
V
Algorithmic Approach

In the previous chapter, a flow formulation (IV.3) for the VRPTWEOS

was introduced. The scope of this chapter is to propose an algorithmic approach

to solve that formulation. The suggested solution approach is based on a

reformulation of the flow model, obtained by applying the Dantzig-Wolfe

decomposition technique. To solve the decomposed flow model, a column

generation algorithm is used along with a branch and bound algorithm. This

technique is known as Branch-and-Price, and it has been widely used in Vehicle

Routing Problems.

Firstly, we perform a brief review of the Dantzig-Wolfe decomposition

method. Next, the decomposed flow model is presented and finally the column

generation and branch-and-price algorithms are explained.

V.1 Dantzig-Wolfe Decomposition
In this section we give a brief review of the Dantzig-Wolfe decomposition,

as presented by (ARAGAO; UCHOA, 2003). For a detailed explanation of this

method please refer to (CASTILLO; GARCÍA-BERTRAND, 2006).

Consider the following integer program with n variables:

ZIP = min cx

s.t. Ax = b

Dx ≤ d

x ∈ Zn
+

(IP)

Let Q = {x1, . . . , xn} be the finite set of extreme points of the polytope

defined by P := {x ∈ Zn
+ | Dx ≤ d}. Let Q be a n × p matrix where each

column corresponds to an extreme point x ∈ Q.

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 34

There is a one-to-one correspondence between the elements of Q and the

solutions of

x = Qλ

s.t. 1λ = 1

λ ∈ {0, 1}p

The reformulation of the integer program IP follows by replacing the x

variables in IP by the expression above. Relaxing the integrality constraints,

the Dantzig-Wolfe Master linear program is obtained:

ZDWM = min (cQ)λ (DWM)

Subject to:

(AQ)λ = b (V.1)

1λ = 1 (V.2)

λ ≥ 0

Where (V.1) are known as the coupling constraints and (V.2) are the

convexity constraints.

V.2 Solving the DWM: Column Generation
Notice that there are an exponential number of extreme points in the

mentioned polytope P , and therefore an exponential number of λ variables in

the DWM LP. It is impractical to solve such a huge model at once. To tackle

this issue, a technique called column generation is used.

As a previous step for the column generation procedure, a first version

of the DWM with only a small subset of the λ variables (columns), will be

constructed. Actually, if artificial variables are included to assure feasibility of

the model, a first version of this LP without any λ variables can be used.

The column generation algorithm will start by solving the initial version

of the LP, which should be easy to solve. Next, the algorithm will try to find

a profitable column to add to the model, this is, a column with a convenient

reduced cost that may improve the value of the objective function. This process

of finding a suitable column is known as pricing.

When a profitable column is found by the pricing algorithm, this column

is added to the LP. The column generation algorithm will continue by solving

the updated model, and then the pricing algorithm will be called again. The

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 35

algorithm will continue to perform this solving / pricing loop until no suitable

column exists.

Given the current dual multipliers π and π0 associated to the coupling

constraints V.1 and to the convexity constraints V.2 respectively, the pricing

sub-problem can be written as the following integer program:

Minimize (c− πA)x− π0

s.t. Dx ≤ d

x ∈ Zn
+

(Pricing)

As shown before, the basic idea behind column generation is that of

using the pricing sub-problem to dynamically generate and add columns to

the master problem, which is iteratively solved. This approach is only practical

when the decomposed constraintsDx ≤ d have a “nice structure”, which allows

many sub-problems to be solved quickly. (ARAGAO; UCHOA, 2003).

In the next section, we present the Dantzig-Wolfe decomposition of the

flow formulation suggested for solving the VRPTWEOS.

V.3 Time Indexed Flow Model Reformulation
The pseudo-polynomially large number of variables and constraints

comprised in the time indexed flow formulation (IV.3) may turn its direct use

prohibitive. By using the Dantzig-Wolfe decomposition method, it is possible

to rewrite this model in terms of variables associated to all possible paths

(routes) in the flow graph G (IV.2) that are associated to each vehicle type.

To begin the decomposition of the flow model, recall our assignment

constraints (IV.6) and synchronization constraints (IV.7). These constraints

will remain in the master as the so called coupling constraints.

The constraints to be decomposed are both the flow initialization

constraints (IV.8) and the flow conservation constraints (IV.9). Notice that

these constraints define the set Ω of all possible routes that traverse the flow

graph IV.2 starting and ending at the depot. Each such route is associated to

a vehicle type, thus we introduce λer variables for each possible route of each

vehicle type.

