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Abstract

Alicke, Alexandra Araujo; de Souza Mendes, Paulo Roberto (Ad-
visor). LAOS Rheological Characterization of an Elasto-
Viscoplastic Material. Rio de Janeiro, 2013. 88p. M.Sc. Thesis
— Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Large amplitude oscillatory shear flow (LAOS) is presently considered

one of the most promising methodologies to investigate the behavior of

complex materials. Since a wide range of industrial processes involves large

deformations, understanding how complex materials behave under these

conditions is fundamental for operation and design purposes. By performing

a thorough rheological characterization of a commercially available hair gel,

it was shown that a Je↵reys framework is suitable to interpret physically

LAOS rheology data of complex materials. As the stress amplitude and

frequency are independently varied, two classes of motion are observed,

characterized by a non-sinusoidal and a sinusoidal response, respectively:

structure-changing motions, when the stress amplitude is above the yield

stress and the frequency is of the order of the reciprocal of the thixotropic

characteristic time; and constant-structure motions, when either the stress

amplitude is below the yield stress or the frequency is much larger than the

reciprocal of the thixotropic characteristic time. Thus, a novel methodology,

the quasi-linear LAOS (QL-LAOS) methodology, is suggested for rheological

characterization and interpretation of LAOS results. Moreover, a remarkable

agreement between the theoretical predictions and experimental results was

obtained.

Keywords
Rheology; Viscoplastic Material; Rheometry; LAOS.
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Resumo

Alicke, Alexandra Araujo; de Souza Mendes, Paulo Roberto. Ca-
racterização reológica em LAOS de um material elastovis-
coplástico. Rio de Janeiro, 2013. 88p. Dissertação de Mestrado
— Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

O escoamento cisalhante oscilatório de grande amplitude (“large ampli-

tude oscillatory shear - LAOS”) é considerado atualmente uma das metodo-

logias mais promissoras para caracterização de materiais complexos. Como

uma grande faixa de processos industriais involve grandes deformações, é

de extrema importância entender como esses materiais se comportam me-

canicamente sob essas circunstâncias para o correto projeto e operação.

Através de uma caracterização reológica completa de um material elasto-

viscoplástico mostramos que o modelo de Je↵reys é adequado para interpre-

tar fisicamente os resultados em LAOS de materiais complexos. Conforme

a amplitude de tensão e frequência são variados independentemente, dois

tipos de movimento, caracterizados por respostas não senoidais e senoidais,

foram observados respectivamente: i) “movimentos a estrutura variável”,

quando a amplitude de tensão é maior que a tensão limite de escoamento

do material, e ii)“movimentos a estrutura constante”, para casos onde a

amplitude de tensão é menor que a tensão limite ou onde a frequência é

muito maior que o inverso do tempo caracteŕıstico do material. Assim, uma

nova metodologia, a “quasi-linear LAOS” (QL-LAOS) foi desenvolvida para

a caracterização reológica e interpretação de resultados em LAOS. Ademais,

foi obtida excelente concordância entre as previsões teóricas e os resultados

experimentais.

Palavras–chave
Reologia; Material Viscoplástico; Reometria; LAOS.
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“Be not diverted from your duty by any idle

reflections the silly world may make upon you,

for their censures are not in your power and

should not be at all your concerns.”

Epictetus
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1
Introduction

1.1
Motivation

Oscillatory shear tests have been widely used to investigate the rheolo-

gical behavior of many complex materials, which comprise a wide range of ma-

terials like polymer melts, suspensions, emulsions, biological macromolecules,

among many others. Generally speaking, oscillatory tests consist of applying a

sinusoidal deformation to the material and measuring its mechanical response.

A typical strain sweep test at fixed frequency is presented in Fig. 1.1 in a plot

of G’ (storage modulus) and G” (loss modulus) as a function of the strain

amplitude.

Figure 1.1: Schematic illustration of a strain sweep test, reproduced from [1].
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Chapter 1. Introduction 15

At small amplitudes, the response of the material is also sinusoidal. This

region of small amplitudes (SAOS) corresponds to the linear viscoelastic regime

and is characterized by constant G’ and G”. As will be explained later (Sec.

2.1), G’ is related to the elastic response of the material, whereas G” reflects

the viscous behaviour. Both moduli are defined based on the assumption that

the stress response is also sinusoidal.

However, at large enough amplitudes, the material response ceases to be

sinusoidal, so that G’ and G” can no longer be uniquely defined. This non-

linear behavior characterizes the large amplitude oscillatory shear, popularly

known as LAOS.

LAOS is nowadays considered one of the most promising methodologies

for assessing the mechanical behavior of complex materials. Since most in-

dustrial processes involve large stresses and deformations, understanding how

complex materials behave under such conditions is fundamental for optimiza-

tion and design purposes. Coating, spraying, lubrication, and injection molding

can be cited as some processes that involve large deformations. Also, it is im-

portant to study complex materials under large amplitude oscillatory shear

deformations once microstructural interactions, which greatly influence the

rheology, may be greater under these circumstances.

Moreover, besides industrial applications, large deformations are also of

great importance in more practical and everyday life situations. Recent studies

attempted to correlate nonlinear viscoelastic properties of food products, such

as cheese and dark chocolate, with composition [2] and with sensory and oral

processing characteristics [3, 4]. In the cosmetics field, some skin and hair care

gels’ sensorial attributes, such as spreadability, slipperiness, and tackiness were

found to be well predicted by LAOS rheology [5]. In addition, studies on soft

biological tissues [6] and human skin [7] were performed under LAOS regime to

investigate tissue injury and revealed strong nonlinearities in the mechanical

behavior of these materials.

