

Frank Christopher Perez Collantes

Comportamento Dinâmico de uma Barragem de Rejeitos com considerações de Ameaça Sísmica

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel

Frank Christopher Perez Collantes

Comportamento Dinâmico de uma Barragem de Rejeitos com considerações de Ameaça Sísmica

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Celso Romanel

Orientador

Departamento de Engenharia Civil - PUC-Rio

Profa. Andréia Abreu Diniz de Almeida Universidade Federal Fluminense

Profa. Maria Cascão Ferreira de Almeida Escola Politécnica / Universidade Federal do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial Centro Técnico Científico PUC-Rio

Rio de Janeiro, 13 de março de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Frank Christopher Perez Collantes

Graduou-se em Engenharia Civil pela Universidade Nacional de Engenharia – UNI de Lima, Peru, em 2005. Principais áreas de interesse: dinâmica de solos, geotecnia computacional e mineração.

Ficha Catalográfica

Collantes, Frank Christopher Perez

Comportamento dinâmico de uma barragem de rejeitos com considerações de ameaça sísmica / Frank Christopher Perez Collantes; orientador: Celso Romanel. – 2013.

146 f. il; 29,7 cm.

Dissertação (Mestrado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013.

Inclui bibliografia

 Engenharia civil – Teses. 2. Ameaça sísmica.
 Resposta dinâmica. 4. Barragem de rejeitos. 5.
 Análise numérica. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD 624

Agradecimentos

A Deus que sempre iluminou o meu caminho.

A minha linda esposa, por me fazer sentir sempre em casa com as suas repetidas viagens à "Cidade Maravilhosa".

Aos meus pais, irmãos e a toda minha família que, com muito carinho, não mediram esforços para que eu chegasse até esta etapa de minha vida.

Ao professor Celso Romanel, por o conhecimento compartido e a amizade.

Ao professor Lyndon Brown, por a colaboração no desenvolvimento deste trabalho.

Aos membros da Banca Examinadora, Maria Cascão Ferreira de Almeida, Andréia Abreu Diniz de Almeida e Celso Romanel, por as valiosas contribuições buscando o aperfeiçoamento deste trabalho.

Um agradecimento especial aos meus colegas por a amizade e confiança, Denys Parra, Rocio Pérez, Américo Bustamante, Leonardo Salas, Martín Rodríguez, Pedro Mendoza. Da mesma forma para Jackeline Castañeda, Niltson Noreña, Tania Bustamante e Jorge López.

Aos meus amigos e colegas da PUC-Rio.

Ao Departamento de Engenharia Civil da PUC-Rio.

Às pessoas que ajudaram direta ou indiretamente na realização deste trabalho.

À CAPES pelo apoio financeiro.

Resumo

Collantes, Frank Christopher Perez; Romanel, Celso (orientador) Comportamento dinâmico de uma barragem de rejeitos com considerações de ameaça sísmica. Rio de Janeiro, 2013. 146 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Sismos são considerados um dos desastres naturais mais catastróficos devido ao seu imenso potencial destrutivo, à extensão dos seus efeitos e pela sua súbita e inesperada ocorrência, podendo desencadear sérias consequencias como deslizamentos de encostas, liquefação de solos, corrida de detritos, etc. O estudo da estimativa da ameaça sísmica é de grande importância na engenharia geotécnica, principalmente em obras especiais como barragens, dos pontos de vista sócio econômico, ambiental e de segurança. Análises sísmicas destas geoestruturas mesmo em zonas de baixa sismicidade, como no Brasil, devem ser consideradas como consequência natural de uma boa prática de projeto, pois tais instalações precisam manter-se seguras e em funcionamento durante a sua vida útil, visando à segurança e bem estar da população em geral. A motivação principal da presente dissertação é reunir informações e apresentar métodos de estudo de ameaça sísmica e da resposta dinâmica de obras de terra. Um sistema de contenção de rejeitos de bauxita localizado na Jamaica, em zona de alta atividade sísmica, é analisado procurando-se estabelecer as características fundamentais do terremoto de projeto a partir de uma análise probabilística de ameaça sísmica regional. A estabilidade dos taludes do dique de contenção, bem como os deslocamentos permanentes provocados pelo sismo, são estimados por metodologias simples (método de estabilidade pseudo-estático, método de Newmark) e soluções mais complexas baseadas no método dos elementos finitos.

