1,09E-04 0,0005 0,05 
35ºC/10ºC 0,0002 -0,0003 9,22E-05 0,0004 0,04 
 

Tabela A2.13 – Propagação de incertezas na medida da vazão mássica para 

aplicações de baixa temperatura, operando com fluidos inflamáveis  

Vazão mássica do fluido refrigerante R404a 

Test (δmr/δh1)*δh1 (δmr/δh5)*δh5 δmr/δE δmr δmr/mr 

[kg/s] [kg/s] [kg/s] [kg/s] [%] 
24ºC/-18ºC 0,0001 -0,0002 4,68E-05 0,0002 0,02 
35ºC/-18ºC 0,0001 -0,0002 4,19E-05 0,0002 0,02 
24ºC/-26ºC 0,0001 -0,0001 4,23E-05 0,0001 0,01 
35ºC/-26ºC 0,0001 -0,0001 3,82E-05 0,0001 0,01 
 

Tabela A2.14 – Propagação de incertezas na medida da vazão mássica para 

aplicações de média temperatura, operando com fluidos inflamáveis  

Vazão mássica do fluido refrigerante R404a 

Test (δmr/δh1)*δh1 (δmr/δh5)*δh5 δmr/δE δmr δmr/mr 

[kg/s] [kg/s] [kg/s] [kg/s] [%] 
13ºC/2ºC 0,0003 -0,0003 1,33E-04 0,0005 0,05 
27ºC/2ºC 0,0002 -0,0003 9,80E-05 0,0003 0,03 
35ºC/2ºC 0,0002 -0,0002 8,52E-05 0,0003 0,03 

13ºC/10ºC 0,0004 -0,0006 1,67E-04 0,0007 0,07 
27ºC/10ºC 0,0003 -0,0004 1,18E-04 0,0005 0,05 
35ºC/10ºC 0,0003 -0,0003 9,99E-05 0,0005 0,05 
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Tabela A2.15 – Propagação de incertezas na medida da temperatura na descarga  

para aplicações de baixa temperatura, operando com fluidos não inflamáveis  

Temperatura da descarga do fluido R404A 

Test (δT5/δh1)*δh1 (δT5/δP5)*δP5 (δT5/δmr)*δmr (δT5/δE)*δE δT7 

[oC] [oC] [oC] [oC] [oC] 
13ºC/-18ºC 0 0 0,008 0 0,008 
24ºC/-18ºC 0 0 0,009 0 0,009 
35ºC/-18ºC 0 0 0,009 0 0,009 
13ºC/-26ºC 0 0 0,010 0 0,010 
24ºC/-26ºC 0 0 0,010 0 0,010 
35ºC/-26ºC 0 0 0,011 0 0,011 

 

Tabela A2.16 – Propagação de incertezas na medida da temperatura na descarga  

para aplicações de média temperatura, operando com fluidos não inflamáveis  

Temperatura da descarga do fluido R404A 

Test (δT5/δh1)*δh1 (δT5/δP5)*δP5 (δT5/δmr)*δmr (δT5/δE)*δE δT7 

[oC] [oC] [oC] [oC] [oC] 
13ºC/2ºC 0 0 0,001 0 0,001 
27ºC/2ºC 0 0 0,001 0 0,001 
35ºC/2ºC 0 0 0,001 0 0,001 

13ºC/10ºC 0 0 0,001 0 0,001 
27ºC/10ºC 0 0 0,001 0 0,001 
35ºC/10ºC 0 0 0,001 0 0,001 

 

Tabela A2.17 – Propagação de incertezas da temperatura na descarga  para 

aplicações de baixa temperatura, operando com fluidos inflamáveis  

Temperatura da descarga do fluido R404A 

Test (δT5/δh1)*δh1 (δT5/δP7)*δP7 (δT5/δmr)*δmr (δT5/δE)*δE δT7 

[oC] [oC] [oC] [oC] [oC] 
24ºC/-18ºC 0 0 0,008 0 0,008 
35ºC/-18ºC 0 0 0,009 0 0,009 
24ºC/-26ºC 0 0 0,009 0 0,009 
35ºC/-26ºC 0 0 0,010 0 0,010 
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Tabela A2.18 – Propagação de incertezas na medida da temperatura na descarga  

para aplicações de média temperatura, operando com fluidos inflamáveis  

Temperatura da descarga do fluido R404A 

Test (δT5/δh1)*δh1 (δT5/δP5)*δP5 (δT5/δmr)*δmr (δT5/δE)*δE δT7 

[oC] [oC] [oC] [oC] [oC] 
13ºC/2ºC 0 0 0,001 0 0,001 
27ºC/2ºC 0 0 0,001 0 0,001 
35ºC/2ºC 0 0 0,001 0 0,001 