Hence, the growing interest in LAOS experiments is readily explained.

As can be seen, large amplitude oscillatory shear experiments have a wide

range of applicability, from industrial processes up to everyday life situations.

Therefore, it is clear that there is a need for an appropriate methodology

for characterization under LAOS, as well as for material functions in the

nonlinear regime to predict mechanical behavior of complex materials under

large deformations.
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Chapter 1. Introduction 16

1.2
Research objectives

The present research aims at probing experimentally the predictions

made by de Souza Mendes and Thompson [8] by fully investigating the

rheological properties of an elasto-viscoplastic material, especially in the

large amplitude oscillatory shear (LAOS) regime. According to the model

predictions, it is expected that the LAOS results will show the existence

of a quasi-linear viscoelastic regime at high enough frequencies, so that the

appropriate material functions can be obtained.

1.3
Thesis overview

This thesis is divided into five chapters. As previously stated, the

motivation and objectives of this research are briefly described in Chapter

1.

In the beginning of Chapter 2, the well-known linear viscoelasticity

theory is summarized and its limitations are briefly discussed. Then, the

literature on LAOS is revisited. Cited works include Lissajous-Bowditch curves’

shapes analysis and attempts to mathematically describe the nonlinear regime

using Fourier-Transform, Chebyshev polynomials, among other techniques. In

the end of this chapter, the new proposed approach is presented.

Chapter 3 details the materials and methods used to characterize the

elasto-viscoplastic material. The sample placement procedure, as well as the

rheometric experiments, are described in detail. Also, the employed meth-

odology - the quasi-linear LAOS methodology - is explained. This chapter

also comprises the three appendixes, namely “Geometry selection” (App. A),

“Parallel-plate correction” (App. B), and “Details on the LAOS experiments”

(App. C).

The results of the rheological characterization are presented in Chapter

4. Data for constant shear rate (Sec. 4.1), steady state flow (Sec. 4.2), and

constant stress tests (Sec. 4.3), as well as for di↵erent oscillatory experiments

like time (Sec. 4.4), stress (Sec. 4.5) and strain (Sec. 4.6) sweeps are presented.

Results of the LAOS experiments (Sec. 4.7) are shown in terms of the wave

shapes, of Lissajous-Bowditch plots and of the LAOS viscosity. These results

are compared with the theoretical predictions of the model proposed by de

Souza Mendes and Thompson [8].

The main conclusions of the present research are highlighted in Chapter

5. At last, future steps are suggested.
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2
Background and Literature

2.1
Linear viscoelasticity

Viscoelasticity, as its name implies, is the combination of viscous and

elastic e↵ects. One simple way of understanding this kind of behavior is by

thinking of mechanical analogs, where springs and dashpots represent the

elastic and viscous elements, respectively. A spring is an element in which

the strain is proportional to the applied stress (Hooke’s law), so that

⌧ = G� (1)

The linear elastic response of a spring is immediate, as can be observed

from Eq. 1, once time is not a variable. Also, if the applied stress is removed,

the spring returns to its initial state. As for the dashpot, it represents the

purely viscous behavior of liquids according to Newton’s law, where the stress

is proportional to the rate of deformation:

⌧ = µ�̇ (2)

When a stress is applied, the dashpot deforms at a constant rate, until

the stress is removed.

The combination of these two elements can describe di↵erent kinds of

materials, as exemplified in Fig. 2.1. By connecting a spring and a dashpot in

series, the Maxwell model is obtained. It is a representation of a viscoelastic

liquid. On the other side, to obtain a representation for a viscoelastic solid, a

spring and a dashpot are placed in parallel (Kelvin-Voigt model).

Figure 2.1: Representation of Maxwell and Kelvin-Voigt models.
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These are the simplest possible combinations of the two elements, but

many other are possible, such as the Burgers and the Je↵rey’s models.

The general current understanding defines linear viscoelasticity for a

particular material as a region of small amplitudes in which stress varies

linearly with strain. The linear viscoelasticity has a well-developed framework,

so that this Section is an attempt to summarize information found in many

works [9, 10, 11, 12, 13], that seem to be most relevant to enable understanding

the ideas and results presented later on this text.

There are a number of rheometric experiments to probe the linear

viscoelasticity of a material, being the more common techniques the creep-

recovery and oscillatory experiments. As the present work deals with oscillatory

motions, this kind of experiment is detailed next.

Oscillatory testing consists of applying a sinusoidal motion to the sample

with the possibility of controlling frequency and strain/stress amplitudes inde-

pendently. When a sinusoidal deformation of amplitude �
a

, with �
a

pertaining

to the linear viscoelastic regime (i.e. in the SAOS region), is applied to a sample

at a fixed frequency ! , then

�(t) = �
a

sin(!t) (3)

or, in terms of the shear rate

�̇(t) = !�
a

cos(!t) = �̇
a

cos(!t) (4)

In this case, the stress ⌧ will also oscillate sinusoidally at the same frequency,

but in general shifted by a phase angle � with respect to the strain wave:

⌧(t) = ⌧
a

sin(!t+ �) (5)

Fig. 2.2 illustrates the input and output waves for this rheometric flow. In Fig.