Palavras-chave

Ameaça sísmica; resposta dinâmica; barragem de rejeitos; análise numérica.

Abstract

Collantes, Frank Christopher Perez. Romanel, Celso (advisor). **Dynamic behavior of a tailing dam with seismic hazard considerations**. Rio de Janeiro, 2013. 146 p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Earthquakes are considered one of the most catastrophic natural disasters due to its immense destructive potential, the extent of its effects and its sudden and unexpected occurrence, which can trigger serious consequences such as landslides, soil liquefaction, debris flow, etc. The study of seismic hazard is of great importance in geotechnical engineering, especially in cases involving special structures such as earth dams, under the socio-economic, environmental and security points of view. Seismic analysis of such special structures, even in areas of low seismicity as in Brazil, should be considered as a natural consequence of good design practice, since these facilities do need to remain safe and operational during their entire lifetime. The main motivation of this dissertation is to gather information and to present and discuss methods for the estimate of the seismic hazard and evaluation of the dynamic response of earth works. A tailings dam system located in Jamaica, within an area of high seismic activity, is analyzed in this dissertation, with the objective to establish the fundamental characteristics of the earthquake design from a probabilistic analysis of the regional seismic hazard. The slope stability of the dike and the permanent displacements caused by the earthquake are estimated by simple methods (pseudo-static stability method, Newmark method) and more complex solutions based on the finite element method.

Keywords

Seismic hazard; dynamic response; tailings dam; numerical analysis.

Sumário

1 Introdução	22
1.1 Motivação e objetivos	22
1.2 Estrutura da dissertação	23
2 Conceitos de Sismicidade	25
2.1 Placas tectônicas	25
2.2 Ondas planas de tensão	29
2.3 Grandezas de um sismo	32
2.3.1 Intensidade	33
2.3.2 Magnitudes	34
2.4 Parâmetros do movimento do terreno	38
2.4.1 Parâmetros de amplitude	39
2.4.2 Parâmetros de conteúdo de frequências	39
2.4.3 Parâmetros de duração	41
2.5 Relações de prognóstico	41
2.6 Tipos de acelerograma	43
2.6.1 Acelerograma real normalizado	44
2.6.2 Acelerograma sintético artificial	44
2.6.3 Acelerograma sintético simulado	45
2.6.4 Acelerograma sintético adaptado	45
2.7 Projeto do movimento do terreno	46
2.7.1 Efeitos das condições do sítio	46
2.7.2 Parâmetros do projeto	46
3 Avaliação Probabilística de Ameaça Sísmica no Sít	io da Barragem de
Rejeitos	48
3.1 Processo de Poisson	48
3.2 Lei de Gutenberg-Richter	51
3.3 Modelo probabilístico de Cornell	52
3.4 O sítio da barragem de rejeitos	56

3.5 Sismicidade na Jamaica	57
3.6 Curva de ameaça sísmica no sítio de interesse	58
3.6.1 Catálogos, padronização de magnitudes e depuração de evento	os58
3.6.2 Fontes sismogênicas	61
3.6.3 Lei de atenuação	62
3.6.4 Curva de ameaça sísmica	65
4 Aspectos da Modelagem da Resposta Sísmica de Geoestruturas	68
4.1 Influência do solo no movimento	68
4.2 Métodos de análise do movimento do solo	70
4.2.1 Método simplificado	70
4.2.2 Análises 1D da resposta dinâmica	71
4.2.3 Análises 2D e 3D da resposta dinâmica	76
4.3 Seleção de acelerograma	77
4.4 Métodos de análise do comportamento de taludes	78
4.4.1 Estabilidade	78
4.4.2 Deslocamentos permanentes	80
4.4.3 História da resposta (aceleração, velocidade ou deslocamento)	
4.4.3.1 Processamento do acelerograma	85
4.4.3.2 Amortecimiento	89
4.4.3.3 Condicoes de contorno	93
4.4.3.4 Considerações sobre a base do modelo	96
5 Análise da Resposta Dinâmica do Sistema de Contenção de Rejei	tos98
5.1 Descrição do sistema de contenção de rejeitos	98
5.2 Análise estática	101
5.2.1 Tensões iniciais	101
5.2.2 Fator de segurança estático	103
5.2.3 Fator de segurança pseudo-estático	104
5.3 Análise dinâmica	105
5.3.1 Tratamento do registro sísmico	105
5.3.2 Malha de elementos finitos	109
5.3.3 Aferição do parâmetros de amortecimento de Rayleigh	113
5.3.4 Frequências predominantes da geoestrutura	116

