
Distributed RDF Graph Keyword Search 56

5 Tools and implementation

5.1.Tools and sharding

A combination of existing open source tools may be used to match the

architectural elements proposed on Chapter 4. For this implementation, we used

the following tools:

• Redis: It is an open source, BSD licensed, key-value store [18]. It is

often referred to as a data structure server where keys can reference

strings, hashes, lists and sets. The key-value stores sought for the

implementation are a very good fit to Redis. The basic collections -

DB::Set and DB::Array - map directly to existing Redis' structures of

sets and hash, respectively. DB:: TwoWayArray was built using the

two-way indexed collection technique described above. Redis is an

in-memory datastore, associated with great performance. It has a

built-in replication mechanism, based on a one master read-write

node with several slaves read-only nodes copying from it, and all

nodes can be setup to periodically persist the memory status to disk.

It lacks server-side sharding, but the architecture designed can

transfer that to the API implementation without loss of functionality;

• Resque: It is a Redis-backed for creating background jobs, placing

these jobs on multiple queues and processing them later [19]. A very

robust job queues and workers framework, it provides an easy

scheme of job creation and queuing. It can handle job failures and

retries, schedule jobs with a plugin and has the built-in characteristic

of being decentralized - workers only need access to the datastore

that backs its queue data to work, without needing to report to a

central server. Conveniently, Resque uses Redis as its datastore, so

the same network built for the indexes will be able to handle the job

queues with redundancy and scalability;

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 57

• Elasticsearch: The most used open-source engine to keyword search

is the Apache Lucene. However, Lucene is a very bare engine,

designed to work with local documents. Some document stores are

built on top of Lucene - Solr is the most famous example.

Elasticsearch [20] - is a document store like this, featuring a

RESTful API using JSON to store, search, and modify documents. It

also has built-in mechanisms to be deployed and distributed over

several nodes, and with those it meets the requirements for the node

index.

Figure 11 - Architecture with matching tools

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 58

5.2.Sharding

In the proposed architecture, the orchestrating API is responsible for

implementing the sharding strategies. We combined two strategies in our

implementation. The first strategy consists of splitting up the stores in half by key

index. So indexes, supporting data structures, and the sparse matrix are stored on

the key-value store, and keys are always composed by either a node, full-path or

template index. In our implementation, the value is stored in different key-value

server nodes, if the related index is odd or even. With this strategy, all nodes, full-

paths, and templates with an odd index are stored on the odd_indexes_store key-

value store, and those with an even index are stored on the even_indexes_store.

The functionalities listed on Chapter 4 call for two types of queries over the

sparse matrix quite often. They are set to retrieve data from a single row or a

single column. To expedite these types of retrieval, the implementation also uses a

second sharding strategy, consisting of a trade-off. We duplicated the sparse

matrix data to allow faster sequential retrieval by either row or column. In this

strategy, for the first copy of the positions, all values of odd rows are stored on the

odd_rows_store key-value store to expedite retrieval and the other rows stored on

even_rows_store. For the second copy, the same odd/even strategy is used to store

columns on the odd_columns_store and even_columns_store, respectively.

5.3.Networks

Each of the three architectural elements was chosen because they could

provide a way to build a network of hosts, making as much resources available as

needed. For each of the tools chosen, some of their design characteristics implied

that their networks should be built somewhat differently.

Redis keeps its data in-memory. It is single-threaded and can be configured

to work on a read-write master with several read-only slaves copies of it.

Instances running Redis could then use a lot of memory and bandwidth, but had

limited use for several cores. With sharding logic handled by the orchestrating

API, each Redis host would need to store a fraction of the indexes and the sparse

matrix. For this implementation, we chose to build the Redis network with seven

master hosts. One of the hosts is dedicated to Resque, and the other six will store

respectively the odd_indexes_store, even_indexes_store, odd_rows_store,

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 59

even_rows_store, odd_columns_store, and even_columns_store. Each of those

hosts is backed up by a slave host.

Resque workers are also single-threaded each, but with lower requirements

for memory. Several workers can share a server with multiple cores, limited by

the available bandwidth they consume. In this implementation, we used ten

worker hosts, each with four workers. The workers shared the job pool on the

dedicated Redis host described earlier, and a web interface was also setup on the

same server running that instance.

Finally, elasticsearch has built-in configurations for multiple hosts.

However, during this implementation, there was no need to built a network for

performance, so it remained with a single master host with a slave host for

backup.