2.2a, the strain and shear rate waves are exhibited, while Fig. 2.2b displays

three possible kinds of stress outputs: (i) purely elastic (Hookean), in phase

with the strain wave, (ii) purely viscous (Newtonian), in phase with the shear

rate wave, and (iii) linear viscoelastic, shifted by a phase angle � from the

input wave.
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Figure 2.2: Illustration of the strain, shear rate and stress waves of a typical
oscillatory test: (a) input waves; (b) possible output waves.

In general, the resulting stress wave can be decomposed into two waves

of the same frequency: one in phase with the strain wave (sin!t) and one 90�

out of phase with the strain wave - or in phase with the strain rate wave - (cos

!t) :

⌧(t) = ⌧ 0
a

sin!t+ ⌧ 00
a

cos!t (6)

Two material functions, the dynamic moduli G’ and G”, are defined as

G0(!) =
⌧ 0
a

�
a

, G00(!) =
⌧ 00
a

�
a

(7)

where G’ is the elastic or storage modulus, in phase with sin!t, and G” the

viscous or loss modulus, out of phase with sin!t (in phase with cos!t). Thus,

we can rewrite the stress as

⌧(t) = G0�
a

sin!t+G00�
a

cos!t (8)
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to illustrate the elastic and viscous contributions. Also, it can be shown that

tan � =
⌧ 00
a

⌧ 0
a

=
G00

G0 (9)

The two particular cases belong to the Hookean solid (purely elastic response)

and to the Newtonian liquid (purely viscous response). For a Hookean solid,

� = 0�, G0 = G and G00 = 0. For a Newtonian liquid, � = 90�, G0 = 0 and

G00 = µ!.

It is important to note that G’ and G” are defined only in the case of a

sinusoidal response. As previously commented in Sec. 1.1, this occurs in the

small strain domain. Thus, attention must be paid to only rely on G’ and

G” when testing in the linear viscoelastic region. Moreover, although being

popular and well-established material functions, they o↵er a rather qualitative

idea of the behavior of a material, instead of a physical meaningful quantity,

as for instance viscosity. Fig. 2.3 shows examples of a strain and a stress sweep

tests to illustrate the threshold of linear viscoelasticity and consequent onset

of non-linear behavior.

Figure 2.3: Strain sweeps reproduced from [13], with indication of the threshold
of linear viscoelastic regime.

It is clear that in the linear viscoelastic region both moduli G’ and G” are

constant, i.e. independent on strain or stress amplitude. Identifying the linear

viscoelastic region is important, once subsequent oscillatory testing, such as

frequency and time sweeps, should be performed at a constant strain/stress

amplitude pertaining to this region. Nevertheless, it is worth noting that G’

and G” are frequency dependent, i.e. G’(!) and G”(!).

Indeed, the same analysis is valid for a sinusoidal stress input and

resulting strain response, as is the case of a stress sweep test. In this case,

the corresponding quantities are the storage compliance J’(!) and the loss

compliance J”(!).
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Another important parameter that influences the behavior of the material

is the timescale of the flow, which in turn is directly linked to the frequency

in oscillatory experiments. A silly putty toy is one of the best examples of this

influence, because it shows a wide range of behaviors depending on time scale,

once it acts as a viscous liquid over a long time period, but as an elastic solid

over a short time period. Specifically, if it is let at rest over a long time, it will

“spread” (flow), however it can bounce as an elastic solid at shorter times (See

Fig. 2.4).

Figure 2.4: Behavior of a Silly Putty toy, reproduced from “Cambridge Polymer
Group”.

Indeed, it is the relation between the relaxation time of the material and

the timescale of the experiment which will dictate the behavior of the material.

This ratio is defined as the Deborah number (De)

De =
�

t
= �! (10)

Low De indicate a liquid-like behavior, which occurs at long times and low

frequencies, whereas high De indicates a solid-like behavior present at high

frequencies and short time scales. Again, the limits reduce to a Newtonian

liquid (De ! 0) and to a Hookean solid (De ! 1).

The Pipkin diagram [14] is a useful tool for visually displaying the

material behavior under a wide range of conditions. It is a plot of strain (or

shear rate) amplitude vs. frequency (or De number). An example is shown in

Fig. 2.5.
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fluid flows in practical applications, such as polymer processing or 
even in flame throwers. 

Nonlinear rheology vastly extends all the phenomena (elastic, 
viscous, and linear time dependent) discussed in Chapters 1-3. 
Elastic, viscous, and linear viscoelastic behaviors are but coastal 
zones on a continent of nonlinear rheology; see Figure 4.1.2. The 
abscissa on Figure 4.1.2 is the Deborah number, which is generally 
defined as the ratio of the material's characteristic relaxation time 
h to the characteristic flow time t .  

(4.1.1) 
h 

De = - 
t 

The origin of Deborah's number is indicated in the frontispiece to 
this text. In Figure 4.1.2 we take the characteristic flow time to be 
the inverse of the typical deformation rate p-', while in oscilla- 
tory flows we use the amplitude of the oscillatory strain times its 
frequency (you) - ' .  The elastic, Newtonian, and linear viscoelas- 
tic limits illustrated in Figure 4.1.2 have already been discussed 
in Chapters 1, 2, and 3, respectively. Second-order fluids, to be 
covered shortly, reside in a fringe of the regime of nonlinear vis- 
coelasticity that lies just across the border from the Newtonian 
domain. 