We now establish the following relation between the λ variables and the

x variables of the original flow formulation:

xijte =
∑
r∈Ω

ateijrλ
e
r

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 36

s.t.
∑
r∈Ω

λer = ke (V.3)

λe ∈ {0, 1}r (V.4)

Where coefficients ateijr are defined as

ateijr =

1 if variable xijte belongs to the route associated to λer

0 otherwise

We now define the cost associated to each λ variable as

cer =
∑

ijte∈Ar

sij

By expressing the x variables of the original flow formulation in terms

of the λ variables, and relaxing the integrality constraints we obtain the

Dantzig-Wolfe Master:

Minimize
∑
e∈E

∑
r∈Ωe

cerλ
e
r (V.5)

Subject to: ∑
t∈Sj

yjt = 1 ∀j ∈ J \ {0} (V.6)

∑
i∈J

∑
r∈Ω

ateijrλ
e
r − yjt = 0 ∀j ∈ J, t ∈ Sj, e ∈ Ej (V.7)∑
r∈Ω

λer = ke ∀e ∈ E (V.8)

λ ≥ 0 (V.9)

This reformulation of the flow model has an exponential number of λ

variables (routes), meaning that it has to be solved by column generation.

Considering the dual multipliers πite and π0 associated to the coupling

constraints (V.7) and convexity constraints (V.8) respectively, for each vehicle

type there will be a pricing sub-problem defined by

Minimize
∑
i∈J

∑
j∈J

∑
t∈Si

(sij − πite)xijt −
∑
j∈J

(sij − π0) (V.10)

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 37

∑
i∈J\{0}

x0i0e = ke∀e ∈ E (V.11)

∑
i∈J

xjite + wjte −
∑
i∈J

xi,j,t−pi−sij ,e − wj,t−1,e = 0 ∀j ∈ J, t ∈ Sj, e ∈ Ej (V.12)

As already mentioned, constraints (V.11) and constraints (V.12) define

the set of all possible paths in the flow graph shown in Figure IV.2 starting

and ending at the depot. By solving the above IP formulation, suitable routes

to be added to the master problem can be found. Notice though, that this

includes even routes that may visit the same customer more than once.

(a) q-Route Pricing

By definition, a feasible solution to the VRPTWEOS will not contain

routes with cycles, i.e. routes that visit the same customer more than once.

Because of this, it is desirable to have a pricing algorithm that generates only

profitable routes without cycles (see Figure V.1). This problem is known as

the Elementary Shortest Path Problem with Resource Constraints (ESPPRC),

which is known to be NP-hard (DESAULNIERS et al., 2010).

t=0 1 2 3 4 5 6 T

j=0

1

2

3

4

5

Figure V.1: Elementary route on the flow graph.

A way of not handling that level of complexity inside the pricing

sub-problem is to relax the routes allowing them to be non-elementary, this

is, allowing routes with cycles, more specificaly routes that visit the same

customer more than once. It is feasible to do so, because when such a route

is added to the master problem, the coupling constraints will take care of not

adding cycles to the final solution. It becomes clear that, the more cycling

routes the sub-problem generates, the more extra work the master problem

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 38

will have disregarding infeasible scenarios, and hence, the less information

each route will provide to the final solution. This issue contributes negatively

to the convergence of the column generation method but at the same time

maintains the complexity of the pricing sub-problem tractable, which is a

necessary condition for the column generation to be effective.

This type of route is known in the literature as q-Routes, and the problem

of generating such routes is known as the Shortest Path Problem with Resource

Constraints (SPPRC). The SPPRC is known to beNP-hard in the weak sense.

(CHRISTOFIDES et al., 1981) describe pseudo-polynomial time algorithms

to tackle this problem. Figure V.2 shows an example q-route. Notice how this

route cycles through customers 2 and 3 over time.

t=0 1 2 3 4 5 6 T

j=0

1

2

3

4

5

Figure V.2: Example of a q-route on the flow graph.

Until now, we have been talking of cycles in the sense of a route visiting

the same customer multiple times. Nevertheless, as traveling back in time

is impossible, it is easy to see that the flow graph we are working on is an

acyclic graph. Moreover, a straightforward topological order of the vertices in

G = (V,A) can be achieved by ordering them by time index. The costs cteij

associated to the arcs of this graph correspond to the reduced costs described

in (V.10). To solve a shortest path problem in this graph, a reaching algorithm

described by (AHUJA et al., 1993) can be used.

