

Pedro Alcides Lobo Penna Firme

Modelagem Constitutiva e Análise Probabilística Aplicadas a Poços em Zonas de Sal

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do Grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel Co-orientadora: Prof^a. Deane de Mesquita Roehl

> Rio de Janeiro Setembro de 2013

Pedro Alcides Lobo Penna Firme

Modelagem Constitutiva e Análise Probabilística Aplicadas a Poços em Zonas de Sal

Dissertação apresentada como requisito parcial para obtenção do Grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Celso Romanel Orientador Departamento de Engenharia Civil – PUC-Rio

> Prof^a. Deane de Mesquita Roehl Co-orientadora Departamento de Engenharia Civil – PUC-Rio

> Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

> > Prof^a. Mildred Ballin Hecke Universidade Federal do Paraná

Dr. Edgard Poiate Junior Petróleo Brasileiro S. A. – Petrobras

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 26 de Setembro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pedro Alcides Lobo Penna Firme

Graduado em Engenharia Civil com ênfase em estruturas na Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) em 2010. Mestrado em Engenharia Civil na área de geotecnia na PUC-Rio, tendo desenvolvido dissertação na área de geomecânica de rochas salinas, defendida em 26 de Setembro de 2013.

Ficha Catalográfica

Firme, Pedro Alcides Lobo Penna

Modelagem Constitutiva e Análise Probabilística Aplicadas a Poços em Zonas de Sal / Pedro Alcides Lobo Penna Firme; orientador: Celso Romanel; co-orientadora: Deane de Mesquista Roehl – 2013.

232 f. : il.(col.) ; 30 cm

Dissertação (Mestrado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

Inclui bibliografia

1. Engenharia Civil – Teses. 2. Sal. 3. Fluência. 4. Modelos Constitutivos. 5. Análise Probabilística I. Romanel, Celso. II. Roehl, Deane de Mesquita. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Agradeço primeiramente ao único e verdadeiro Deus pela graça, pela força e pela perseverança, sem as quais teria sido impossível realizar esse trabalho. Meu mais sincero reconhecimento ao meu senhor e salvador Jesus Cristo, que me possibilitou da fraqueza tirar forças, na batalha me esforçar e vencer esse grande desafio.

À minha família, pelo apoio incondicional ao longo de toda a vida acadêmica, pelas palavras e gestos de incentivo. Em especial, a minha mãe, Maria Margarida, minha avó, Maria Teresa, meu pai, José Alcides, e minha noiva, Débora Castilho. Os tempos difíceis podem tornar-se felizes quando temos a quem recorrer. Muito obrigado!

Ao Prof. Celso Romanel, pela oportunidade, pela disponibilidade para orientação e pelas contribuições para esta pesquisa.

À Profa. Deane Roehl, pela proposta do tema, pela disponibilidade para orientação, pelas contribuições e pela oportunidade de novamente fazer parte do Grupo de Geomecânica Computacional do Tecgraf, o qual proporcionou toda a infraestrutura técnica para o desenvolvimento da pesquisa.

Aos engenheiros da Petrobras, Dr. Álvaro Maia da Costa e Dr. Edgard Poiate Jr. pela experiência compartilhada, pelas contribuições e pela oportunidade de visitar a Mina Taquari-Vassouras, que em muito enriqueceram esta pesquisa.

Ao Prof. Raul Rosas e Silva (PUC-Rio) e à Profa. Mildred Hecke (UFPR), pelas contribuições dadas este trabalho.

A todos os meus amigos do Grupo de Geomecânica do Tecgraf, pela convivência e pelas sugestões e auxílios ao longo dos anos de 2012 e 2013. Agradeço também ao meu amigo Rafael Bolaños, companheiro da maior parte das disciplinas do mestrado.

Aos professores da área de geotecnia da PUC-Rio, pelo conhecimento transmitido ao longo das disciplinas cursadas, que certamente foram de fundamental importância.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e a Petróleo Brasileiro S. A. (Petrobras) pelo suporte financeiro durante o mestrado.