The breadth of the scope of nonlinear phenomena can be 
grasped in part by considering the various time-dependent probes 
of linear viscoelasticity cited in Table 3.3.2: sinusoidal oscillation, 
creep, constrained recoil, stress relaxation after step strain, stress 
relaxation after steady shearing, and stress growth after start-up 
of steady shearing. In the linear regime-that is, at small strains 
or small strain rates-the experimental results of any one of these 
probes (in simple shear, for example) can be used to predict results 
for any of the other probes, not only for simple shearing defor- 

Figure 4.1.2. 
Schematic diagram showing 
the behavior of viscoelastic 
fluids in the limits of low 
strain rates, low amplitude 
deformations, and high strain 
rates. Adapted from Pipkin 
(1972). 
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136 / RHEOLOGY Figure 2.5: Pipkin diagram, reproduced from [12].

As previously discussed for the De number, at low frequencies (long

timescales), the material behaves as a Newtonian fluid, while at high frequen-

cies (short timescales), a purely elastic behavior is observed. In addition, for

small amplitudes and a wide range of frequencies, the linear viscoelastic be-

havior is present. These “limits” of the Pipkin diagram are theoretically well

defined.

It was discussed that the material functions G’ and G” are valid only in

the case of a sinusoidal response. However, for the big portion pertaining to

the “nonlinear viscoelasticity”, it is usually not well defined. This nonlinear

behavior is the focus of the LAOS analysis encountered in the literature.

2.2
Literature on LAOS

The idea behind LAOS is to attempt to describe the mechanical behavior

at large deformations, i.e. real processing conditions. Also, materials that

exhibit similar linear viscoelastic properties may show di↵erent nonlinear

viscoelastic properties. According to the review by Hyun et al. [1], the

basic concept of LAOS was already introduced in the 1960, 1970s. In early

publications, the nonlinear behavior was investigated for di↵erent viscoelastic

materials under oscillatory shear, but technical problems, such as resolution of

the torque transducer and hardware limitations, hindered the progress of the

studies. Nevertheless, some analysis methods were already suggested, like the

stress shape and Fourier transform analysis.
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A qualitative indication of the behavior of the material under LAOS can

be given by Lissajous-Bowditch curves [15, 16], which are plots of parametric

equations of sinusoidal form:

x(t) = a sin(!t+ �) (11)

y(t) = b sin(t) (12)

Many authors omit the Bowditch part of the name, though. Orbital traject-

ories bearing Lissajous’ name were studied by Bowditch in 1815, predating

Lissajous’ treatment by more than 40 years. In this work, for the sake of sim-

plicity, only the Lissajous name will be used to refer to Lissajous-Bowditch

curves.

The construction of a Lissajous curve is illustrated in Fig. 2.6.

Figure 2.6: Illustration of the construction of a Lissajous curve. Images were
obtained from an animated gif file found on Wikipedia.

Each column corresponds to an instant of time. The red waves (first

row) correspond to the input signal as a function of time and the blue waves

(middle row) correspond to the output signal, also as a function of time. The

green curve (bottom row) is the resulting Lissajous curve, being drawn as time

elapses from left to right. It can be seen that the input and output signals are

90-degrees phase shifted: this means that when the marked value on the red

wave is equal to zero, the blue wave is at its maximum, and conversely, when

the red wave is at its maximum, the marked value on blue wave is equal to

zero, so that the resulting Lissajous is a circle.

In rheology, the Lissajous curves are plots of the instantaneous stress vs.

strain (elastic form) or stress vs. shear rate (viscous form). Three examples of

dimensionless Lissajous figures, corresponding to the waves in Fig. 2.2b, are

shown next, in terms of elastic (first row) and viscous (second row) Lissajous

curves:

DBD
PUC-Rio - Certificação Digital Nº 1121442/CA



Chapter 2. Background and Literature 24

(a)

(b)

Figure 2.7: Lissajous curves in elastic (a) and viscous (b) forms. The blue
curves belong to a Hookean solid, the red ones to a Newtonian liquid, and the
purple to the linear viscoelastic behavior, according to Fig. 2.2.

As seen in Fig. 2.6, 90-degrees phase shifted signals generate circular

orbits. Clearly, this occurs in the case of Newtonian liquids in the elastic form

of the Lissajous and of Hookean solid in the viscous form. Conversely, when

the input and output signals are in-phase, the resulting Lissajous curve is a

straight line, as is the case of Hookean solid in the elastic form, once the shear

stress is directly proportional to the strain, and the case of Newtonian liquid

in the viscous form, as the stress is directly proportional to the shear rate.

Thus, it is intuitive that the shape of Lissajous curves of a linear

viscoelastic response should be a combination of both. The resulting shapes

are ellipses, which indicate that the output signal is shifted from the input

signal by a phase angle �, indicating the “tilting” of the ellipse.

However, for the LAOS regime, an infinity of Lissajous curve shapes are

possible. Indeed, the degree of non-linearity of the response is indicated by the

departure from the elliptical shape. The shape will also depend on the degree

of elasticity, thixotropy, presence of yield stress, among other.

