

Silvia Corbani

Propagação de frentes de trincas parcialmente fechadas por flexão cíclica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio.

Orientador: Prof. Luiz Fernando C. R. Martha Co-orientadores: Prof. Jaime Tupiassú Pinho de Castro Prof. Antonio Carlos de Oliveira Miranda

> Rio de Janeiro Outubro de 2012

Silvia Corbani

Propagação de frentes de trincas parcialmente fechadas por flexão cíclica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Luiz Fernando C. R. Martha Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Jaime Tupiassú Pinho de Castro Departamento de Engenharia Mecânica – PUC-Rio Co-orientador

> Prof. Antonio Carlos de Oliveira Miranda Universidade de Brasília

> > Co-orientador

Prof. Carlos Alberto de Almeida Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

Prof. Gustavo Henrique Bolognesi Donato Centro Universitário da FEI

Prof. Túlio Nogueira Bittencourt

Escola Politécnica da USP

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 15 de Outubro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, da autora e do orientador.

Silvia Corbani

Graduou-se em Engenharia Civil na Escola de Engenharia Mauá (Instituto Mauá de Tecnologia – IMT) em 2001, concluiu mestrado em Engenharia Civil com ênfase em Estruturas pela Universidade de São Paulo em 2006.

Ficha Catalográfica

Corbani, Silvia

Propagação de frentes de trincas parcialmente fechadas por flexão cíclica / Silvia Corbani ; orientador: Luiz Fernando C. R. Martha ; co-orientadores: Antonio Carlos O. Miranda, Jaime Tupiassú P. de Castro – 2012. 236 f. il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012. Inclui bibliografia

1. Engenharia civil – Teses. 2. Fadiga. 3. Propagação de trincas. 4. Trincas de superfície. 5. Método dos elementos finitos. I. Martha, Luiz Fernando C. R. II. Miranda, Antonio Carlos O. III. Castro, Jaime Tupiassú P. de. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título. PUC-Rio - Certificação Digital Nº 0821358/CA

À memória de Vanda Ciampi Corbani.

Agradecimentos

Este trabalho não poderia ter sido feito sem a ajuda do orientador e coorientadores: Luiz Fernando Martha, Antonio Carlos Miranda e, principalmente, Jaime Tupiassú de Castro. Agradeço a todos pela paciência, recomendações e explicações, guiando este trabalho para um término bem-sucedido.

Ao professor Anthony Ingraffea, pelas explicações durante o período em Cornell. Ao Bruce Carter, por todas as adaptações feitas no FRANC3D. Aos professores Topper, Ivan Menezes e Ronaldo Vieira, pelas dicas e explicações. Aos professores Gustavo Donato e Marco Antonio Meggiolaro, pelas sugestões e correções. Aos professores José Alexander Araújo e Jorge Luiz Ferreira, ao aluno Marcus Sá, pelos ensaios da/dN padronizados executados na UNB.

Aos profissionais da PUC-Rio, especialmente, Heitor, Euclides, José e Rita.

Ao Theophilo Trabulsi Filho e sua empresa, pela doação dos perfis metálicos.

Aos queridos amigos Marquito, Gerardo, Cri-cri, Biruta, Leo e Jaiminho, por fazerem o dia-a-dia no laboratório ser mais leve e divertido. Em especial, ao Gerardo, pela montagem e desmontagem do suporte. Ao Albert Cerroni, pela amizade em Cornell.

Ao marido, André, pela motivação e incentivo. A minha mãe (in *memorian*) e meu pai, Vanda e Estevão. Aos ensinamentos budistas. Às companheiras de prática, Vera, Ana Paiva e Flavia.

Ao CNPq pela concessão de bolsa no Brasil e bolsa-sanduíche, sem a qual não conseguiria ter me dedicado exclusivamente a esta pesquisa.

Resumo

Corbani, Silvia; Martha, Luiz Fernando C. R. **Propagação de frentes de trincas parcialmente fechadas por flexão cíclica.** Rio de Janeiro, 2012. 236p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho são investigadas experimentalmente e numericamente as mudanças de geometria em trincas inicialmente passantes submetidas a carregamento remoto de flexão pura induzindo fechamento parcial das faces da trinca. Esse crescimento de trinca pode ocorrer numa variedade de estruturas com defeitos pré-existentes, tais como fuselagens de aviões, cascos de navios, vasos de pressões e pontes metálicas. O carregamento de flexão pura ocasiona regiões de tração e compressão na frente da trinca. É inquestionável que parte das faces da trinca sob compressão fecha independentemente de qualquer mecanismo de fechamento; e outra parte das faces da trinca, por outro lado, sob tração cresce mudando gradualmente de geometria. Após realizar ensaios em corpos-de-prova de aço ASTM A-36, foi observado que tais carregamentos geram uma quina na frente da trinca, que é a transição de uma geometria parcialmente passante e um trecho remanescente da geometria inicial. Para entender a distribuição do fator de intensidade de tensão em tais frentes de trinca, suas geometrias foram reproduzidas em um modelador tridimensional de mecânica da fratura linear elástica, o FRANC3D, acoplado a um programa de análise de elementos finitos (ABAQUS). Com este sistema acoplado, foram executadas análises considerando efeitos não lineares causados pelo contato das faces da trinca sob compressão. Verificou-se a necessidade de propor metodologias para tratamento dos resultados numéricos na quina, obtendo-se predições eficientes das mudanças na geometria da trinca. Contudo, a estimativa de vida, quando se compara taxas de crescimento da trinca obtidas em um corpo-de-prova sob tração cíclica e as taxas em um corpo-de-prova sob flexão com fechamento parcial da trinca, foi melhor reproduzida usando um fator de correção de fechamento da trinca. Adicionalmente, uma série de expressões empíricas normalizadas para geometrias da trinca e fatores de intensidade de tensão são propostas.