Resumo

Firme, Pedro Alcides Lobo Penna; Romanel, Celso; Roehl, Deane de Mesquita. **Modelagem Constitutiva e Análise Probabilística Aplicadas a Poços em Zonas de Sal.** Rio de Janeiro, 2013. 232p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A perfuração de camadas espessas de sal para exploração do pré-sal brasileiro desafia a geomecânica no aprimoramento da modelagem computacional dessas rochas. Previsões acuradas podem evitar problemas operacionais na perfuração, desde a necessidade excessiva de repasses até a prisão da coluna de perfuração, ou mesmo a perda do poço. O comportamento mecânico das rochas salinas é diferente daquele geralmente descrito pela mecânica das rochas tradicional. A compreensão do fenômeno da fluência constitui um embasamento conceitual indispensável para simulações numéricas nessas rochas. Foram apresentadas metodologias para simulação do comportamento à fluência de rochas salinas adotando o programa comercial de elementos finitos ABAQUS®. Três modelos constitutivos para fluência baseados em leis de potência foram testados em simulações de ensaios triaxiais de fluência, galeria de mineração e poços revestidos e não revestidos. Destaca-se o primeiro esforço no intuito de calibrar e validar o Modelo de Multi Mecanismo de Deformação para aplicação em halita brasileira. Além disso, é apresentada uma metodologia para análises probabilísticas de fechamento de poço e de plastificação de revestimento. O programa NESSUS[®] foi adotado e métodos de confiabilidade de Valor Médio foram empregados. Um modelo transversal de poço revestido típico do cenário do pré-sal brasileiro é considerado. Para ambos os eventos e modelos constitutivos, resultados determinísticos estão associados à probabilidade de falha de 40%. As variáveis de maior importância nas análises de fluência em rochas salinas são aquelas relacionadas ao estado de tensão, temperatura e a fluência secundária. Por fim, ressalta-se o excelente desempenho do Modelo de Multi Mecanismo de Deformação nas simulações numéricas realizadas nesta pesquisa.

Palavras-chave

Sal; Fluência; Modelos Constitutivos; Análise Probabilística.

Abstract

Firme, Pedro Alcides Lobo Penna; Romanel, Celso (Advisor); Roehl, Deane de Mesquita (Co-advisor). **Constitutive Modeling and Probabilistic Analysis Applied to Wells in Salt Zones.** Rio de Janeiro, 2013. 232p. Msc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Drilling thick salt rock layers for Brazilian pre-salt exploitation challenges geomechanics in improving computational modeling of those rocks. Accurate predictions can avoid operational complications in the drilling job, ranging from the excessive necessity of new drillings to a stuck pipe or even the loss of the wellbore. Salt rock shows unique properties. The mechanical behavior of salt rock is different from that usually described in traditional rock mechanics. The understanding of the creep phenomenon constitutes an indispensable conceptual background for numerical simulation of salt rocks. Some methodologies are presented for the simulation of salt rock creep behavior using the commercial finite element code ABAQUS[®]. Three power-law-based constitutive models for creep are tested on simulations of triaxial creep tests, a mining gallery and both cased and uncased wellbores. A first effort to calibrate and validate the Multimechanism Deformation Creep Model for application in the Brazilian halite should be highlighted. Moreover, a methodology for probabilistic analyses of wellbore closure and casing yielding is presented. The software NESSUS® is adopted and the Mean Value reliability methods are employed. A transversal model of cased wellbore typical for a Brazilian pre-salt scenario is considered. For both events and constitutive models, deterministic results are associated to a probability of failure of 40%. Variables with the highest importance in salt rock creep analyses are related to the stress state, temperature and steady-state creep. Finally, the excellent performance of the Multi-mechanism Deformation Creep Model in the numerical simulations carried out in this research is noteworthy.

Keywords

Rock Salt; Creep; Constitutive Models; Probabilistic Analysis.

Sumário

1 Introdução	29
1.1. Definição do problema	29
1.2. Grupo de Geomecânica Computacional – Instituto Tecgraf	31
1.3. Objetivos da pesquisa	32
1.4. Organização da dissertação	32
2 Fundamentos da geomecânica das rochas salinas	34
2.1. Introdução	34
2.2. Definições e propriedades básicas	35
2.3. Principais rochas salinas	37
2.4. Evaporitos e a indústria	40
2.5. Comportamento à fluência	43
2.5.1. Fases da fluência	44
2.5.2. Mecanismos de fluência	48
2.6. Comportamento de ruptura	59
2.7. Ensaio triaxial de fluência	60
2.8. Poços em rochas salinas	63
3 Modelos constitutivos de fluência para rochas salinas	67
3.1. Introdução	67
3.2. Modelos reológicos	67
3.2.1. Introdução	67
3.2.2. Modelo de Maxwell	68
3.2.3. Modelo de Kelvin / Voigt	70
3.2.4. Modelo de Burgers	71
3.3. Modelos físico-empíricos	72
3.3.1. Introdução	72
3.3.2. Lei de Potência	74

3.3.3. Lei Visco-plástica de Múltiplos Mecanismos e Modelo de Duplo	
Mecanismo	75
3.3.4. Modelo de Multi Mecanismo	80
3.4. Parâmetros e calibração dos modelos constitutivos	83
3.4.1. Parâmetros elásticos	83
3.4.2. Parâmetros de fluência	84
4 Metodologias e resultados de análises de fluência em rochas	
salinas	96
4.1. Introdução	96
4.2. Aferição das implementações em FORTRAN	97
4.2.1. Ensaio triaxial de fluência	97
4.2.2. Modelo sintético de poço – fechamento diametral	106
4.2.3. Modelo sintético de poço revestido	132
5 Exemplos de validação	145
5.1. Introdução	145
5.2. Ensaio triaxial de fluência	145
5.2.1. Contexto	145
5.2.2. Propriedades e condições inciais	146
5.2.3. Modelo geomecânico e metodologia	147
5.2.4. Resultados e discussões	147
5.3. Mina Taquari-Vassouras	150
5.3.1. Contexto	150
5.3.2. Propriedades e condições inciais	152
5.3.3. Modelo geomecânico e metodologia	153
5.3.4. Resultados e discussões	154
5.4. Poço 6-RJS-457	159
5.4.1. Contexto	159
5.4.2. Propriedades e condições iniciais	161
5.4.3. Modelo geomecânico e metodologia	162
5.4.4. Resultados e discussões	163