In addition, some recent works present Lissajous curves in a 3-D repres-

entation of stress, strain and shear rate. Ewoldt et. al [17] investigated the stress

response of a pseudoplastic xanthan gum solution and an elasto-viscoplastic

drilling fluid. Results are reproduced in Fig. 2.8, which include the 3D plot

and Pipkin diagrams containing the elastic (left) and the viscous (right) forms

of the Lissajous plots.
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(a)

204 Rheol Acta (2010) 49:191–212

Fig. 8 Steady-state Lissajous curves for the xanthan gum solution
(0.2 wt.% aqueous). a Un-normalized 3D Lissajous curves at ω =
3.75 rad s−1. b, c Normalized curves arranged in a Pipkin space
at the corresponding input parameters of frequency and strain-
amplitude, {ω, γ0}. b individual plots of normalized stress (solid

lines) and elastic stress (dashed lines) vs. strain; c individual plots
of normalized stress (solid lines) and viscous stress (dotted lines)
vs. strain rate. The maximum stress σmax in each test is shown
above each limit cycle

rate (Fig. 8c) appear as shear thinning at the largest
strain amplitude. The response is primarily viscous in
the low frequency, large amplitude regime, since the
single-valued curves of viscous stress σ ′′(t) vs. strain
rate γ̇ (t) closely correspond with the loops of total
stress σ (t) vs. strain rate γ̇ (t) (Fig. 8c). The xanthan
gum solution is, therefore, a shear-thinning viscoelastic
liquid.

The similarity to a yield-like response can be quanti-
fied by examining contour plots of S, T, and φ, as shown
in Fig. 9 (other viscoelastic parameters (e1, e3, δ, etc.)
can also be shown as contours in the 2D space of {ω, γ0},
but are omitted here for clarity and brevity). For a
perfect plastic response, these parameters are expected
to approach the limiting values S → 1, T → −∞, and
φ = 1. Within the limits of the linear regime (γ0 = 1),

(b)

206 Rheol Acta (2010) 49:191–212

Fig. 10 Steady-state Lissajous curves for the drilling fluid, shown
for a selected range of strains and frequencies. a Un-normalized
3D curves for fixed ω = 4.75 rad s−1 and strain amplitudes γ0 =
0.562, 1, 1.78, 3.16, 5.62, 10. b, c Normalized 2D projections
of σ/σmax arranged in a Pipkin space according to the input

parameters {ω, γ0} which generated each response curve. The
maximum stress is shown above each curve. b individual plots
of normalized stress (solid lines) and elastic stress (dashed lines)
vs. strain, c individual plots of normalized stress (solid lines) and
viscous stress (dotted lines) vs. strain rate

for strain amplitude γ0 ≈ 0.1. The nonlinearity is suf-
ficiently strong that the viscous Lissajous curves appear
to self-intersect, forming secondary loops. These appar-
ent self-intersections lead to the formation of secondary
loops and are quite generally observed in sufficiently
nonlinear LAOS responses. For example, they can also
be observed with the xanthan gum solution (Fig. 8c,
γ0 = 10, ω = 0.15 − 3.75 rad s−1) and have been ob-
served for other material systems including a micelle
solution (Ewoldt et al. 2008), a polystyrene solution
(Jeyaseelan and Giacomin 2008), molten polystyrene
(Tee and Dealy 1975), and a polymer melt in the
absence of long-chain branching (Stadler et al. 2008).

Some nonlinear viscoelastic constitutive models also
show secondary loops, including a non-affine network
model (Jeyaseelan and Giacomin 2008) and a single
mode Giesekus model (Ewoldt and McKinley 2009).
Such secondary loops are correlated with viscoelas-
tic stress overshoots in which the instantaneous stress
is unloaded more quickly than new deformation is
accumulated (Ewoldt et al. 2008), quantitatively cor-
responding to negative values of G′

M. A detailed
description of this phenomenon is given in a companion
communication (Ewoldt and McKinley 2009). Anima-
tions of 3D space curves (Figs. 8 and 10) are provided as
supporting material. The complexities of this transition

Figure 2.8: 3D representation of LAOS results for (a) shear-thinning xanthan
gum solution and (b) elastoviscoplastic drilling fluid, reproduced from [17].
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Although Lissajous curves may give a good insight into the material

behavior, mathematically defined and physically meaningful quantities are ne-

cessary for proper description of the mechanical behavior of complex materials.

To quantify the nonlinear oscillatory stress response, other material functions

are needed, once G’ and G” are not valid material functions in the LAOS re-

gime. There are di↵erent approaches that can be found in the LAOS literature.

It is worth noting that many of these existing approaches rely on heavy math-

ematics. Since our proposed methodology is quite di↵erent, based on rather

physical arguments, it is beyond the scope of this text to discuss the other

methodologies in detail. Thus, only the main idea of each approach will be

discussed.

The Fourier transform rheology developed by M. Wilhelm [18, 19, 20] was

the first well established method for analysing nonlinear viscoelastic oscillatory

motions. The nonlinear response of the material is decomposed into a Fourier

series, i.e. in the case of a strain input of a certain frequency, the stress signal

is changed to display the amplitudes and phases as a function of the input

frequency !. According to the authors, the frequency dependent spectrum can

detect even very weak nonlinearities in the stress response, in comparison to

data in the time domain. The stress can be represented as [11, 19]

�(t) =
X

n=1,odd

�
n

sin(n!t+ �
n

) (13)

where the amplitude �
n

(!,�0) and the phase angle �
n

(!,�0) of the harmonics

depend on both frequency ! and strain amplitude �0. Eq. 13 is the starting

point of the FT-rheology. It is also possible to rewrite each Fourier component

from Eq. 13 in components which are in-phase and out-of-phase with the strain

input as follows

�(t) = �0
X

n,odd

[G0
n

(!, �0)sin(n!t) +G00
n

(!, �0)cos(n!t)] (14)

where G0
n

and G00
n

are the Fourier coe�cients. In the linear viscoelastic regime,

all moduli in Eq. 14 vanish, except the first harmonic moduli G0
1 and G00

1,

reducing to the elastic modulus G’ and loss modulus G”. The intensity of the

higher harmonics is the measure of nonlinearity, since they are not detectable

in the small amplitude regime. Also, because of the odd symmetry between

strain and stress signals, only odd harmonics are expected.