Palavras-chave

Fadiga; Propagação de trincas; Trincas de superfície; Método dos elementos finitos.

Abstract

Corbani, Silvia; Martha, Luiz Fernando C. R. **Crack growth with partial bending-induced crack closure.** Rio de Janeiro, 2012. 236p. DSc. Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This work investigates experimentally and numerically how the front of initially through edge cracks in plate changes after they pass to be remotely fatigue loaded under pure bending to induce partial closure of the crack faces. This type of crack growth problem can occur in a variety of structures with preexisting defects, such as aircraft fuselages, ship hulls, pressure vessels components, and steel bridges. The bending loads induce tension and compression regions along the crack front, with the part of the crack faces that work under compression undoubtedly closed by the load, independently of any other closure mechanism. The part of the crack faces that work under tension; on the other hand, crack grows by fatigue gradually changing its shape. After performing tests on ASTM A36 steel specimens, it was observed that the bending load induces a kink on the crack front, in the transition between the part through crack created on the tension side and initial crack geometry. To understand the distribution of the stress intensity factor along such crack fronts, the measured crack shapes were reproduced in a three-dimensional fracture mechanics modeler (FRANC3D) coupled to a finite element analysis program (ABAQUS). With this coupled system, linear elastic stress analysis simulations were performed considering the nonlinear effects caused by the crack face contact in the compressed region. In particular, methods had to be proposed to treat numerical noise around the kink. The proposed methodology efficiently predicts the observed crack front shape changes; although the observed fatigue lives were better reproduced using a crackclosure correction factor when compared to crack growth data obtained from standard compact tension specimens. In addition, a series of normalized empiric expressions for both crack front shapes and stress intensity factors are proposed.

Keywords

Fatigue; Crack growth; Surface crack; Finite element.

Sumário

1 Introdução	28
1.1. Problema	28
1.2. Motivação	31
1.3. Revisão bibliográfica	32
1.3.1. Propagação em trincas de superfície	33
1.3.2. Contato parcial das faces da trinca sob flexão	36
1.4. Contribuições e objetivos	37
1.5. Organização do trabalho	39
2 Estimativas do fator de intensidade de tensão	41
2.1. Modos de fratura de teoria de elasticidade tri-dimensional	41
2.2. Tensões e deslocamentos em uma placa trincada infinita	42
2.3. Trincas passantes e trincas de superfícies	45
2.4. FIT em peças com dimensões finitas em trincas retas e passantes	48
2.5. FIT em trincas bidimensionais	48
2.6. Cálculo numérico de FIT em problemas 3D	50
2.6.1. Tensões singulares em elementos finitos	51
2.6.2. Método da integral - <i>M</i>	53
2.6.3. Método de correlação de deslocamentos	57
3 Propagação da trinca por fadiga	59
3.1. Carregamento de fadiga	59
3.2. Conceito e aplicação de similaridade	60
3.3. Equações empíricas de crescimento da trinca por fadiga	62
3.4. Fechamento da trinca, ΔK_{eff}	64
3.5. Propagação da trinca de superfície	66
3.5.1. Critério de incremento da trinca	67
3.5.2. Direção de propagação	68
3.6. Determinação do número de ciclos	70
4 Procedimentos e resultados experimentais	72

4.1. Corpos-de-prova (CPs)	72
4.2. Suportes para o ensaio de flexão	76
4.2.1. Motivação	76
4.2.2. Novos acessórios	78
4.3. Propriedades do material	81
4.4. Descrição do experimento	82
4.5. Aquisição de dados	86
4.5.1. Medidas do comprimento da trinca	86
4.5.2. Blocos de carregamentos	90
4.5.3. Medidas de deformações	92
4.6. Resultados experimentais	93
4.6.1. CP com entalhe de borda	94
A. Carregamento de fadiga com ΔK constante	94
B. Blocos de sobrecarga	99
C. Blocos de subcargas	101
4.6.2. CP com entalhe central	104
4.7. Avaliação e resumo dos dados coletados	105
4.8. Simplificação da geometria no plano de trincamento	106
5 Análise numérica dos parâmetros usados na reconstrução	
do crescimento da trinca	119
5.1. Descrição do problema e hipóteses usadas	120
5.2. Singularidades numéricas na frente da trinca	122
5.3. Metodologias usadas para tratar a quina	126
5.3.1. Suavização da frente da trinca	126
5.3.2. Extrapolação de ∆ <i>a</i>	128
5.3.3. Extrapolação de ΔK_l	129
5.4. Direção do crescimento da trinca	132
5.5. Sensibilidade da geometria da trinca a da/dN - ΔK e a ΔK_{max}	136
5.6. Simplificação da geometria da trinca como quarto-elipses	139
6 Predição numérica do crescimento da trinca	142
6.1. Ajustes da taxa de crescimento da trinca	142
6.2. Predição das geometrias da trinca durante seu crescimento	144
6.3. Discussão dos resultados	151