5.3.5	Avaliação dos deslocamentos permanentes pelo método dos	
eleme	entos finitos	119
5.3.6	Avaliação dos deslocamentos permanentes pelo método de	
Newn	nark (1965)	123
6 C	onclusões e Sugestões	126
6.1 (Conclusões	126
6.2	Sugestões	128
Refere	ências Bibliográficas	130
Anexo	0.1	137
Anexo	0.2	138
Anexo 3		140

Lista de figuras

Figura 1.1 – Mapa global de ameaça sísmica global (USGS – U.S. Geological	
Survey) (http://earthquake.usgs.gov/earthquakes/map/).	22
Figura 2.1 – Esquema da estrutura da Terra	
(www.ige.unicamp.br/site/aulas/109/Terra-tempo_geo-aula1.pdf).	27
Figura 2.2 – Tipos de movimento entre placas	
(http://geo.ineti.pt/geociencias/edicoes_online/diversos/guiao_tectonica_p	lac
as/texto.htm).	27
Figura 2.3 – Placas tectônicas principais	
(http://pubs.usgs.gov/gip/dynamic/slabs.html).	28
Figura 2.4 – Notação geométrica para a descrição do plano de falha	
(http://w3.ualg.pt/~jdias/GEOLAMB/GA2_SistTerra/202Tectonica/Fractu	ıras
.html).	28
Figura 2.5 – Movimentos de partícula produzidos pelos diferentes tipos de onda	as
planas de tensão (Teixeira et al., 2003).	31
Figura 2.6 – Ondas sísmicas registradas a 10.000 km do epicentro: a) sismo de	
foco profundo; b) sismo de foco superficial. Modificado de Sauter (1989)	
apud Arias (1996).	32
Figura 2.7 – Elementos para descrição da localização de um sismo (adaptado d	le
Kramer, 1996).	33
Figura 2.8 – Relação das magnitudes M_L , m_b e M_S com a magnitude de moment	0
M_W (Boore e Joyner, 1994).	37
Figura 3.1 – Localização do sítio da barragem de rejeitos de mineração	
(http://www.alcoa.com/jamaica/en/home.asp).	56
Figura 3.2 – Sismotectônica da Jamaica (ERN, 2009).	58
Figura 3.3 – Localização geográfica da barragem de rejeitos (círculo amarelo),	
fontes sismogênicas delimitadas pelas linhas claras e eventos sísmicos	
indicados pelos círculos, após depuração dos catálogos sísmicos.	62
Figura 3.4 – Curva de ameaça sísmica para a zona do projeto em função da taxa	ì
de excedência das acelerações.	66
Figura 3.5 – Curva de ameaca sísmica para a zona do projeto em função da	

probabilidade de excedencia das acelerações em 50 anos.	66
Figura 3.6 – Espectro uniformemente provável de resposta das acelerações pa	ra
um período de retorno de 475 anos e vida útil de 50 anos.	67
Figura 4.1 – Variação da aceleração horizontal de pico em depósitos de solo n	nole
(Adaptado de Idriss, 1990).	71
Figura 4.2 – Curvas de variação do módulo de cisalhamento para diferentes	
índices de plasticidade – Vucetic e Dobry (1991).	73
Figura 4.3 – Curvas de variação da razão de amortecimento para diferentes ínc	dices
de plasticidade – Vucetic e Dobry (1991).	73
Figura 4.4 – Determinação do deslocamento permanente do bloco rígido	
(Adaptado de Hynes-Griffin e Franklin, 1984).	82
Figura 4.5 – Procedimento da dupla integração no tempo no método de Newn	nark
- Smith (1995).	83
Figura 4.6 – Efeitos da frequência no movimento induzido em taludes. a) baix	a
frequência, longo comprimento de onda; b) alta frequência, curto	
comprimento de onda (Kramer e Smith, 1997).	84
Figura 4.7 – Erros introduzidos nas velocidades e deslocamentos pela falta da	
correção da linha base no acelerograma (modificado de Hudson, 1979).	86
Figura $4.8 - \grave{A}$ esquerda, efeito dos ruídos de alta frequência, à direita efeitos	dos
ruídos de baixa frequência (modificado de Hudson, 1979).	87
Figura 4.9 – Contornos silenciosos no caso de carregamento dinâmico no inte	rior
da malha de elementos finitos (Loayza, 2009).	94
Figura 4.10 – Comparação entre os sinais prescrito e calculado na base da ma	lha
de elementos finitos (Quispe, 2008).	95
Figura 4.11 – Condições de contorno de campo livre (Adaptado de <i>New Plaxi</i>	S
Developments, Plaxis v.2011).	96
Figura 5.1 – Planta do sistema de contenção de rejeitos.	99
Figura 5.2 – Geometria da seção transversal A-A (medidas em metros).	100
Figura 5.3 – Distribuição dos materiais na seção A - A	102
Figura 5.4 – Escala de cores ilustrando a variação da resistência ao cisalhamento	nto
não drenada S_u em função da profundidade.	103
Figura 5.5 – Distribuição das tensões horizontais (acima) e verticais (abaixo)	na
análise estática	103