The FT is a complex transformation, so that even for a real time-domain

data set s(t) the transformation results in a complex s(!) with real and

imaginary parts of the spectrum. Also according to the review by Hyun and

coworkers [1], the complex mathematics is one of the reasons why there are
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many ways to interpret the complex nonlinear response.

Experimentally, the time dependent deformation and the torque of the

rheometric experiment are externally digitalized, Fourier transformed and

further evaluated with a self-developed software, as illustrated in Fig. 2.9.

A detailed description of the experimental methodology is given in the work

by Wilhelm [19].

(a) (b)

Figure 2.9: (a) FT-rheology experiment set-up, reproduced from [18], (b)
Example of a nonlinear normalized stress wave together with its FT-spectrum.

Moreover, an example of a FT spectrum is shown in Fig. 2.9 b, where the

magnitude of the odd harmonics represents the level of nonlinearity. Usually,

the relative intensity of the third harmonic (I3/1 ⌘ I (3!)/ I (!) ) is the most

important when quantifying nonlinearity among the higher harmonics. The

number of higher harmonics that can be measured depends mostly on precision

of the measuring set-up, as well as on the signal-to-noise ratio of data. A

lot of care needs to be taken when acquiring the time signal so as to obtain

“highly resolved, artifact-free spectra with low noise level” [18]. Mechanical

and electrical shielding, as well as data oversampling, are some techniques

used to improve the raw data quality.

Despite being a complicated technique, the FT-rheology enabled the

acquisition of high resolution torque signals from commercial rheometers and

has been widely used in the literature for the LAOS characterization of various

complex fluids.

An alternative technique to quantify the nonlinear behavior was de-

veloped by Cho et. al [21]. The “Stress Decomposition” (SD) method decom-

poses the nonlinear stress wave into “physically meaningful” elastic and viscous

components. This was possible using geometrical arguments and considering

the stress to be a function of the independent inputs of strain and strain-rate
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� = �(�, �̇), instead of the initial time domain representation � = �(t). Thus,

the stress � can be decomposed into elastic stress �’ (single-valued function of

strain) and viscous stress �” (single-valued function of strain-rate) components

as

�0 = �0 (x, �0) x , �00 = �00 (y, �0) y (15)

where �0 and �00 are the generalized dynamic moduli, x = � and y = �̇

/ !. According to the authors, “although the SD decomposition analysis is

equivalent to the FT analysis, it is superior to FT because it is based on a

physical axyom, (...) rather than on a pure mathematical analysis of nonlinear

signals.”.

Figure 2.10 shows results by Ewoldt et. al [22] as an example of the

geometrical interpretation (SD) by Cho et. al on LAOS data of a biological

soft material.

Figure 2.10: Example of SD on LAOS results, reproduced from [22].

Both elastic and viscous forms of the Lissajous curve are presented in

Fig. 2.10. The plot on the left corresponds to the total stress (black line) and

elastic stress �’ (red dotted line) as a function of the strain, while the plot

on the right exhibits the total stress (black line) and viscous stress �” (blue

dotted line) as a function of the shear rate. As can be seen, the plots of �’

and �” yield single-valued functions, instead of the closed loops formed by the

total stress plots. Then, Cho et. al [21] suggest a polynomial regression of the

form

�0(x, �0) = G0(!)x+G0
3(!, �0)x

3 +G0
5(!, �0)x

5 + ...

�00(y, �0) = G00(!)y +G00
3(!, �0)y

3 +G00
5(!, �0)y

5 + ... (16)
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to fit the �’ and �” curves. However, the material properties obtained from the

polynomial coe�cients may depend on the order of the polynomial chosen.

Thus, in the same work by Ewoldt and coworkers, the authors extend

the concept of SD using the Chebyshev polynomials of the first kind to

describe �’(x ) and �”(y). They claim the Chebyshev polynomials is the most

appropriate set of basis functions since it can describe the measured stress

in the orthogonal space formed by the strain and strain-rate. It also has the

advantage of considering the stress dependence only on frequency and strain

amplitude.The stress is decomposed as

�0(x) = �0
X

n:odd

e
n

(!, �0)Tn

(x)

�00(y) = �̇0
X

n:odd

v
n

(!, �0)Tn

(y) (17)

where T
n

(x) is the n-th order Chebyshev polynomial of the first kind, x =

�/�0, y = �̇/�̇0, en(!,�0) the elastic Chebyshev coe�cients, and v
n

(!,�0) the

viscous Chebyshev coe�cients. When the stress components �’ and �” are

related to the Fourier decomposition (Eq. 14), Chebyshev coe�cients can be

calculated from the Fourier coe�cients. In this sense, this framework is said

to give physical meaning to Fourier coe�cients.