6.4. Previsão de vida	152
6.5. Hipótese de direção de crescimento da trinca	154
7 Avaliação de ΔK nas geometrias dos experimentos	156
7.1. Frentes de trincas marcadas por aumentos de cargas	156
7.2. Frentes de trincas marcadas por blocos de sobrecargas	160
7.3. Frentes de trincas marcadas por blocos de subcargas	163
7.4. Funções de geometria para o CP com um entalhe de borda	168
7.4.1. Solução de $\Delta K_{l,c}$	169
7.4.2. Solução de $\Delta K_{l,a}$	170
7.4.3. Solução de ΔK_l no CP01	171
7.5. Estimativa da vida à fadiga no CP01	174
7.5.1. Valores aceitáveis	175
7.5.2. Curvas $da/dN-\Delta K$	175
7.5.3. ΔK na superfície inferior da placa e na profundidade da trinca	176
7.5.4. Comparação das taxas de propagação	178
7.5.5. Previsão de vida à fadiga	183
7.5.6. Correção do fator de intensidade de tensão	186
8. Comentários e conclusões	193
8.1. Principais contribuições	193
8.2. Sugestões para futuros trabalhos	197
Referências bibliográficas	198
Apêndice 1 – Teste de convergência	203
Apêndice 2 – Ajuste de ensaios da/dN - ΔK	209
Apêndice 3 – Projeto dos corpos-de-prova para pré-trinca	217
Apêndice 4 – Resumo dos resultados experimentais	223
Apêndice 5 – Tabelas dos carregamentos aplicados	227
Apêndice 6 – Considerações do contato	230
Apêndice 7 – Comparação das funções de geometria na interseção	
da trinca com a superfície inferior da placa	234

Lista de figuras

Figura 1.1 – Geometria da frente da trinca sob tração em uma placa finita:	
(a) trinca curta e (b) trinca longa.	29
Figura 1.2 – Problema de propagação de trinca submetida à flexão pura.	30
Figura 1.3 – Resultados de FIT sob carregamento de flexão:	
(a) Geometria da trinca de superfície e (b) Resultados típicos de FIT	
(Newman & Raju, 1981).	34
Figura 2.1 – Três modos principais de fratura: (a) Modo I, modo de abertura;	
(b) Modo II, modo de cisalhamento no plano e (c) Modo III, modo de	
rasgamento.	42
Figura 2.2 – Parâmetros usados para descrever as tensões na ponta da trinca.	43
Figura 2.3 – Carregamento remoto aplicado para os três modos de fratura.	45
Figura 2.4 – Diferentes geometrias de frente de trinca AB para trincas	
passante e trincas parcialmente passantes (Schijve, 2009).	46
Figura 2.5 – Nomenclatura da trinca em problemas bidimensionais:	
(a) trinca de borda e (b) trinca central.	47
Figura 2.6 – Nomenclatura da trinca em problemas tridimensionais	
utilizando a geometria dos corpos-de-prova ensaiados:	
(a) trinca de borda e (b) trinca central.	47
Figura 2.7 – Parâmetros usados na determinação do FIT na geometria	
de trinca de canto.	49
Figura 2.8 – Fator de intensidade de tensão na trinca curva:	
(a) $K_{I,c}$; e (b) $K_{I,a}$.	49
Figura 2.9 - K_I ao longo de toda a frente da trinca.	50
Figura 2.10 – Roseta: (a) seção transversal em problemas bidimensional e	
tridimensional e (b) trajetória da roseta em um problema tridimensional.	52
Figura 2.11 – Ponta da trinca em problemas 2D: (a) uma curva arbitrária e	
(b) uma área arbitrária A.	54

Figura 2.12 – Numeração do elemento e sistema de coordenadas:	
(a) Elemento quarter-point C3D15 em sistema de coordenadas cartesiano;	
e (b) Disposição dos elementos e convenção dos nós.	58
Figura 3.1 – Histórico do carregamento aplicado.	59
Figura 3.2 – Predição do crescimento da trinca em um conector com trinca	
passante.	62
Figura 3.3 – Três regiões da taxa de crescimento da trinca como função	
de ΔK (Schijve, 2009).	63
Figura 3.4 – Predição de taxa de crescimento de trinca de fadiga: (a)	
Resultados de predição e ensaio; (b) Dados do material e (c) ΔK_{eff} calculado.	65
Figura 3.5 – Histórico do carregamento de tensões (Schijve, 2009).	66
Figura 3.6 – Crescimento da trinca: (a) Distribuição de ΔK ao longo	
da frente da trinca e (b) Distribuição dos incrementos na frente da trinca.	68
Figura 3.7 – Direção de propagação perpendicular a toda frente de	
trinca atual.	70
Figura 3.8 – Índices para cálculo de número de ciclos em trinca	
de superfície com fechamento parcial.	71
Figura 4.1 – Geometria dos CPs com dimensões em milímetros:	
(a) um entalhe central e (b) um entalhe de borda.	75
Figura 4.2 – Esquema das configurações das placas com dimensões em	
milímetros: (a) um entalhe central e (b) um entalhe de borda.	75
Figura 4.3 – Acessórios (a) ensaio em três pontos e (b) ensaio em quatro	
pontos.	77
Figura 4.4 – Superfície da trinca de fadiga, usando o aparato ilustrado	
na Figura 4.3 (b).	78
Figura 4.5 – Configuração esquemática do aparato de flexão com dimensões	
em milímetros.	79
Figura 4.6 – Guia de ligação da base do apoio com perfil metálico e guia	
em L para acomodar o CP.	80
Figura 4.7 – Guias em L evitaram giro da parte inferior do aparato de flexão.	80
Figura 4.8 – Esbarros nas extremidades do CP.	81
Figura 4.9 – Experimento de pré-trincamento: (a) um entalhe de borda,	
(b) um entalhe central.	84