AWS zone us-east-1d

AWS EC2 AMI ami-7539b41c (Ubuntu Server 12.10)

AWS EC2 Redis Instance type m1.large

AWS EC2 Workers Instance type c1.medium

Table 10 - Details of the AWS instances used

5.4.Details of the execution of RDF parsing and matrix building (steps 1 & 2)

The first step of the execution followed the proposed two MapReduce sub-

steps. In the implementation, the first sub-step was called admission and the

second sub-step spider. They are both exposed through REST methods.

The admission sub-step was implemented to receive a URI as a POST

parameter. This could be a local file:// URI, or a public http:// URI. The controller

of this method downloads the file and creates an rdf_admission job to split the

input file implementing the Algorithm 4. The implementation assumed the input

files were in the NTriples format, and future implementations could add before

this point another sub-step to convert files from other formats, or allow other

forms of input, such as SPARQL end-points.

For every segment of the input file, an rdf_parsing job was created. This job

implemented Algorithm 3 to find nodes, sources, and sinks of the segment.

The second sub-step was triggered manually, after all the input segments

were processed. The spider sub-step was implemented as a GET method that

creates a graph_spider job. This job implements Algorithm 6 to create a

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 60

graph_crawler job for each source, which, in turn, implements a breadth-first

search of Algorithm 5, without recursion and the map functionality of Algorithm

8.

The second step, i.e., the sparse matrix assembly, was triggered

automatically by the graph_crawler execution. For every full-path found during

its execution, the full-path was immediately stored, and a matrix_builder job was

created with that full-path as a parameter. This job implements Algorithm 7 to

store the associated full-path positions in the sparse matrix.

We faced a difficulty during these two steps. We tried to reproduce the

results of the tensor-based proposal [1] with the same datasets - the DBLP and

LinkedMDB as found on [7]. However, the number of full-paths found was many

times larger the numbers shown in the proposal, and the execution time reached

many hours instead of the minutes described in the proposal. In order to complete

the experiment, we chose a smaller dataset - the STW Thesaurus for Economics

[21].

We were then able to complete these two steps that had an average

execution time of 2573 seconds (42.89 minutes) taken from 5 measurements, as

listed on Table 11, along with how many times each job was triggered, the

average time for each experiment, and the total execution time for each job time.

This time is the total processing time only, excluding the manual triggering. The

final dataset, after the default LZF compression reached 361.7MB, for a total of

1,334,563 full-paths found. Other details are listed on Table 12.

It is important to note that the implementation could not reproduce the

results found on the tensor-based proposal that inspired it, given the excessive

amount of full-paths produced by the proposal, and future work could improve on

that, by pruning out less meaningful full-paths by ranking their relevance.
 execs. t1 t2 t3 t4 t5 Avg. Total

rdf_admission 1 1.08 1.19 1.12 1.08 1.21 1.14 1.14

rdf_parsing 2 126.41 129.68 127.37 127.89 129.34 128.14 128.14

graph_spider 1 1.04 1.29 1.12 1.05 1.17 1.13 1.13

graph_crawler 218 147.84 133.27 141.27 143.45 145.23 142.21 775.06

matrix_builder 1334563 0.05 0.05 0.05 0.05 0.05 0.05 1,668.20

 2,573.67

Table 11 - Steps 1 and 2 jobs execution times

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 61

Nodes found 13,434 Edges found 38

Sources found 218 Full-paths found 1,334,563

Sinks found 6,589 Templates found 573

Table 12 - STW RDF graph details

5.5.Performance of the queries execution

The data retrieval queries were exposed in the implementation as RESTful

actions with the same name of the query, all using the HTTP GET method. To

measure the performance of the methods, we used the Apache Benchmarking tool

[22]. This open-source tool allowed experimenting with concurrent access and

automatic test repetition. In Table 13, we list the queries minimum, average,

standard deviation, and maximum response time for 10.000 queries with 20

concurrent users. All queries were executed from other AWS EC2 instances, using

the internal addresses so network trip times were minimized.

Query

ms/req standard
deviation min avg max

node_query 51 564 2,174 86.2

path_query 11 75 1,639 57.6

final_node_query 8 83 3,097 112.0

path_intersection_query 15 95 1,138 60.8

path_intersection_retrieval_query 112 871 3,163 340.8

path_cutting_query - from start 12 79 1,602 57.4

path_cutting_query - to end 10 79 1,316 58.5

Table 13 - Queries response time - times in milliseconds per request

5.6.Summary

In this chapter, we described a possible implementation of the proposed

architecture. We described how we matched each architectural element to an open

source tool, and how we built the network of each element. Finally, we presented

the execution times of the sparse matrix building and query executions, using the

proposed distributed RDF data store. In the next chapter, we wrap up the proposal

and guide the reader to related and future work.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