In addition, Ewoldt et al. [22] proposed viscoelastic moduli for the

nonlinear regime, e.g. minimum-strain and large-strain elastic modulus, and

minimum-rate and large-rate dynamic viscosity, which are identified in Lissa-

jous plots as shown in Fig. 2.11.

The minimum-strain modulus G0
M

is the tangent modulus at zero in-

stantaneous strain (maximum �̇)

G0
M

⌘ d�

d�

����
�=0

=
X

n=odd

nG0
n

(18)

and G
L

, the large-strain modulus, is the secant at maximum strain (�̇ = 0 s�1)

and is given as

G0
L

⌘ d�

d�

����
�=�0

=
X

n=odd

nG0
n

(�1)
n�1
2 (19)

The minimum-rate dynamic viscosity ⌘0
M

is the instantaneous viscosity

at the smallest shear-rate, defined as

⌘0
M

⌘ d�

d�̇

����
�̇=0

=
1

!

X

n:odd

nG00
n

(�1)
n�1
2 (20)
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Figure 2.11: Illustration of viscoelastic moduli proposed by Ewoldt et al.,
reproduced from [22].

and the large-rate dynamic viscosity, the instantaneous viscosity at the largest

�̇, as

⌘0
M

⌘ d�

d�̇

����
�̇=�̇0

=
1

!

X

n:odd

nG00
n

(21)

A parameter called strain sti↵ening ratio, defined as

S =
G

L

� G
M

G
L

(22)

indicates the behavior of the sample: (i) S = 0 indicates a linear response; (ii)

S > 0 indicates intra-cycle strain sti↵ening, and (iii) S < 0 indicated intra-

cycle strain softening. Conversely, the parameter T (shear thickening ratio)

was defined as
T =

⌘0
L

� ⌘0
M

⌘0
L

(23)

where (i) T = 0 indicates a single harmonic linear viscous response; (ii) T >

0 indicates intra-cycle shear thickening, and (iii) T < 0 indicated intra-cycle

shear thinning.

This framework was used to study the behavior of pseudoplastic and

elasto-viscoplastic materials [17], as well as model power-Law gluten dough

[23], to study self-intersection and seconday loops on LAOS results [24], in-
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vestigate di↵erences when performing LAOStress (i.e. stress-controlled exper-

iments) [25], among other. McKinley’s group at MIT also provides a free soft-

ware for analyzing raw data within their framework.

Rogers and Lettinga [26] reviewed and discussed the previous mentioned

approaches. Rogers et al. [27, 28] developed a technique which is not based

on the assumptions of linear algebra to analyze LAOS responses. Instead,

nonlinear oscillatory responses are described as a result of periodic sequences

of physical processes (SPP) when observing the response wave in a 3D space

formed by stress, strain and shear rate. In the author’s words, “we are able

to discern elastic and viscous processes in the waveforms by analyzing the

wave shapes in a manner that is based not on whole-waveform approach but

rather on a sequence of physical processes.”. Moreover, the authors claim this

approach might be more straightforward, since it does not rely on infinite series

as in the Fourier and Chebyshev analysis techniques.

Quantitatively, the SPP approach [29] relies on three vectors in the 3D

space defined by strain, strain rate and stress: the binomial vector B (normal

to the space curve), and two reference vectors s1 and s2 with

s1 = [�1, 0, 0]

s2 = [0, 0, 1]

Bmod = [B
�

, !B
�̇

, B
�

] (24)

A typical linear viscoelastic response is shown in Fig. 2.12.

Figure 2.12: Linear viscoelastic response plotted in a 3D plane, together with
projections of the periodic orbit on 2D planes. The binomial vector B and
reference vectors s1 and s2 are indicated (reproduced from [29]).
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From the vectors above, the phase angle � and complex modulus G⇤ can

be obtained. Also, dynamic moduli R’ and R” are defined as the projections

of the binomial vector into the strain and shear rate directions and can be

obtained with

R0(�0,!, t) = |G⇤(�0,!, t)|cos �(t)

R00(�0,!, t) = |G⇤(�0,!, t)|sin �(t) (25)

Again, in the linear viscoelastic regime, R’ and R” reduce to G’ and G”,

respectively.

The SPP methodology attempts to analyze the nonlinear material re-

sponse by considering two material functions in a similar way as the SD ap-

proach. However, by reducing the number of material functions to two, these

functions depend on frequency, amplitude, and time, while in the Fourier and

Chebyshev approaches strain and frequency are decoupled from time.

On the other side, both Fourier and Chebyshev techniques rely on the

idea of generalizing the linear viscoelastic material functions G’ and G” by a

series of infinite coe�cients (G0
n

and G00
n

in the former, and e
n

and v
n

in the

latter), so as to obtain the elastic and viscous contributions. Moreover, it is

di�cult to attribute physical meaning to the di↵erent higher harmonics.

The authors from the previous cited review [1] suggest that the best

method to analyze the nonlinear viscoelastic response of a complex material

may depend on the material at hand, once each approach has its own merits

and disadvantages. Thus, there is still the need in the literature for a more

general, capable of accommodating all kinds of behaviors, and physically

meaningful model to analyze LAOS results.