Figura 4.10 - Experimento: (a) Aparatos de flexão e CP;	
(b) Vista do experimento.	85
Figura 4.11 – Aquisições do comprimento da trinca no ponto A e B:	
(a) configuração inicial; (b) durante ensaio.	87
Figura 4.12 – Esquema do aparato de medição da frente da trinca	
(a) micrômetro analógico e (b) micrômetro digital.	88
Figura 4.13 – Marca usada para medir incrementos de trinca.	89
Figura 4.14 – Microscópios USB usados no experimento.	90
Figura 4.15 – Crescimento da trinca por bandas (a) Carregamento	
de fadiga e; (b) superfície da trinca.	91
Figura 4.16 - Strain-gages colados: (a) na superfície superior e	
(b) na superfície inferior.	92
Figura 4.17 - Aquisição de dados: (a) Strain Indicator e Recorder Vishay	
<i>Model P3</i> , (b) tela <i>LCD</i> .	93
Figura 4.18 – Histórico das tensões aplicadas na superfície inferior da placa.	95
Figura 4.19 – Trinca de superfície no CP01.	95
Figura 4.20 - Trinca de fadiga no CP01: (a) Microscópio óptico;	
(b) Câmera digital; (c) Legenda.	97
Figura 4.21 – Largura de colaboração na placa: (a) sob carregamento remoto	
de compressão e (b) sob carregamento remoto de tração.	98
Figura 4.22 – Histórico das tensões aplicadas na superfície inferior da placa.	99
Figura 4.23 - Superfície da trinca de fadiga do CP06: (a) e (b) Microscópio	
óptico; (c) Legenda.	100
Figura 4.24 – Quinas na frente da trinca.	100
Figura 4.25 – Regiões com deformação plástica na superfície superior	
da placa.	101
Figura 4.26 - Histórico das tensões normais aplicadas na superfície inferior	
da placa: CP07.	101
Figura 4.27 – Trinca de superfície no CP07 (a) foto com microscópio Zeiss;	
(b) e (c) fotos com máquina digital.	102
Figura 4.28 – Legenda na trinca de superfície para diversas marcas de frente	
de trinca.	103
Figura 4.29 – Ângulo de interseção da frente da trinca com superfície livre.	104
Figura 4.30 – Trinca de superfície CP03: (a) trinca A; (b) trinca B.	104

Figura 4.31 – Trinca de superfície CP02 no microscópio Zeiss:	
(a) trinca A; (b) trinca B.	104
Figura $4.32 - Curva d vs. N dos CPs com entalhe de borda.$	105
Figura 4.33 – Comparação da frente da trinca no CP01	
com quarto-elípticas concêntricas.	107
Figura 4.34 - Comparação da frente da trinca no CP06	
com quarto-elípticas concêntricas.	107
Figura 4.35 – Comparação da frente da trinca do CP07	
com quarto-elípticas concêntricas.	107
Figura 4.36 - Coordenadas do centro X no CP01 das curvas	
quarto-elípticas concêntricas.	110
Figura 4.37 – Coordenada do centro X no CP06 das curvas	
quarto-elípticas concêntricas.	110
Figura 4.38 – Coordenadas do centro X no CP07 das curvas	
quarto-elípticas concêntricas.	110
Figura 4.39 – Comparação entre frente de trinca experimental	
e um quarto de elipses não concêntricas no CP01.	111
Figura 4.40 – Comparação entre marcas de experimento e curvas	
quarto-elípticas não concêntricas no CP06.	111
Figura 4.41 – Comparação entre marcas de experimento e curvas	
quarto-elípticas não concêntricas no CP07.	111
Figura $4.42 - $ Coordenadas na frente da trinca: (a) Indicação de corte A - A	
na placa; (b) Corte A-A trinca curta; (c) Corte A-A trinca longa.	114
Figura 4.43 – Curvas de ajuste de a/t e centro x_c .	115
Figura 4.44 – Esboço da trinca de superfície para $a/t = 1$.	116
Figura 4.45 – Comparação da frente de trinca obtida no CP03 com	
quarto-elipses: (a) trinca A e (b) trinca B.	117
Figura 4.46 - Comparação da frente de trinca obtida no CP02 com	
quarto-elipses: (a) trinca A e (b) trinca B.	118
Figura 5.1 – Descrição do problema estudado numericamente:	
(a) Esquema da placa tridimensional e carregamento aplicado de flexão	
pura e (b) Indicação da região de contato e trecho da frente da trinca	
que cresce na seção de ligamento.	121

