
Distributed RDF Graph Keyword Search 25

3 Search on Linked Data

The Linked Data abstract model, as detailed on Chapter 2, is based on the

use of subject-predicate-object tuples to represent data. This model is very well

suited for a graph representation, in which subjects and objects are represented as

nodes and predicates are edges of the graph. Once represented as a graph, data can

be displayed for human consumption. This format has the advantages of being

visually simple to understand, using a somewhat natural way to represent

relationships between data, and the fact that it can be improved to provide

additional cues such as node grouping. The tuple format representation is

exemplified in Table 1. The graph representation of the same data is illustrated in

Figure 6.

Table 1 - Movies RDF Example SPO Tuples

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 26

Figure 6 - Movies RDF Example Graph Representation

The ability to search, as well as query, are expected of Linked Datasets. For

human consumption, a very natural approach is to use keyword search. This way

of searching is very well established for documents on the World Wide Web,

where indexing and searching tools such as Google and Bing are extensively used

as the starting point for Web data consumption.

Keyword search over Linked Data, however, presents a few challenges.

Simply extracting tuples, containing the searched keywords, will leave out of the

mass of data other related data that could be relevant to human consumption of the

returned result, as can be seen on Table 2.

Table 2 - RDF Search example over tuples for the keyword "Hitchcock"

This can be improved if some of the related data concerning selected tuples

was also retrieved, which leads to another application of the graph representation.

So, instead of selecting tuples, the keyword search should, in addition to returning

the selected nodes, also return the neighbourhood of these nodes that are relevant

to the search in question. Figure 7 illustrates this scenario. A ranking algorithm

can then be used to determine which nodes and how deep the related edges and

nodes will be navigated and retrieved along the result set.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 27

Figure 7 - Example search for keyword "Hitchcock" result as RDF Graph and immediate

neighbours

That general search approach involves two steps after the graph

representation is available. First, it should retrieve from the graph the parts that

match the keywords, including all graph elements that are connected to those

matches. Then, it should rank those combined graph segments to present the top

ranking results. In this approach, the graph search is a crucial step. This is

typically done with pre-computed indexing systems. Those systems build an index

of nodes with some relevant metadata about it (e.g., cardinality, related edges and

nodes keywords etc.). The task of locating nodes relevant to keywords in an index

like this is a well-explored theme and can be efficiently executed.

However, traversing the graph to determine the connections between graph

segments is complex and time-consuming. If expected to be solved on-the-fly at

query processing time, it will result in an unresponsive system. To minimize that

impact, current systems do not perform a full search. Also, index schemes do not

provide a way to directly determine the connection between distant nodes, and to

retrieve a result set with more or all related data to those selected nodes, a

subsequent step of navigating the graph or a pre-defined heuristics must be

introduced.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 28

3.1.Tensor-based search

De Virgilio proposes [1] an approach to graph search based on principles of

linear algebra. The central concept is to capture all associations on the RDF graph

before query processing and indexing those on tensors. Because tensors can be

represented as matrices, this approach can be scaled using the extensive applied

techniques already developed on tensor calculus and computational algebra, and it

can be distributed with recent cloud computing techniques, which is the

motivation of this dissertation. Furthermore, the tensor-based approach doesn't

need to take into consideration any vocabularies or expected structure of the

dataset being indexed, using the abstract RDF model of tuples as described earlier.

This suits well the semi-structured nature of many datasets that don't have a well-

defined schema.

For a full description of the proposal, the reader should refer to the original

paper [1]. Here the mathematic principles and some intermediate definitions are

skipped to retain focus on main definitions, outputs, and the necessary process

steps of the approach to produce those outputs. The details about the specific

algorithms to generate the resulting indexes and the sparse matrix are detailed on

Chapter 4, where they are analysed to extract their requirements for the distributed

approach proposed in this dissertation.

3.2.Full-paths and templates

The tensor-based approach defines some initial concepts. First, it describes

the graph as:

G = (V,L,E), where:

G is a labelled directed graph

V is the set of nodes

L is the set of labels

E is the set of edges, on the form e(v,u), where v,u

belong to V and e belongs to L.