6 Análise determinística e probabilística de fechamento e	
plastificação	170
6.1. Introdução	170
6.2. Análises probabilísticas em geomecânica das rochas salinas	171
6.3. Especificações do modelo sintético	173
6.4. Variáveis aleatórias	177
6.5. Metodologia	182
6.6. Análise determinística	185
6.7. Análise probabilística do fechamento do sal	195
6.8. Análise probabilística da plastificação do revestimento	199
7 Conclusões e sugestões para trabalhos futuros	204
7.1. Conclusões gerais	204
7.2. Conclusões relacionadas aos modelos constitutivos para	
fluência para rochas salinas	205
7.3. Conclusões relacionadas às análises probabilísticas	206
7.4. Sugestões e recomendações para trabalhos futuros	207
Referências bibliográficas	209
	040
Apendice	219
A. Estado multaxial de tensoes	219
B. Solução elastica para tensões ao redor da perturação	223
C. Metodos probabilisticos	224
C.1. Metodos de integração probabilistica rapida (<i>FPI</i>)	224
C.2. Metodos do Valor Medio	228
C.2.1. Método do Valor Médio (<i>Mean Value – MV</i>)	229
C.2.2. Método do Valor Médio Avançado (Advanced <i>Mean</i>	
Value – AMV)	229
C.2.3. Método do Valor Médio Avançado Generalizado (Generalized	
Advanced Mean Value – AMV+)	231

Lista de figuras

Figura 2.1 – Testemunhos de rochas salinas (Liang <i>et al.</i> , 2006,
tradução nossa, Silva et al., 2000 e Vale S.A., respectivamente)
Figura 2.2 – Estratificação de rochas salinas em galeria da Mina
Taquari-Vassouras (Machado & Szatmari, 2009)
Figura 2.3 – Estratificação de rochas salinas em galeria de
mineração no depósito de potássio de Starobin
(http://www.belarus.by/rel_image/2873)40
Figura 2.4 – Depósitos evaporiticos no mundo (a partir de Tucker,
1988 <i>apud</i> Florencio, 2009)40
Figura 2.5 – Painel da Mina Taquari-Vassouras (Agência Vale)41
Figura 2.6 – Esquematização do sistema petrolífero do pré-sal: (a)
evaporito (sal) e (b) carbonato (adaptado de Christante, 2009 e
Mohriak <i>et al.</i> , 2009)42
Figura 2.7 – Curva genérica de fluência (a partir de Jeremic, 1994)44
Figura 2.8 – Curva genérica de taxa de fluência ao longo do tempo
(a partir de Poiate Jr., 2012)45
Figura 2.9 – Mapa de mecanismos de deformação para rochas
salinas (a partir de Munson & Dawson, 1979)49
Figura 2.10 – Intersecção de bandas de deslizamento (Senseny <i>et</i>
<i>al</i> ., 1992)53
Figura 2.11 – Poligonização completa (Senseny <i>et al</i> ., 1992,
tradução nossa)55
Figura 2.12 – Mecanismos de Solubilização e Precipitação
(Hambley et al., 1988, tradução nossa)58
Figura 2.13 – Maciço da mina de Angersdorf com rupturas
localizadas (Hampel et al., 2010)60
Figura 2.14 – Amostragem de rocha salina - testemunhagem e
preparação do corpo de prova (Lee & Ehgartner, 2001)61