Figura 5.6 – Superfície crítica de deslizamento na avaliação da estabilidade	
estática do dique projetado, determinada com base nos acréscimos de	
deformação cisalhante ($\Delta \gamma xy$).	104
Figura 5.7 – Fator de segurança pseudo-estático obtido por método de equilíbr	io
limite com $k = 0.105$.	104
Figura 5.8 – Localização do evento sísmico selecionado na fonte sísmica JS2,	
localização da estação acelerográfica SMAD e a distância entre ambos	
(modificado de http://earthquake.usgs.gov).	106
Figura 5.9 – Erros nas acelerações, velocidades e deslocamentos decorrentes d	la
não correção da linha base $(a_0 = 0.0065g)$.	106
Figura 5.10 – Acelerogramas corrigido e não corrigido do sismo de projeto no	1
intervalo de tempo entre 5s e 35s.	107
Figura 5.11 – Ajuste espectral no domínio do tempo com auxílio do programa	
SeismoMatch.	108
Figura 5.12 – Acelerograma de projeto ajustado no domínio do tempo.	108
Figura 5.13 – Espectro de potência para determinação da frequência de corte f	· c•
	109
Figura 5.14 – Malha de elementos finitos triangulares com o acelerograma de	
projeto aplicado na base do modelo. Condições de contorno laterais	
especificadas como de campo livre.	111
Figura 5.15 – Propagação 1D de ondas S geradas pelo acelerograma de projeto)
aplicado no substrato rochoso.	112
Figura 5.16 – Registro de acelerações na base do rejeito existente, coincidente	
com a base do modelo de elementos finitos (figura 5.14).	112
Figura 5.17- Modelos para comparação entre os amortecimentos de Rayleigh	
(PLAXIS) e histerético (SHAKE2000).	114
Figura 5.18- Distribuição da aceleração máxima com a profundidade obtida co	om
os programas SHAKE2000 e PLAXIS 2D v.2011.	115
Figura 5.19 – Distribuição da tensão cisalhante máxima com a profundidade	
obtida com os programas SHAKE2000 e PLAXIS 2D v.2011.	115
Figura 5.20 - Resultados da aferição considerando os espectros de aceleração o	de
Fourier.	116
Figura 5.21 - Pontos de controle utilizados para determinação das frequências	

predominantes da geoestrutura, conforme tabela 5.5.	117
Figura 5.22- Acelerações horizontais não amortecidas registradas no rejeito a	ser
lançado (ponto I da figura 5.21).	118
Figura 5.23 – Espectros de potência dos pontos A, I e D obtidos das aceleraçõe	es
da análise elástica não amortecida.	118
Figura 5.24 – Pontos de controle utilizados na avaliação na resposta sísmica.	120
Figura 5.25 – Distribuição dos deslocamentos horizontais permanentes na	
geoestrutura.	121
Figura 5.26 – Distribuição dos deslocamentos verticais permanentes na	
geoestrutura.	121
Figura 5.27 – Evolução no tempo dos deslocamentos horizontais permanentes	nos
pontos B, C, D e E.	121
Figura 5.28 – Evolução no tempo dos deslocamentos verticais permanentes no	S
pontos B, C, D e E.	122
Figura 5.29 – Comparação dos espectros de resposta obtidos no ponto H.	123
Figura 5.30 – Determinação da aceleração de escoamento pelo método das fat	ias
de Spencer (1967).	123
Figura 5.31 – Seções consideradas na avaliação de deslocamentos permanente	S
pelo método de Newmark (1965).	124
Figura 5.32 – Acelerogramas para as análises 1 e 2 da seção 3.	125