Figura 5.2 – Esquema da geometria da frente da trinca: (a) Localização	
da quina obtida nos corpos-de-prova ensaiados e (b) raio de arredondamento	
utilizado para gerar a geometria do ensaio no FRANC3D.	123
Figura 5.3 – Distribuição do ΔK_I usando diversas geometrias de trincas	
obtidas nos corpos-de-prova ensaiados.	124
Figura 5.4 – Distribuição do FIT na frente da trinca normalizada usando a	
geometria da Marca 03b no CP07 com diversos raios de arredondamento	
e sob carregamento remoto de flexão pura ou sob tração.	125
Figura 5.5 – Fluxograma das etapas da simulação do crescimento da trinca	
incorporado ao programa FRANC3D.	127
Figura 5.6 – Esquema da geometria da frente de trinca atual e curva obtida	
pela metodologia de extrapolação de , preservando a quina na geometria	
da trinca subsequente.	129
Figura 5.7 – Geometrias das frentes da trinca atual e trinca subsequente	
usando a metodologia de extrapolação de Δa_i .	129
Figura 5.8 – Identificação dos trechos importantes na distribuição do FIT	
usando marcas de frente da trinca obtidas nos corpos-de-prova ensaiados.	130
Figura 5.9 – Coordenadas na frente da trinca usando geometria simplificada:	
(a) em trinca curta e (b) em trinca longa.	132
Figura 5.10 – Hipótese da direção de crescimento com vetor normal no	
plano da seção de ligamento: (a) em uma trinca reta passante sob tração	
remota e (b) em uma trinca de superfície sob tração e/ou flexão remota.	133
Figura 5.11 – Distribuição das tensões normais obtida no ABAQUS na	
seção de ligamento usando uma geometria de trinca usando uma geometria	
de trinca extraída dos corpos-de-prova ensaiados: (a) sob carregamento	
remoto de tração simples e (b) sob carregamento remoto de flexão pura.	134
Figura 5.12 – Esquema da direção de crescimento na frente de trinca	
usando a geometria dos corpos-de-prova ensaiados sob carregamento	
remoto de tração simples.	135
Figura 5.13 – Esquema de uma hipótese mais geral da direção de	
crescimento na frente de trinca usando a geometria dos corpos-de-prova	
ensaiados sob carregamento remoto de flexão pura.	135
Figura 5.14 – Comparação da geometria da frente de trinca subsequente	
determinada com lei de propagação ajustada por Hall e lei de Paris.	137

Figura 5.15 – Comparação da geometria da frente de trinca subsequente	
na quina usando ajustes da lei de propagação com Lei de Paris e com	
ajuste de Hall para diversos incrementos máximos de trinca.	138
Figura 5.16 – Aproximação das frentes de trinca intermediárias entre	
Marca 02 e Marca 03 do CP01 por curvas quarto-elípticas concêntricas.	140
Figura 5.17 – Legenda usada nas frentes de trinca analisadas no FRANC3D.	140
Figura 5.18 – Distribuição do FIT normalizado determinado no FRANC3D,	
usando geometrias obtidas no corpo-de-prova CP01 e geometrias	
simplificadas por curvas quarto-elípticas concêntricas.	141
Figura 6.1 – Curva da/dN - ΔK usadas na predição do crescimento do CP01.	143
Figura 6.2 – Distribuição do FIT no passo 32 com a geometria da frente da	
trinca obtida incrementalmente no FRANC3D.	145
Figura 6.3 – Distribuição do FIT no passo 89 com a geometria da frente da	
trinca obtida incrementalmente no FRANC3D.	145
Figura 6.4 – Comparação da geometria obtida na predição numérica com a	
geometria do CP01.	146
Figura 6.5 – Predições de geometria obtidas no crescimento com da/dN - ΔK	
de um corpo-de-prova sob tração: (a) Geometria da frente da trinca	
a cada 8 passos e (b) Legenda para relacionar a frente da trinca com	
a distribuição do FIT na figura a seguir.	146
Figura 6.6 – Distribuição do FIT normalizado ao longo do ângulo ϕ	
obtidos no crescimento da trinca com a da/dN - ΔK .	147
Figura 6.7 - Predições de geometria obtidas no crescimento com	
dd/dN - ΔK do CP01: (a) Geometria da frente da trinca a cada 8 passos	
e (b) Legenda para relacionar a frente da trinca com a distribuição	
do FIT na figura a seguir.	148
Figura 6.8 – Comparação das geometrias obtidas incrementalmente com a	
geometria do CP01.	148
Figura 6.9 - Distribuição do FIT normalizado ao longo do ângulo ϕ	
obtidos no crescimento da trinca com a dd/dN - ΔK .	149
Figura 6.10 – Desvio da geometria da trinca.	150
Figura 6.11 – Soluções discretas de fator de forma obtidas nas	
análises de EF.	152