Figura 2.15 – Equipamento para o ensaio triaxial de fluência (Lee &
Ehgartner, 2001 e Lee et al., 2004, respectivamente)62
Figura 2.16 – Esquematização do ensaio triaxial de carregamento
axial62
Figura 2.17 – Intercorrências em perfurações de poços
atravessando rochas salinas – enfoque geral (Perez <i>et al. apud</i>
Beasley et al., 2010, tradução nossa)64
Figura 2.18 - Intercorrências em perfurações de poços
atravessando rochas salinas – enfoque evaporítico (Falcão, 2009)65
Figura 2.19 – Dobramento da coluna de revestimento em trecho
salino de um poço (Falcão, 2009)66
Figura 3.1 – Esquematização do Modelo de Maxwell69
Figura 3.2 – Esquematização do Modelo de Kelvin /Voigt70
Figura 3.3 – Esquematização do Modelo de Burger71
Figura 3.4 – Lei Visco-plástica de Múltiplos Mecanismos: modelos
da mecânica do contínuo e mecanismos associados (a partir de
Dusseault, 1989)76
Figura 3.5 – Lei Visco-plástica de Múltiplos Mecanismos – versão
original e versão simplificada (a partir de Dusseault <i>et al</i> ., 1987 e
Dusseault, 1989)78
Figura 3.6 – Analogia entre Lei Visco-plástica simplificada e Modelo
de Duplo Mecanismo (a partir Dusseault <i>et al.</i> , 1987; Dusseault,
1989 e Costa <i>et al</i> ., 2005)80
Figura 3.7 – Parâmetros do Modelo de Multi Mecanismo sensíveis
ao material e influência nos resultados
Figura 3.8 – Localização de taxas de deformação da halita
brasileira no mapa de mecanismos de deformação88
Figura 3.9 – Curvas experimentais de fluência para obtenção do
parâmetro K_0
Figura 3.10 - Taxas de deformação da halita brasileira e as
respectivas tensões desviadoras no mapa de mecanismos de
deformação91
Figura 4.1 – Elemento isoparamétrico quadrilateral com integração
reduzida CAX8R/CPE8R (ABAQUS)96

Figura 4.2 – Esquematização para cálculo da deformação axial do
corpo de prova (adaptado a partir de Lee et al., 2004)
Figura 4.3 – Etapas da simulação do ensaio triaxial de fluência99
Figura 4.4 – Ensaio Triaxial de Fluência – Tensões axiais (Pa)100
Figura 4.5 – Ensaio Triaxial de Fluência – Deslocamentos axiais
(m)100
Figura 4.6 – Especificações do modelo numérico da amostra da
halita brasileira101
Figura 4.7 - Especificações do modelo numérico da amostra das
halitas da porção on-shore do Golfo do México101
Figura 4.8 – Etapas da simulação do ensaio triaxial de fluência em
halita brasileira102
Figura 4.9 – Simulação de ensaio triaxial de fluência em halita
brasileira102
Figura 4.10 – Simulação do ensaio triaxial de fluência em halita
americana do West Hackberry Salt104
Figura 4.11 – Simulação de ensaio triaxial de fluência em halita
americana do West Hackberry Salt104
Figura 4.12 – Deslocamento axial (U2, m) da amostra ao longo dos
estágios do ensaio105
Figura 4.13 – Simulação de ensaio triaxial de fluência em halita
americana do <i>Big Hill Salt</i> 106
Figura 4.14 – Representação dos modelos sintéticos. Adaptação a
partir do perfil representativo do pré sal (Christante, 2009)108
Figura 4.15 – Condições iniciais dos modelos 1A, 1B, 2A e 2B110
Figura 4.16 – Modelos geomecânicos 1A, 1B, 2A e 2B113
Figura 4.17 – Condições de contorno do modelo longitudinal –
configuração com o topo restringido114
Figura 4.18 – Condições de contorno do modelo longitudinal –
configuração com o topo livre114
Figura 4.19 – Imposição das condições iniciais ao modelo
longitudinal115
Figura 4.20 – Modelos sintéticos 1A e 1B – Condições iniciais do
modelo longitudinal

Figura 4.21 – Modelos sintéticos 2A e 2B – Condições iniciais do
modelo longitudinal
Figura 4.22 - Detalhe para a perfuração em modelos longitudinais 117
Figura 4.23 – Fechamento radial por deformação elástica após a
perfuração entre as cotas -2875 e -2885 m117
Figura 4.24 – Tensões desviadoras na reação elástica à perfuração
a perfuração entre as cotas -2875 e -2885 m118
Figura 4.25 – Seção média (AB) do modelo geomecânico para
validação das tensões na fase elástica118
Figura 4.26 – Tensões radiais no entorno da seção AB119
Figura 4.27 – Tensões tangenciais no entorno da seção AB 119
Figura 4.28 – Tensões ao redor do poço imediatamente após a
perfuração do entorno da seção AB do modelo 1A - cota -1800 m 120
Figura 4.29 – Tensões ao redor do poço imediatamente após a
perfuração do entorno da seção AB modelo 2A - cota -2925 m120
Figura 4.30 – Histórico do fechamento diametral na cota A dos
modelos 1A e 2A121
Figura 4.31 – Histórico do fechamento diametral na cota A dos
modelos 1A, 1B, 2A e 2B122
Figura 4.32 – Histórico da taxa de fechamento diametral na cota A
dos modelos 1A, 1B, 2A e 2B122
Figura 4.33 – Histórico da tensão desviadora na cota A dos
modelos 1A, 1B, 2A e 2B123
Figura 4.34 – Poço não revestido – cenários com dupla simetria
possíveis
Figura 4.35 – Modelos geomecânicos 1C e 2C125
Figura 4.36 – Esquema de carregamento em modelo transversal
parcial antes e depois da perfuração126
Figura 4.37 – Modelo sintético 1C – Seção transversal parcial na
cota -1800,0 m com condições iniciais impostas126
Figura 4.38 – Modelo sintético 2C – Seção transversal parcial na
cota -2925,0 m com condições iniciais impostas126
Figura 4.39 – Detalhe para a perfuração127