Lista de tabelas

Tabela 3.1 – Probabilidade de excedência e períodos de retorno para diversos	
tipos de sismo (Bertero, 1997).	50
Tabela 3.2 – Resumo de metodologias e resultados de análises de ameaça sísm	nica
na Jamaica.	57
Tabela 3.3 – Terremotos de grande intensidade na Jamaica	
(http://www.mona.uwi.edu/earthquake/equakedata.php).	59
Tabela 3.4 – Relações de conversão de magnitude usadas neste estudo.	60
Tabela 3.5 – Fontes sismogênicas e seus parâmetros sísmicos.	61
Tabela 3.6 – Parâmetros de crosta para a Califórnia (Atkinson, 2001; Boore e	
Joyner, 1997) e para Jamaica (Wiggins-Grandison e Havskov, 2004).	64
Tabela 3.7 – Classificação de solos e correspondentes valores de V_{30} de acord	.0
com o NEHRP (adaptado de Bozorgnia e Campbell, 2004).	64
Tabela 3.8 – Parâmetros da lei de atenuação proposta por Boore, Joyner e Fur	nal
(1997).	64
Tabela 3.9 – Acelerações espectrais e de pico no embasamento rochoso	
determinados para um período de retorno de 475 anos e vida útil de 50 a	nos.
	67
Tabela 4.1 – Classificação do depósito de solo (Borcherdt, 1994).	70
Tabela 4.2 – Valores típicos da razão de amortecimento crítico.	90
Tabela 5.1 – Propriedades geotécnicas dos materiais	98
Tabela 5.2 – Variação da resistência ao cisalhamento não drenada com a	
profundidade.	99
Tabela 5.3 – Parâmetros utilizados na correção da linha base e filtros.	105
Tabela 5.4 – Tamanho máximo do elemento para assegurar propagação da one	da S.
	109
Tabela 5.5 – Frequências predominantes obtidas em diferentes pontos da	
geoestrutura.	118
Tabela 5.6 – Máximos deslocamentos permanentes horizontais e verticais nos	
pontos de controle.	119
Tabela 5.7 – Resultados da avaliação de deslocamentos permanentes.	125

Lista de Símbolos

Romanos

g

A	Amplitude do movimento de terreno
A_0, A_1, A_2, A_3	Constantes
A(f)	Espectro da amplitude de Fourier
a	Parâmetro de atividade sísmica
a(t)	Acelerograma sem corrigir
a_{y}	Aceleração de escoamento
B_{1ALL} , B_2 , B_3 , B_5	Constantes
C_1, C_2C_8	Constantes
L	Parâmetro relacionado com a distribuição de sismos pelas
b	diversas magnitudes
[<i>C</i>]	Matriz de amortecimento viscoso
c	Coesão
C_{I}	Coeficientes de relaxamento normal
C_2	Coeficientes de relaxamento tangencial
C_n	Amplitude do enésimo harmônico das séries de Fourier
d_e	Distância epicentral
E	Modulo de Young
E	Quantidade de energia emitida por um sismo
E_j	Evento sísmico ocorrido na região sismogênica j
$f_{\Delta e}$	Diferença de energia liberada entre dois terremotos
f_c	Frequência de corte
f_{max}	Frequência máxima
$f_{(M)}$	Função densidade de probabilidade de magnitude m
f_n	Frequencia de ressonância
E(M)	Probabilidade de ocorrerem sismos com magnitude não
F(M)	superior a M
FS	Fator de segurança

Aceleração gravitacional ou gravidade

G Módulo de cisalhamento

G_{max} Módulo de cisalhamento máximo

 $G_{(\omega)}$ Espectro de potência ou função densidade espectro de potência

h Profundidade focal

j Índice de fontes sismogênicas

[K] Matriz de rigidez não-linear

 k_{y} Coeficiente sísmico de escoamento

L Onda Love

Faixa de distância considerada na depuração do catálogo L(M)