Figura 6.12 – Estimativas de vida na superfície inferior da placa.	153
Figura 6.13 – Distribuição do FIT na superfície de trincamento com	
geometria da pré-trinca.	155
Figura 6.14 – Direção de propagação: (a) Passo 1 e (b) Passo 2.	155
Figura 7.1 – Marcas das geometrias da trinca no CP01:	
(a) Corpo-de-prova e (b) Geometria das frentes de trinca inseridas	
no programa FRANC3D.	157
Figura 7.2 – FIT normalizado em relação ao ângulo ϕ obtido no FRANC3D	
com as marcas do CP01.	158
Figura 7.3 – Extrapolações do FIT normalizado no CP01, usando	
metodologia de extrapolação do FIT.	160
Figura 7.4 – Marcas das geometrias da trinca no CP06: (a) Corpo-de-prova	
e (b) Geometria da trinca usada no FRANC3D.	161
Figura 7.5 – FIT normalizado em relação ao ângulo obtido ϕ no FRANC3D	
com as marcas do CP06.	162
Figura 7.6 – Extrapolações do FIT normalizado para CP06, usando	
metodologia de extrapolação do FIT.	163
Figura 7.7 – Marcas das geometrias da trinca no CP07: (a) Corpo-de-prova	
e (b) Geometria da marcas de frente da trinca usada na Figura 7.8.	164
Figura 7.8 – FIT normalizado em relação ao ângulo ϕ obtido no FRANC3D	
com as marcas do CP07.	165
Figura 7.9 – Extrapolações do FIT normalizado no CP07, usando	
metodologia de extrapolação do FIT.	168
Figura 7.10 – Parâmetros usados na determinação do FIT na geometria	
de trinca de canto.	169
Figura 7.11 – Pontos discretos de F em C e polinômio da função de	
geometria utilizada em $\Delta K_{I,c}$.	169
Figura 7.12 – Pontos discretos de F em A e polinômio da função de	
geometria utilizada em $\Delta K_{I,a}$.	171
Figura 7.13 – Marcas das frentes da trinca obtidas no corpo-de-prova	
CP01, ilustrando a distância entre marca 02 e 03.	172

Figura 7.14 – Marcas obtidas nos corpos-de-prova CP01 e CP07, com	
distribuições ΔK_I determinadas no FRANC3D aproximadas por uma	
solução geral de interpolação destas marcas.	172
Figura 7.15 – Fator de intensidade de tensão em C no CP01.	177
Figura 7.16 – Fator de intensidade de tensão em A no CP01.	177
Figura 7.17 – Trajetórias da trinca adotada na superfície inferior	
da placa e trajetória 3.	178
Figura 7.18 – Ajuste polinomial dos dados d vs. N coletados durante	
ensaio no CP01.	179
Figura 7.19 – Comparação das taxas de propagação no corpo-de-prova	
padrão sob tração (trinca passante) e taxas de propagação no CP01	
(trinca de superfície), localizadas em A e em C.	180
Figura 7.20 – Trajetórias de crescimento da trinca partindo da marca 01,	
usando direção de crescimento normal a marca atual.	181
Figura 7.21 – Determinação do número de ciclos acumulados nas marcas	
do CP07 eliminando retardos ou acelerações.	182
Figura 7.22 – Taxas de propagação ao longo das trajetórias 1, 2 e 3.	183
Figura 7.23 – Comparação de d vs. N com previsão numérica da vida	
usando $\Delta K_{I,c}$ e medidas do ensaio no CP01.	184
Figura 7.24 – Comparação de <i>a vs. N</i> com previsão numérica da vida	
usando $\Delta K_{I,a}$ e medidas do ensaio no CP01.	185
Figura 7.25 – Taxas de crescimento do aço ASTM A36 ajustadas com	
lei de Paris da/dN - ΔK_I e da/dN - ΔK_{eff} .	188
Figura 7.26 – Gráfico K_{max} vs. K_{op} em A e em C.	190
Figura 7.27 – Gráfico U_{sup} vs. $\Delta K_{I,sup}$ em A e em C.	190
Figura 7.28 – Predição de vida usando ΔK_{eff} em C.	191
Figura 7.29 – Predição de vida usando ΔK_{eff} em A.	192
Figura A1. 1 – Dados para análise: (a) Dimensões da placa trincada [mm] e;	
(b) Malha na região da trinca e demais regiões e condições de contorno.	204
Figura A1. 2 – Dimensões dos elementos nas regiões de malha sem trinca.	204
Figura A1. 3 – Deslocamento no nó A para diversas malhas nas regiões	
sem trinca.	205
Figura A1. 4 – FIT ao longo da frente de trinca normalizada.	206

Figura A1. 5 – Roseta na ponta da trinca: (a) três anéis de elementos e	
(b) cinco anéis de elementos.	206
Figura A1. 6 – Refinamento dos elementos na frente da trinca: (a) FIT na	
frente da trinca e (b) FIT na quina.	208
Figura A2. 1 – Geometria do corpo-de-prova padrão compacto de tração	
C(T).	209
Figura A2. 2 – Primeira amostra de dados coletados, ensaio de taxa de	
propagação de trinca, usando um C(T).	210
Figura A2. 3 – Pontos medidos na segunda amostra de dados coletados,	
usando CP compacto C(T).	211
Figura A2. 4 – Pontos para ajuste de curva.	212
Figura A2 .5 – Ajuste de curva nos pontos médios.	213
Figura A2. 6 – Ajuste de curva Hall 4 parâmetros nos pontos superiores.	214
Figura A2. 7 – Ajuste de curva Hall 4 parâmetros nos pontos inferiores.	215
Figura A2. 8 – Comparação da curva medida com resultados	
disponíveis na literatura.	216
Figura A3. 1 – Geometria do corpo-de-prova em [mm]:	
(a) entalhe de borda; (b) entalhe central e (c) dois entalhes de borda.	218
Figura A3. $2 - f(a/w)$ para corpo-de-prova com entalhe de borda.	219
Figura A3. $3 - f(a/w)$ para corpo-de-prova com entalhe central.	219
Figura A3. $4 - f(a/w)$ para corpo-de-prova com dois entalhes de borda.	220
Figura A3. 5 – Trinca no furo do CP05.	222
Figura A6. 1 – Penetração da superfície mestre na superfície escrava sob	
contato mestre-escrava com uma discretização grosseira da malha,	
atendendo as condições de compatibilidade nó em superfície	
(Hibbitt, 1996).	231
Figura A6. 2 – Contato em um sólido elástico.	232
Figura A6. 3 – Relação pressão-fechamento (Hibbitt, 1996).	233
Figura A7. 1 – Geometria da frente da trinca: (a) trinca do experimento;	
(b) trinca reta-passante.	234
Figura A7. 2 – Comparação da função de geometria em $C - f(d/w)$.	235