Figura 4.40 – Modelo 1C – Tensões radiais e tangenciais na cota -
1800,0 m em seção transversal parcial127
Figura 4.41 – Modelo 2C – Tensões radiais e tangenciais na cota -
2925,0 m em seção transversal parcial127
Figura 4.42 – Seção média (AB) do modelo geomecânico para
validação das tensões na fase elástica128
Figura 4.43 – Tensões ao redor do poço imediatamente após a
perfuração do entorno da seção AB do modelo 1C - cota -1800 m 128
Figura 4.44 – Tensões ao redor do poço imediatamente após a
perfuração do entorno da seção AB do modelo 2C - cota -2925 m 129
Figura 4.45 – Modelo sintético 2C – Tensões desviadoras e
fechamentos radiais do modelo transversal após a perfuração e
após 480 horas130
Figura 4.46 – Simulação do fechamento diametral em modelo
sintético de poço – comparação entre modelo longitudinal e modelo
transversal130
Figura 4.47 – Taxa de fechamento diametral131
Figura 4.48 – Tensão desviadora131
Figura 4.49 – Poço elipsoidal com falha na cimentação do anular e
descentralização do revestimento134
Figura 4.50 – Geometria da seção transversal do modelo135
Figura 4.51 – Imposição das condições iniciais às análises de
plastificação de revestimento - modo simplificado e modo correto 136
Figura 4.52– Tensões horizontais e deslocamentos horizontais após
a perfuração do sal e a reconstrução do revestimento138
Figura 4.53 – Tensão desviadora (Mises, Pa) no revestimento após
o primeiro contato entre sal e aço e ao término da simulação139
Figura 4.54 – Simulação da evolução da plastificação no
revestimento metálico em modelo transversal140
Figura 4.55 – Histórico do fechamento do sal no ponto A e do aço
no ponto A' em 30 anos141
Figura 4.56 – Histórico das forças nodais nos nós extremos do sal e
do aço, A e A', respectivamente141

Figura 6.3 – Detalhe para o poço de 18 ¼: seção perfeitamente
circular e seção elipsoidal ou ovalizada em 5% (adotada) – medidas
em cm
Figura 6.4 – Modelo geomecânico de poço com borda circular
(medidas em cm, exceto onde indicado)176
Figura 6.5 – Modelo geomecânico – malha176
Figura 6.6 – Distribuições dos parâmetros elásticos
Figura 6.7 – Distribuições do carregamento geostático e pressão do
fluido de perfuração179
Figura 6.8 – Distribuições da temperatura e da taxa de deformação
limite
Figura 6.9 – Distribuições das variáveis aleatórias do Modelo de
Multi Mecanismo
Figura 6.10 – Metodologia para análise probabilística de
fechamento do sal183
Figura 6.11 – Metodologia para análise probabilística de
plastificação do revestimento
Figura 6.12 – Modelo geomecânico com condições iniciais
impostas: estado inicial de tensões185
Figura 6.13 – Detalhe para o entorno do poço – condições iniciais:
deslocamentos iniciais
Figura 6.14 – Fechamento horizontal imediatamente após a
perfuração e após 30 dias - Modelo de Multi Mecanismo (MMM-A)186
Figura 6.15 – Fechamento horizontal imediatamente após a
perfuração e após a reconstrução – Modelo de Multi Mecanismo
(MMM-A)
Figura 6.16 – Discretização temporal – Análise determinística pelo
Modelo de Duplo Mecanismo188
Figura 6.17 – Discretização temporal – Análise determinística pelo
Modelo de Multi Mecanismo (MMM-A)188
Figura 6.18 – Evolução das tensões desviadoras ao redor do poço
com ênfase para o sal – Modelo de Multi Mecanismo (MMM-A)189
Figura 6.19 – Evolução das tensões desviadoras ao redor do poço
com ênfase para o aço – Modelo de Multi Mecanismo (MMM-A)189