A node vsource is a source if there are no edges directed to it, i.e., vsource

belongs to V, but there is no e(v,u) where u = vsource. Similarly, a node vsink is a

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 29

sink if there are no edges directing from it, i.e., vsink belongs to V, but there is no

e(v,u) where v = vsink. All other nodes are intermediate nodes. From a graph

perspective, any node on the graph can be reached from at least one path

originating from a source node. This leads to the definition of a full-path:

pt = v1-e1-v2-e2-...-ef-vf, where:

vi belongs to V

ej belongs to L

v1 is a source

vf is a sink

vi-ej is a token in pt

f is the length of the full-path pt, i.e., the number of

its nodes.

Full-paths are similar when they have the same sequence of edge labels

composing it. They can be expected to convey homogeneous information. To

represent that, given a full-path, its sequence of edge labels, i.e., ej, is its template.

Similar full-paths, i.e., full-paths with the same sequence of edge labels, will share

the same template. All nodes, full-paths, and templates should be indexed on id-

value stores, represented as tables in the examples seen on Table 3, used as

reference on the next step of the process.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 30

Table 3 - Example of tables for nodes, full-paths and templates indexes

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 31

3.3.Sparse matrix representation

The tensorial representation of the RDF graph can be better understood by

its implementation as a sparse matrix of tuples, supported by three sets of indexes.

On the sparse matrix, the relation between a given node index, a full-path, and the

set of properties of that relation can be described as:

Mi.j = (o,l,t), where:

i denotes the index of the given node

j denotes the index of the given full-path

o is the position of the node with index i on the full-

path with index j

l is the length of the full-path with index j

t is the index of the template of the full-path with

index j

To further simplify implementation, the multidimensional matrix can be

flattened to a bi-dimensional matrix of tuples s = (o,l,t). And to avoid unnecessary

usage of memory, in the cases where the node with index i does not belong to the

path with index j, the tuple can be omitted. As a result, the tensorial representation

can be implemented as a sparse matrix of tuples.

Figure 8 - Sparse matrix as a bi-dimensional matrix of tuples

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 32

3.4.Retrieval and maintenance queries

The tensor-based approach also defines a set of six processing queries for

information retrieval over the stored sparse matrix and six maintenance queries for

updating and changing the graph when the dataset is updated. The retrieval

queries are:

• Node Query - takes as input a node n to find all full-paths containing

the given node;

• Final Node Query - a specialization of the Node Query, it also takes

as input a node n to find all full-paths that end at the given node;

• Path Query - takes as input a full-path p to find all nodes belonging

to the given full-path;

• Path Intersection Query - takes as input two full-paths p1 and p2 to

verify if an intersection exists between them;

• Path Intersection Retrieval Query - takes as input a full-path p to

find all full-paths that have an intersection with the given full-path;

• Path Cutting Query - takes as input a full-path p and a node n to find

the part of the given full-path that either starts or ends on the given

node.

And the maintenance queries are:

• Node Deletion - removes a given node n from the graph;

• Node Insertion - adds a given node n to the graph;

• Edge Deletion - removes a given edge e between two existing nodes

from the graph;

• Edge Insertion - adds a given edge e between two existing nodes to

the graph;

• Node Update - updates name or value of the given node;

• Edge Update - updates the name of an existing edge.

3.5.Summary

In this chapter, we provided an overview of the challenges of Linked Data

search. We discussed the problems of searching and extracting the correct amount

of information from an RDF graph and the challenges to retrieve data on large

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

Distributed RDF Graph Keyword Search 33

scale datasets. We then discussed the tensor-based approach proposed by de

Virgilio and hinted at a simplified set of definitions for the approach. These

simplifications keep the original retrieval and maintenance sets and flatten the

multi-dimensional matrix to a bi-dimensional one composed of tuples. In the next

chapter, we elaborate on this idea, by demonstrating how the proposed

simplification - working with a bi-dimensional matrix - can be used in a

distributed solution, allowing a scale up parallel system to store the RDF graph

dataset.

DBD
PUC-Rio - Certificação Digital Nº 1021777/CA