The above can be achieved in O(|A|) as follows. Let F (j, t)e denote the

minimum reduced cost sub-path that starts at the depot and finishes with an

arc (i, j)te. We start the reaching algorithm by setting distance labels

F (j, t)e =

0 if j=0 and t=0

+∞ otherwise

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 39

We begin to process all vertices of G in the topological order, naturally

starting with vertex (0, 0), the depot. For each vertex i being processed we

scan vertices in its adjacency list A(i). If for any arc (i, j)te ∈ A(i) we find that

F (j, t+ pi + sij)e > F (i, t)e + cteij then we set F (j, t+ pi + sij) = F (i, t)e + cteij .

Before processing all nodes once in this order, the distance labels are optimal.

Notice that for our problem |A| = n2T so this pseudo-polynomial

algorithm has complexity O(n2T). Solving this pricing algorithm can be

quite consuming. Furthermore, this algorithm will produce routes with cycles.

(CHRISTOFIDES et al., 1981) describe a simple way to extend this algorithm

to avoid 2-cycles, which are cycles of the form (i → j → i). This extension

does not change the complexity of the pricing algorithm but gives routes of

better quality which helps the convergence of the column generation approach.

An example of a q-route with 2-cycle elimination can be seen in Figure V.3.

t=0 1 2 3 4 5 6 T

j=0

1

2

3

4

5

Figure V.3: Example of a q-route with 2-cycle elimination on the flow graph.

V.4 Column Generation for Extended Formulations
The column generation approach previously explained repeatedly adds

promising extreme points of the polytope, described by the decomposed

constraints, to the Dantzig-Wolfe Master until no such extreme point exists.

Therefore, the problem is iteratively solved over an approximation of, or

partially described, original polyhedron. One advantage of this method is

that of working only with a small subset of an exponentially large set of

variables. The column generation for extended formulations is an alternative to

the standard column generation approach, and is described by (SADYKOV;

VANDERBECK, 2011). Instead of working over the Dantzig-Wolfe Master,

this approach considers the original variable formulation restricted to a subset

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 40

of variables. Nevertheless, in order to be able to use the column generation for

extended formulations approach, the target model must have a decomposable

structure that makes it suitable for Dantzig-Wolfe decomposition. This way,

the pricing sub-problem corresponds to the pricing of the associated standard

column generation approach. However, instead of adding the priced columns to

the Dantzig-Wolfe Master, these columns are lifted by expressing them in terms

of the original variables and then added to a restricted version of the original

variable formulation. This approach should be considered as an alternative to

the standard column generation approach when convergence problems occur.

The main advantage of the column generation for extended formulations is

that the lifted columns act as a stabilization technique for column generation,

thus accelerating the convergence of the method. Recalling our original flow

formulation IV.3, the column generation for extended formulations will begin

with a restricted version of the model, in which initially no x variables exist

and integrality constraints are relaxed. Without the x variables, this model

is infeasible. To avoid infeasibility, artificial variables are introduced to the

assignment constraints (IV.6) and to the flow initiation constraints (IV.8).

The initial model is solved using a generic LP solver and then the pricing

algorithm will try to find a profitable column. As mentioned before, this pricing

sub-problem corresponds to the same pricing algorithm associated to the

standard column generation approach. This time the dual multipliers πite and

π0 used to compute the reduced cost of the columns in the pricing sub-problem

V.10 are now associated to the flow constraints (IV.9) and flow initialization

constraints (IV.8) of the restricted original flow formulation, instead to the

rows of the Dantzig-Wolfe Master. Whenever a column is generated by the

pricing algorithm, the x variables associated to it are added to the model.

Similarly to the standard column generation method, this process will continue

until no profitable column is found.

V.5 A Branch-and-Price Algorithm
The column generation approaches explained before are intended to solve

a linear relaxation of the flow formulation. It may be the case that the solution

to this linear problem is integral, but if not, another technique must be used

to achieve integral solutions. An algorithm commonly used for this purpose,

is the well known branch-and-bound algorithm. This algorithm works on a

search tree to make an implicit enumeration of the solution space, disregarding

branches for which the best possible solution is worse than a previously

known solution. When branch-and-bound is used with column generation, they

receive the name of Branch-and-Price. Next, we describe our Branch-and-Price

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 41

implementation, which can be found in Algorithm V.1.