Figura 6.20 – Evolução do fechamento do sal e do revestimento
pelo Modelo de Multi Mecanismo (MMM-A) na direção A/A', de
menor anular190
Figura 6.21 – Evolução do fechamento do sal e do revestimento
pelo Modelo de Multi Mecanismo (MMM-A) na direção B/B', de
maior anular
Figura 6.22 – Evolução da plastificação do revestimento pelo
Modelo de Multi Mecanismo (MMM-A) na direção A/A', de menor
anular191
Figura 6.23 – Evolução da plastificação do revestimento pelo
Modelo de Multi Mecanismo (MMM-A) na direção B/B', de maior
anular192
Figura 6.24 – Evolução do fechamento do sal e do revestimento
pelo Modelo de Duplo Mecanismo na direção A/A', de menor
anular193
Figura 6.25 – Evolução do fechamento do sal e do revestimento
pelo Modelo de Duplo Mecanismo na direção B/B', de maior anular 193
Figura 6.26 – Evolução da plastificação do revestimento pelo
Modelo de Duplo Mecanismo na direção A/A', de menor anular194
Figura 6.27 – Evolução da plastificação do revestimento pelo
Modelo de Duplo Mecanismo na direção B/B', de maior anular194
Figura 6.28 – Distribuição acumulada do fechamento do sal pelo
Modelo de Multi Mecanismo196
Figura 6.29 – Fatores de importância para "P40" - para análise de
fechamento do sal pelo Modelo de Multi Mecanismo196
Figura 6.30 – Fatores de importância para "P40" para análise de
fechamento do sal pelo Modelo de Multi Mecanismo197
Figura 6.31 – Distribuição acumulada do fechamento do sal pelo
Modelo de Duplo Mecanismo197
Figura 6.32 – Fatores de importância para "P40" para análise de
fechamento do sal pelo Modelo de Duplo Mecanismo198
Figura 6.33 – Fatores percentuais de importância para "P40" para
análise de fechamento do sal pelo Modelo de Duplo Mecanismo198

Figura 6.34 – Distribuição acumulada da plastificação do aço pelo
Modelo de Multi Mecanismo199
Figura 6.35 – Fatores de importância para "P40" para análise de
plastificação do aço pelo Modelo de Multi Mecanismo200
Figura 6.36 – Fatores percentuais de importância para "P40" para
análise de plastificação do aço pelo Modelo de Multi Mecanismo201
Figura 6.37 – Distribuição acumulada da plastificação do aço pelo
Modelo de Duplo Mecanismo201
Figura 6.38 – Fatores de importância para "P40" para análise de
plastificação do aço pelo Modelo de Duplo Mecanismo202
Figura 6.39 – Fatores percentuais de importância para "P40" para
análise de plastificação do aço pelo Modelo de Duplo Mecanismo202

Lista de tabelas

Tabela 2.1 – Principais rochas salinas (a partir de Fairhurst <i>et al.</i> ,
1979; Mohriak <i>et al.</i> , 2009 e Poiate Jr., 2012)
Tabela 2.2 – Intervalos típicos da Tensão de Peierls (a partir de
Hirth & Lothe, 1982, apud Hambley et al., 1988)51
Tabela 3.1 – Dados experimentais para determinação de
parâmetros elásticos da halita brasileira (a partir de Poiate Jr., 2012
e Costa <i>et al.</i> , 2005)83
Tabela 3.2 – Modelo elástico-linear – Parâmetros para halita
brasileira84
Tabela 3.3 – Lei de Potência – Parâmetros para halita brasileira85
Tabela 3.4 – Modelo de Duplo Mecanismo – Parâmetros da halita
brasileira (Poiate Jr., 2012)
Tabela 3.5 – Modelo de Multi Mecanismo – Parâmetros da halita
brasileira94
Tabela 4.1 – Especificações do ensaio triaxial de fluência em halita
americana do West Hackberry Salt (Munson, 1999)103
Tabela 4.2 – Especificações do ensaio triaxial de fluência em halita
americana do Big Hill Salt (Munson, 1999)
Tabela 4.3 – Especificações dos modelos sintéticos de poço
(Gonçalves, 2011)108
Tabela 4.4 – Nomenclatura dos modelos longitudinais
(axissimétricos)
Tabela 4.5 – Litologia dos modelos sintéticos 1A e 1B 112
Tabela 4.6 – Litologia dos modelos sintéticos 2A e 2B 113
Tabela 4.7 – Nomenclatura dos modelos transversais (estado
"pseudo-plano" de deformações)124
Tabela 4.8 – Resultados de fechamento e de taxa de fechamento
dos modelos 1A, 1B e 1C132

Tabela 4.9 - Resultados de fechamento e de taxa de fechamento
dos modelos 2A, 2B e 2C132
Tabela 5.1 – Especificações dos ensaios triaxiais de fluência em
halita (Costa et al., 2005 e Poiate Jr. et al., 2006)146
Tabela 5.2 - Propriedades do folhelho152
Tabela 5.3 - Litologia considerada no modelo sintético do poço 6-
RJS-457160
Tabela 5.4 - Propriedades da anidrita161
Tabela 5.5 – Parâmetros geotérmicos típicos (Costa et al., 2012)161
Tabela 5.6 - Comparação de resultados considerando os modelos
geomecânicos com integração completa168
Tabela 6.1 – Estimativa de composição do carregamento geostático
do modelo sintético do pré-sal brasileiro174
Tabela 6.2 – Distribuição da temperatura no modelo sintético do
pré-sal brasileiro a partir das cotas inferidas174
Tabela 6.3 - Propriedades do aço (Fossum & Fredrich, op. cit.)177
Tabela 6.4 – Relação das variáveis aleatórias (1/3): propriedades
elásticas, térmicas e de estado de tensão178
Tabela 6.5– Relação das variáveis aleatórias (2/3): propriedades de
fluência do Modelo de Duplo Mecanismo180
Tabela 6.6 – Relação das variáveis aleatórias (3/3): propriedades
de fluência do Modelo de Multi Mecanismo181
Tabela 6.7 – Resultados determinísticos da análise de fechamento
e de plastificação195
Tabela 6.8 – Resultados da análise probabilística de plastificação
pelo Modelo de Multi Mecanismo200
Tabela 6.9 – Resultados da análise probabilística de plastificação
pelo Modelo de Duplo Mecanismo