Lista de tabelas

Tabela 4.1 – As dimensões exatas dos CPs, condições iniciais:	
(a) entalhe central; e (b) entalhe de borda.	76
Tabela 4.2 – Propriedades de engenharia do material aço ASTM A36.	82
Tabela 4.3 – Tipo de histórico de carregamento, número de ciclos total N e	
razão final a/w : (a) entalhe central; (b) entalhe de borda.	94
Tabela 4.4 – Semi-eixos das curvas quarto-elipses concêntricas no CP01,	
usadas na Figura 4.33.	108
Tabela 4.5 – Semi-eixos das curvas quarto-elipses concêntricas no CP06,	
usadas na Figura 4.34.	108
Tabela 4.6 – Semi-eixos das curvas quarto-elipses concêntricas no CP07,	
usadas na Figura 4.35.	109
Tabela 4.7 – Comprimento máximo d da trinca simplificada apenas por	
curva quarto-elíptica.	109
Tabela 4.8 – Novo centro e semi-eixos da Marca03 do CP01, ilustradas	
na Figura 4.39.	112
Tabela 4.9 – Novo centro e semi-eixos de 3 Marcas no CP06, ilustradas	
na Figura 4.40.	113
Tabela 4.10 – Novos centros e semi-eixos de 12 Marcas no CP07,	
conforme ilustrado na Figura 4.41.	113
Tabela 4.11 – Resumo das coordenadas de centro nos três CPs.	113
Tabela 4.12 – Semi-eixos das elipses concêntricas no CP03.	117
Tabela 4.13 – Semi-eixos das elipses concêntricas no CP02.	118
Tabela 6.1 – Comparação da geometria da trinca na predição numérica e	
geometria do CP01.	150
Tabela 6.2 – Coordenadas da geometria da trinca do CP01 e	
comprimento OP.	151
Tabela 6.3 – Resumo das estimativas totais de número de ciclos em d.	154
Tabela 7.1 – Fatores de geometria do CP01 determinados no trecho	
confiável de ΔK_I .	159

Tabela 7.2 – Fatores de geometria do CP06 determinados no trecho	
confiável de ΔK_I .	162
Tabela 7.3 – Fatores de geometria do CP07 determinados no trecho	
confiável de ΔK_I .	165
Tabela 7.4 – Fatores de geometria utilizados na solução geral do FIT,	
onde c é o semi-eixo da elipse.	174
Tabela 7.5 – Ângulo ϕ [em graus] determinado nas trajetórias usadas	
para determinar as taxas de crescimento na trinca de superfície.	181
Tabela 7.6 – Resumo da geometria da trinca nas marcas usadas na	
expressão de ΔK_I .	182
Tabela 7.7 – Resumo das estimativas totais do número de ciclos N	
usando expressão de $\Delta K_{I,c}$ e taxas de propagação de um corpo-de-prova	
padrão sob tração.	185
Tabela 7.8 – Resumo das estimativas totais de número de ciclos usando	
expressão de $\Delta K_{I,a}$ e diversos ajustes das taxas de propagação realizadas	
em um ensaio de tração.	186
Tabela 7.9 – Dados usados para determinar U_{sup} na interseção de trinca	
com a superfície inferior.	189
Tabela 7.10 – Dados usados para determinar U_{sup} em A.	189
Tabela 7.11 – Razão N/N_{exp} usando ΔK_{eff} , num em C.	192
Tabela 7.12 - Razão N/N_{exp} usando ΔK_{eff} , num em A entre a marca 02 e 03.	192
Tabela A1. 1 – Dimensões da malha na região sem trinca e resultados.	205
Tabela A1. 2 – Refinamento da malha na frente da trinca.	207
Tabela A3. 1 – Carregamento aplicado.	221
Tabela A3. 2 – Dados do experimento para corpo-de-prova com um	
entalhe de borda.	221
Tabela A3. 3 – Dados do experimento para corpo-de-prova com um	
entalhe central.	221
Tabela A4. 1 – As dimensões exatas dos CPs, condições iniciais:	
(a) entalhe central; e (b) entalhe de borda.	223
Tabela A4. 2 – Tipo de histórico de carregamento, número de ciclos total	
N_{total} e razão final <i>a/w</i> : (a) entalhe central; (b) entalhe de borda.	223