(a) BaP Algorithm Description

Before the start of the branch-and-price algorithm, some global

parameters are set. These parameters correspond to the best bound and

the best current solution value, named as LB and UB respectively for our

minimization problem. These parameters are initialized, to denote that no

current best values exist.

Our implementation of the Branch-and-Price algorithm starts by creating

the root node of the search tree. The root node will correspond to one of the

relaxation problems described for the flow formulation. The so called search

tree is implemented using a stack, therefore the nodes of the search tree are

traversed by a DFS.

At each iteration, the algorithm selects the node on top of the stack and

solves it using one of the column generation approaches previously explained.

As soon as the column generation procedure ends, the branch-and-price

algorithm gets the value of the current node solution ZLP (if such a solution

exists). Next the following checks are made:

– If the column generation model is infeasible, return

– If dZLP e ≥ UB, return

If any of those two cases proceed, then the loop-up procedure over the

current branch of the search tree will be abandoned, in the first case by

infeasibility and in the second case by bound.

If neither of the above conditions are met, the algorithm verifies if the

solution of the current node is integral. If that is the case, the algorithm will

no further explore that branch, as no better solution will exist in it. However,

before continuing the algorithm checks if the value of the current node solution

is better than the best known solution so far, i.e. if ZLP < UB, then the global

bound is updated by making UB = ZLP and the associated solution is stored.

If the solution is not integral and the current node is the root node, then

the value of the best bound is updated: LB = ZLP .

Next, the look-up procedure continues by opening two new branches

from the current node. The branching procedure, in our implementation,

comprehends the selection of the most fractional variable in the solution, i.e.

the variable which value is closer to 0.5. However, it could be the case that

such variable is a λ variable (in the Dantzig-Wolfe decomposition approach).

Branching on a λ variables will modify the structure of the column generation

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 42

pricing sub-problem, making it more complicated, eventually only being able

to solve it by costly IP techniques (ARAGAO; UCHOA, 2003).

The alternative is to branch on the y and x original formulation variables.

With this in mind, we give precedence to the y variables. Branching on the y

variables seems “stronger” as they couple groups of x variables.

Let xb be the selected variable to branch on. The branch-and-price

algorithm continues by making two copies of the current node, corresponding to

the left and right children of the current node in the search tree. Before adding

such nodes to the stack, the branching restrictions are imposed as follows:

– For the left child of the current node, branching constraint xb ≤ 0 is

added.

– For the right child of the current node, branching constraint xb ≥ 1 is

added.

Next, the two children nodes are added to the stack. The

Branch-and-price algorithm continues until there are still nodes in the

stack, the integrality gap arrives at a globally defined tolerance value, or

the algorithms achieve a given time limit.

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

Chapter V. Algorithmic Approach 43

Algorithm V.1 Branch and Price Algorithm

1: procedure BaP(rootNode)
2: input: Root node of the search tree.
3: output: Best solution found, if one exists.

4: LB ← −∞
5: UB ←∞
6: ZInc←∞ //value of best current solution found

7: bestSolution← ∅
8: nodeCount← 0

9: stack ← emptyset
10: stack.push(node)
11: while stack 6= ∅ do
12: currentNode← stack.pop()
13: currentSolution← solveLPByColumnGeneration(currentNode)
14: Zlp←∞
15: Zlp← currentSolution.value
16: doBranching ← true
17: if Zlp =∞ then
18: doBranching ← false
19: else if dZlpe ≥ ZInc then
20: doBranching ← false
21: else
22: if nodeCount = 0 then
23: LB ← Zlp

24: if isIntegerSolution(currentSolution) then
25: if Zlp < ZInc then
26: bestSolution← currentSolution
27: ZInc← Zlp

28: doBranching ← false
29: else if dZlpe ≥ Zinc then
30: doBranching ← false

31: xb ← getMostFractionalV ariable(currentSolution)

32: leftNode← currentNode
33: rightNode← currentNode

34: leftNode.addBranchingConstraint(xb ≤ 0)
35: rightNode.addBranchingConstraint(xb ≥ 1)

36: stack.push(leftNode)
37: stack.push(rightNode)

38: nodeCount← nodeCount+ 1

39: return bestSolution

DBD
PUC-Rio - Certificação Digital Nº 1021781/CA

	tese