Lista de símbolos

• Símbolos gerais

|H(a - b)| Função degrau (*heaviside step function*) com argumento *a-b*;

- a Raio do poço;
- \overline{A} Fator estrutural geral da Lei de Potência na formulação do ABAQUS[®];
- *A* Fator estrutural em equações de fluência;
- *B* Constante da parcela de tempo na Lei de Potência;
- *B_i* Fator estrutural do mecanismo de deslizamento de discordâncias (*DGL*), do Modelo de Multi Mecanismo;
- C Fator estrutural do mecanismo de fissuramento estacionário com formulação hiperbólica e constante da parcela de temperatura na Lei de Potência;
- c Constante do Modelo de Multi Mecanismo relacionada ao processo de ativação ou coesão do Modelo de Mohr-Coulomb, a depender do contexto;
- *D* Constante da parcela de tensão na Lei de Potência;
- D_s Coeficiente de autodifusão;
- D_v Coeficiente de difusão;
- *E* Módulo de elasticidade se dinâmico, acompanha o índice "d";

F Função transiente do Modelo de Multi Mecanismo;

G Módulo de cisalhamento;

GTPOS Gradiente geotérmico no pós sal (rocha sedimentar);

- *GTS* Gradiente geotérmico no sal;
- J_{2D} Segundo invariante das tensões desviadoras;
- *K* Limite de Prandtl;
- *k* Constante elástica da mola;
- K_0 Fator limitante de fluência primária no Modelo de Multi Mecanismo e coeficiente de empuxo no repouso, a depender do

contexto;

k_b	Constante de Boltzmann;
L	Comprimento;
LDA	Lâmina d'água (profundidade marinha);
L_k	Diâmetro do grão;
m	Expoente de tempo na Lei de Potência e constante teórica do
	Modelo de Multi Mecanismo, a depender do contexto;
\overline{m}	Expoente de tempo na Lei de Potência na formulação do
	ABAQUS [®] ;
n	Expoente de tensão na Lei de Potência;
n	Expoente de tensão em equações de fluência;
p	Parcela hidrostática das tensões;
P_{Fluido}	Pressão do fluido de perfuração;
p_i	Tensão normal na direção <i>i</i> ;
POS	Espessura do pós sal (overburden);
q	Função de carga do sal ou constante de tensão;
Q	Energia de ativação em equações de fluência;
R	Constante universal dos gases (8,314 $J/mol.K \approx 1,9858$ cal/mol.K);
r	Raio do ponto analisado, circundante ao poço;
s _{ij} , s' _{ij}	Tensor de tensões desviadoras;
t	Tempo;
T, T _{Sal}	Temperatura do sal;
T_0	Temperatura de referência ou de mudança de mecanismo;
TFM	Temperatura no fundo do mar;
$T_{m,Sal}$	Temperatura de fusão do sal;
ν	Expoente de temperatura na Lei de Potência;
Ŵ	Taxa de dissipação plástica de von Mises;
у	Relação quadrática entre J_{2D} e σ_{eq} ;
Z _{Sal}	Cota na camada salina <i>i</i> ;
α_h , β_h	Parâmetros de endurecimento do Modelo de Multi Mecanismo;
α_s , β_s	Parâmetros de amolecimento do Modelo de Multi Mecanismo;
δ	Deslocamento;