Tabela A4. 3 – Resumo das coordenadas de centro (concêntrico) nos CPs	
com entalhe de borda.	223
Tabela A4. 4 – Resumo dos dados – CP01.	224
Tabela A4. 5 – Semi-eixos não concêntricos da Marca03 do CP01.	224
Tabela A4. 6– Comprimentos dos semi-eixos das elipses no CP06.	224
Tabela A4. 7 – Novo centro e semi-eixos de 3 Marcas no CP06.	224
Tabela A4. 8 – Comprimentos dos semi-eixos das elipses no CP07.	225
Tabela A4. 9 – Novos centros e semi-eixos no CP07.	226
Tabela A5. 1 – Condições gerais do carregamento de fadiga aplicado	
no CP01.	227
Tabela A5. 2 – Histórico de carregamento no CP06.	228
Tabela A5. 3 – Histórico de carregamento no CP07.	229
Tabela A7. 1 – Diferenças na magnitude da função de geometria em	
diversas razões d/w quando comparadas a função de geometria obtida	
com a geometria dos corpos-de-prova.	236

Lista de abreviaturas

ASTM – American Society for testing and materials.

CP – corpo-de-prova.

EF – elementos finitos.

FIT - Fator de intensidade de tensão.

MFLE - Mecânica da fratura linear elástica.

Lista de símbolos

а	comprimento da trinca passante e profundidade da trinca de canto.
a e c	semi-eixos das curvas quarto-elípticas concêntricas.
a_{f}	comprimento final da trinca.
a _{in}	comprimento inicial da trinca.
a_{NC} e c_{NC}	semi-eixos das curvas quarto-elípticas não concêntricas.
A	área anular.
A e C	pontos usados para determinar expressões de FIT.
c e d	comprimentos da trinca de canto.
С, т е р	parâmetros empíricos usados nas equações f_R .
da/dN	taxas de crescimento da trinca.
$da/dN - \Delta K$	curva de crescimento da trinca.
$\Delta a \in \Delta c$	incrementos de trinca de canto.
$\Delta a_{\rm max}$	incremento máximo de trinca.
ΔK	faixa do FIT entre os extremos $K_{min} \in K_{max}$.
ΔK_I	faixa do FIT de modo I.
$\Delta K_{I, \text{sup}}$	faixa do FIT de modo I no ponto A ou no ponto C.
$\Delta K_{I,a}$	faixa do FIT de modo I no ponto A.
$\Delta K_{I,c}$	faixa do FIT de modo I no ponto C.
$\Delta K_{eff,num}$	faixa do FIT efetivo numérico obtido com análise da trinca de
	canto.
$\Delta K_{e\!f\!f}$	faixa do FIT efetivo.
ΔK_{th}	faixa do limiar de propagação.
ΔP	faixa do carregamento aplicado.
ΔN	incremento de ciclo.
E	módulo de elasticidade.

f	função de geometria.
F	fator de geometria obtido numericamente.
	solução associada a função de Airy, fator de geometria.
f_R	equação empírica de ajuste das taxas de crescimento da trinca.
G	módulo de cisalhamento.
	taxa de alívio de energia.
J	Integral-J.
$K_I, K_{II} \in K_{III}$	FIT de modo I, FIT de modo II e FIT de modo III.
K _{máx}	FIT gerado pela tensão máxima σ_{max} .
K_{min}	FIT gerado pela tensão mínima σ_{min} .
$K_{I,a}$	FIT no ponto A.
$K_{I,c}$	FIT no ponto <i>C</i> .
М	Integral-M.
n	vetor unitário normal.
Ν	número de ciclos acumulados
	número de ciclos acumulados usando dados numéricos.
р	ajuste polinomial de F.
Р	ponto na frente da trinca.
q	função entre contornos.
$Q, g e f_w$	parâmetros de ajuste da geometria usados na solução geral de
	trinca de superfície.
R	razão de tensão.
t	espessura do corpo-de-prova.
$u_x, u_y e u_z$	componentes de deslocamentos.
U	função de fechamento de trinca.
U_{sup}	função de fechamento de trinca de superfície.
W	largura do corpo-de-prova.
W	energia de deformação.
X_{c}	centro das curvas quarto-elípticas não-concêntricas.
X	centro das curvas quarto-elípticas concêntricas.

Símbolos gregos

β	parâmetro adicional empírico usado nas equações f_R .
$\delta_{_{1j}}$	delta Kronecker.
3	tensor de deformação infinitesimal.
ϕ	ângulo das coordenadas do ponto na frente da trinca de canto.
$\Phi(r, \theta)$	função arbitrária.
Г	contorno de integração.
v	coeficiente de Poisson.
σ	tensão máxima nas superfície da placa ocasionadas por ΔP .
$\sigma_{xx}, \sigma_{yy}, \sigma_{xy}, \sigma_{xy}, \sigma_{xz}, \sigma_{yz} e \sigma_{zz}$	componentes de tensões.
$\sigma_{\scriptscriptstyle m\! lpha x}$	tensão máxima ocasionada pelo carregamento cíclico aplicado
	remotamente.
$\sigma_{\scriptscriptstyle m\! in}$	tensão mínima ocasionada pelo carregamento cíclico aplicado
	remotamente.
$\Delta \sigma$	faixa de tensão cíclica entre os extremos σ_{min} e σ_{max} .

Nossos sonhos só podem ser realizados por nós mesmos. Daisaku Ikeda