13ºC/10ºC 0 0 0,000 0 0,000 
27ºC/10ºC 0 0 0,001 0 0,001 
35ºC/10ºC 0 0 0,001 0 0,001 
 

 

Tabela A2.19 – Propagação de incertezas na medida do consumo de energia para 

aplicações de baixa temperatura, operando com fluidos não inflamáveis  

Consumo de energia operando com o fluido R404A 

Test (δE/δh1)*δh1 (δE/δh5)*δh5 (δE/δmr)*δmr δE δE/E 
[kW] [kW] [kW] [kW] [%] 

13ºC/-18ºC -0,008 0,010 0,205 0,013 1,35 
24ºC/-18ºC -0,008 0,010 0,214 0,013 1,34 
35ºC/-18ºC -0,008 0,011 0,238 0,014 1,40 
13ºC/-26ºC -0,006 0,008 0,221 0,010 0,99 
24ºC/-26ºC -0,006 0,008 0,233 0,010 0,99 
35ºC/-26ºC -0,006 0,007 0,256 0,010 0,97 

 

 

Tabela A2.20 – Propagação de incertezas na medida do consumo de energia para 

aplicações de média temperatura, operando com fluidos não inflamáveis  

Consumo de energia operando com o fluido R404A 

Test (δE/δh1)*δh1 (δE/δh5)*δh5 (δE/δmr)*δmr δE δE/E 
[kW] [kW] [kW] [kW] [%] 

13ºC/2ºC -0,006 0,008 0,103 0,011 1,06 
27ºC/2ºC -0,006 0,008 0,116 0,010 1,03 
35ºC/2ºC -0,006 0,008 0,132 0,010 1,03 

13ºC/10ºC -0,008 0,011 0,083 0,014 1,37 
27ºC/10ºC -0,008 0,011 0,094 0,014 1,38 
35ºC/10ºC -0,008 0,011 0,111 0,014 1,37 
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Tabela A2.21 – Propagação de incertezas na medida do consumo de energia para 

aplicações de baixa temperatura, operando com fluidos inflamáveis  

Consumo de energia operando com o fluido R404A 

Test (δE/δh1)*δh1 (δE/δh5)*δh5 (δE/δmr)*δmr δE δE/E 
[kW] [kW] [kW] [kW] [%] 

24ºC/-18ºC -0,009 0,011 0,219 0,015 1,49 
35ºC/-18ºC -0,009 0,011 0,244 0,015 1,51 
24ºC/-26ºC -0,007 0,009 0,242 0,011 1,11 
35ºC/-26ºC -0,007 0,008 0,268 0,011 1,11 
 

 

Tabela A2.22 – Propagação de incertezas na medida do consumo de energia para 

aplicações de média temperatura, operando com fluidos inflamáveis  

Consumo de energia operando com o fluido R404A 

Test (δE/δh1)*δh1 (δE/δh5)*δh5 (δE/δmr)*δmr δE δE/E 
[kW] [kW] [kW] [kW] [%] 

13ºC/2ºC -0,007 0,008 0,077 0,011 1,07 
27ºC/2ºC -0,007 0,008 0,105 0,011 1,08 
35ºC/2ºC -0,007 0,009 0,120 0,011 1,09 

13ºC/10ºC -0,008 0,011 0,061 0,014 1,36 
27ºC/10ºC -0,009 0,011 0,087 0,014 1,42 
35ºC/10ºC -0,009 0,011 0,103 0,014 1,42 
 

Os resultados do cálculo das incertezas para a vazão mássica ficaram na 

faixa de 0,0001 até 0,0005 kg s , para a temperatura na descarga do compressor 

semi-hermético, na faixa entre 0,001 oC e 0,011 oC, e, para o consumo de energia, 

na faixa entre 1,03% e 1,51%. Estes valores confirman os resultados obtidos na 

comparação dos dados experimentais e numéricos obtidos no capítulo 4, os quais 

apresentam valores próximos a os dados experimentais. 
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