sísmico

[M] Matriz de massa

M Magnitude sísmica

*M*₀ Limite inferior da magnitude sísmica

 m_b Magnitude das ondas de corpo

 M_c Magnitude de duração do terremoto

 M_E Magnitude com base em energia irradiada por um terremoto

 M_l Magnitude local

 M_s Magnitude das ondas de superficie

 M_o Momento sísmico m_o Magnitude mínima

 M_S Magnitude de ondas superficiais

 M_U Magnitude do sismo máximo provável

 M_w Magnitude de momento

Número de sismos ocorridos de magnitudes iguais ou maiores N

que M

n Número total de zonas sismogênicas consideradas

 N_T Número total de sísmos

P Onda primária

P_a Pressão atmosférica

 $P_{(n)}$ Função do modelo de Poisson

 $Q_{(\Delta,h)}$ Fator de correção

 $Q_{(f)}$ Fator dependente da qualidade da frequência

R Onda Rayleigh

r_{jb}	Distância Joyner-Boore, 1981
r(t)	Ruído do sinal sísmico

Sa(T) Aceleração espectral no período T
 s Unidade de tempo em segundos
 S Onda secundária ou de cisalhamento

S Área de ruptura da falha

SH Onda cisalhante horizontal

s(t) Sinal sísmico corrigido SV Onda cisalhante vertical

Su Resistencia ao cisalhamento não drenado

t Tempo

T Período do sistema T_d Duração do sismo

 T_R Periodo de retorno em anos

T(M) Faixa de tempo considerada na depuração do catálogo sísmico $\ddot{u}_b(t)$ Aceleração da base na profundidade da massa de solo instável

 $\ddot{u}_g(t)$ Aceleração do sismo

 v_p Velocidade da onda primária v_R Velocidade da onda Rayleigh

 v_s Velocidade da onda de cisalhamento V_{30} v_s nos 30m superficiais do solo ou rocha

Y Parâmetro do movimento do terreno

Z Profundidade

Gregos

α_{R}	Coeficiente de amortecimento Rayleigh
α	Parâmetro de atividade sísmica
$\alpha_{\!\scriptscriptstyle N}$	Parametro do tempo de integração
R	Parâmetro relacionado com a distribuição de sismos pelas diversas
β	magnitudes
β	Coeficiente de amortecimento Rayleigh
$\beta_{\!\scriptscriptstyle N}$	Parametro do tempo de integração
Δ	Distância epicentral em graus
Δl	Tamanho do elemento
ΔM	Incremento de magnitude sísmica
Δt	Incremento de tempo
ϕ	Ângulo de atrito
$\Delta \gamma_{xy}$	Acréscimo de deformações cisalhante
λ	Taxa média de ocorrência de eventos sísmicos
λ	Comprimento de onda
λ	Constante de Lamé
λ_m	Taxa anual média de ultrapassagem da magnitude do sismo m
ho	Massa específica
σ_n	Tensão normal
$\sigma_{ au}$	Tensão cisalhante
$\sigma'_{h,o}$	Tensão efetiva horizontal inicial
$\sigma'_{v,o}$	Tensão efetiva vertical inicial
$ au_{max}$	Tensão de cisalhamento máxima
ν	Coeficiente de Poisson
ω	Frequência natural do sistema
ξ	Razão de amortecimento

Lista de Abreviaturas

EFZ

APAS Análise de ameaça sísmica probabilística

BJF97 Lei de atenuação proposta por Boore, Joyner e Fumal em 1997

CSC Cayman Spreading Center
CSP Cumulative spectrum power

EMS-98 Escala macrosísmica europeia de intensidade de sismo

ERN Evaluação de riscos naturais – America Latina

FFT Transformada rápida de Fourier

FLAC Finite Lagrangian Analysis of Continua.

Zona de falha Enriquillo

IBC International Building Code

IRIS Incorporated Research Institutions for Seismology

IP Índice de plasticidade

JSN Jamaica Seismograph Network

JAMALCO Jamaica Aluminum Company

MCE Sismo máximo a ser considerado

MEF Método de elementos finitos

MMI Escala de Intensidade de sismo de Mercalli modificada

NEHRP National Earthquake Hazards Reduction Program

OBE Sismo base de operação
OCR Razão de pré-adensamento

OZF Oriente fault zone

PHA Aceleração horizontal de pico

PGA Peak ground acceleration

PHV Velocidade horizontal de pico

PSHA Probabilistic seismic hazard analysis
PSFD Função densidade espectro de potência

SDB Santiago deformed belt

SDOF Sistema de um grau de libertade

SPT Ensaio de penetração padrão

SSE Sismo de desligamento seguro

USAID United States Agency for International Development

USGS United States Geological Survey

WFZ Zona de falha Walton