- δ_{ij} Delta de Kronecker;
- ε Deformação;
- $\dot{\varepsilon}$ Taxa de deformação em relação ao tempo, acompanhada do índice correspondente ao mecanismo;
- ε_{FP}^{*} Intercepto da reta correspondente à fase secundária da fluência no eixo da taxa de deformação;
- $\dot{\varepsilon}_{ij}$ Tensor de deformações;
- $\dot{\varepsilon}_{ij}^{el}$ Tensor de deformações elásticas;
- $\dot{\varepsilon}_{ij}^{f}$ Tensor de deformações por fluência;
- $\dot{\varepsilon}_{ij}^{pl}$ Tensor de deformações plásticas;
- $\dot{\varepsilon}_M$ Taxa de deformação da mola;
- $\dot{\varepsilon}_{vol}^{f}$ Tensor de deformações volumétricas por fluência;
 - ϕ Ângulo de atrito do Modelo de Mohr-Coulomb;
- ν Coeficiente de Poisson se dinâmico, acompanha o índice "d";
- γ Peso específico;
- η_i Viscosidade do elemento *i*;
- σ_0 Tensão desviadora mínima para a contribuição do mecanismo de deslizamento de discordâncias (*DGL*) e tensão normal de mudança de mecanismo (análoga ao Limite de Prandtl);
- σ_c Tensão confinante;
- σ_d Tensão desviadora;
- σ_d^A Tensão desviadora do amortecedor;
- σ_d^M Tensão desviadora da mola;
- σ_{eq} Tensão equivalente multiaxial, acompanhada do índice referente à generalização em questão: Mises ou Tresca.
- σ_h Tensão horizontal;
- σ_{ij} Tensor de tensões totais;
- σ'_{ij} Tensor de tensões efetivas;
- σ_m Tensão normal média;
- $\sigma_{Peierls}$ Tensão desviadora de Peierls;
 - σ_{θ} Tensão normal tangencial;
 - σ_r Tensão normal radial;

- σ_v Tensão vertical;
- σ_v Tensão de escoamento do aço;
- $\tau_{Peierls}$ Tensão cisalhante de Peierls;
 - Ω Volume atômico;
 - Variável interna de endurecimento isotrópico do Modelo de Multi Mecanismo;
- Símbolos referentes aos mecanismos de deformação:
 - DCL Escalonamento de discordâncias;
 - DG Deslizamento de discordâncias segundo formulação de autores vinculados à Universidade de Waterloo e a Consultoria de Projetos Mraz (Canadá);
 - DGL Deslizamento de discordâncias segundo formulação de autores vinculados à SANDIA e RE/SPEC (Estados Unidos);
 - *DIF* Fluência por difusão;
 - *GBG* Deslizamento de contato entre grãos;
 - SSC Fissuramento estacionário;
 - *UMC* Mecanismos indefinidos.
- Símbolos do programa de elementos finitos ABAQUS[®]:
 - *CAX8* Elemento contínuo, quadrilateral de oito nós, interpolação quadrática, axissimétrico, com integração completa 3x3;
 - *CAX8R* Elemento contínuo, quadrilateral de oito nós, interpolação quadrática, axissimétrico, com integração reduzida 2x2;
 - CPE8R Elemento contínuo, quadrilateral de oito nós, interpolação quadrática, estado plano de deformações, com integração reduzida 2x2;
 - *S,MISES* Tensão equivalente de von Mises (pascal);
 - *S,S11* Tensão normal na direção 1 (pascal). Valores negativos denotam compressão;
 - *S*,*S*22 Tensão normal na direção 2 (pascal). Valores negativos denotam compressão;
 - *S*,*S33* Tensão normal na direção 3 (pascal). Valores negativos denotam

compressão;

- *U1* Deslocamento na direção 1 (metro). Valores negativos denotam fechamento;
- U2 Deslocamento na direção 2 (metro) . Valores negativos denotam fechamento.
- Símbolos específicos das análises probabilísticas:
 - a_0 Solução particular obtidos a partir dos valores médios das variáveis aleatórias, geralmente correspondendo a solução determinística;
 - a_i Coeficiente das variáveis aleatórias nos métodos *MV* e *AMV*;
 - b_0 Solução particular nos pontos mais prováveis já convergidos;
 - b_i Coeficiente das variáveis aleatórias no método AMV+;
 - $f_X(X)$ Função densidade de probabilidade conjunta das variáveis aleatórias;
 - g(X) Função de estado-limite;
 - H(X) Somatório dos termos de ordem superior a um na expansão da Série de Taylor;
 - $H(Z_{MV})$ Termo em função de Z_{MV} e Z_{MPP} para compensar o erro devido ao truncamento da expansão da Série de Taylor;
 - *MPP* Ponto mais provável;
 - MPPL Local do ponto mais provável;
 - μ_{X_i} Media da variável aleatória *i*;
 - μ_Z Média da solução;
 - *N* Número de experimentos ou análises;
 - N_f Número de experimentos ou análises em que foi verificado o evento indesejável;
 - P[Y] Probabilidade de ocorrência de Y;
 - p_f Probabilidade de ocorrência do evento indesejável;
 - σ_{X_i} Desvio padrão da variável aleatória i;
 - σ_Z Desvio padrão da solução;
 - Ω Domínio do estado limite;
 - *X_i* Variável aleatória i;

- Z(X) Função de desempenho ou evento estudado, sujeito a variáveis aleatórias;
 - z_0 Solução particular de Z(X);
- $Z_{AMV}(X)$ Solução pelo método AMV;
- $Z_{AMV+}(X)$ Solução pelo método AMV+;
 - Z_{MPP} Solução no ponto mais provável;
 - Z_{MV} Solução pelo método MV.