To this end, a novel methodology for LAOS data analysis was developed

during this research [30]. Thompson and de Souza Mendes [31] proposed a

model-based framework (MBFR) to analyze LAOS results. In the MBFR,

the parameters of any model become the material functions describing the

mechanical behavior of a complex material. The constitutive model developed

by de Souza Mendes [32] and de Souza Mendes and Thompson [8] is based

on the Je↵rey’s model, whose mechanical analog is displayed in Fig. 2.13.

The authors emphasize the importance of choosing the appropriate model

framework, which should be capable of predicting all types of mechanical

behavior [31].
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�e �v

� = �e + �v

�r

�sGs

⌧1

⌧2

⌧ = ⌧1 + ⌧2

Figure 2.13: The mechanical analog corresponding to the Je↵rey’s model.

In this figure, G
s

is the structuring-level-dependent elastic modu-

lus, ⌘
s

the structuring-level-dependent relaxation viscosity, and ⌘
r

the

structuring-level-dependent retardation viscosity. Also, the total structuring-

level-dependent viscosity is defined as ⌘
v

⌘ ⌘
s

+ ⌘
r

. The di↵erence from the

classical Je↵rey’s model is that here G
s

, ⌘
s

, and ⌘
r

are functions of the struc-

turing level �, which describes the state of the microstructure. � can vary from

0 (completely unstructured state) to �0 (fully structured state). Di↵erent kinds

of behavior corresponding to di↵erent structuring levels can be predicted, from

a purely elastic solid up to a purely viscous liquid, including viscoelastic solid

and viscoelastic liquid behaviors.

The following equations originate from the Je↵rey’s analog:

⌧ = ⌧1 + ⌧2

⌧1 +
⌘s

Gs
⌧̇1 = ⌘

s

�̇

⌧2 = ⌘
r

�̇ (26)

These equations have an analytical solution for oscillatory flows as long

as the Je↵reys material functions remain fixed throughout a cycle, i.e, when the

stress response is sinusoidal. Therefore, the following analysis is expected to

be valid only in the cases that an elliptical viscous Lissajous curve is obtained.

The results obtained by numerical integration of the model equations for

the case of oscillatory flows already showed the existence of sinusoidal stress

responses at high enough frequencies, i.e. “whenever the characteristic time of

change of the microstructure is much larger than the reciprocal frequency of

the LAOS test” [8]. An example is shown in Fig. 2.14.
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Figure 2.14: Model predictions of de Souza Mendes and Thompson [8].

The existence of two classes of motion were shown: i) structure-changing

motions, characterized by a non-sinusoidal response; and ii) constant-structure

motions, characterized by a sinusoidal response. In the first type of motion,

the state of the material microstructure is periodically changing along the

experiment. Since these changes can be dramatic dependent upon the type of

the material, they can greatly disturb the interpretation of the results and the

understanding of the mechanical behavior of the material.

Thus, while all present LAOS analysis focus on non-sinusoidal stress

responses, which imply major microstructural changes along the cycles, the

proposed methodology relies on data obtained from sinusoidal responses, or

the “constant-structure motions”, which dramatically simplifies the analysis.

We call this approach the quasi-linear LAOS (QL-LAOS), once it is similar

to the linear viscoelastic regime in the sense that the output wave is also

sinusoidal. The main advantage of the MBFR methodology combined with

the QL-LAOS experiments is to provide material functions whose physical

meanings are evident, as opposed to what is usually employed in the literature,

as well as being capable of predicting the material behavior under di↵erent flow

conditions. Details of the employed methodology are discussed in Sec. 3.2.
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3
Materials and Methods

A commercial hair gel (“Gel Bozzano 4 - mega fixação extra forte”),

which is basically a concentrated Carbopol dispersion, was chosen as our elasto-

viscoplastic material. It is worth noting that an elasto-viscoplastic material

behaves as a linear viscoelastic solid at stresses below the yield stress ⌧
y

, but

irreversibly deform and flow as a fluid for stresses above ⌧
y

. To assure that the

same material was tested throughout the research, which spanned for several

months, approximately 3 Kg of gel were used to perform the almost 500 tests

contained in this work.

Two rheometers were employed, namely a stress controlled AR-G2 and

a strain-controlled ARES-G2, both by TA Instruments (Fig. 3.1).

(a) (b)

Figure 3.1: Rheometers (a) AR-G2; (b) ARES-G2.

The AR-G2 has a combined motor and transducer, which means that

both applied stress and measured strain derive from the upper fixture. This

is possible due to an accurate PID control. On the other hand, the ARES-G2

has separate motor and transducer, which permits inertia-free torque meas-

urements. The motor controls the lower geometry by imposing a displace-

ment/angular velocity, which is related to the strain/shear rate, and the res-
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ulting torque is measured by the transducer located in the upper part of the

rheometer.

Since apparent wall slip is known to occur at low shear rates for most

dispersions, cross-hatched parallel plates (Fig. 3.2) were used in the rheological

characterization of this gel. More details on geometry selection are given in

Appendix A.

(a)

(b)

Figure 3.2: Cross hatched parallel plate geometry: (a) lower and upper plates;
(b) detail.

However, the shear rate is not constant across the radius in the parallel

plate geometry [12]. Thus, the flow is inhomogeneous and the calculated

stress needs to be corrected for this geometry. The well-known Weissenberg-

Rabinowitsch equation was employed for steady state flow data, and a novel

correction for oscillatory flows was developed. This topic is better addressed

in Appendix B.

The sample placement procedure is illustrated in Fig. 3.3. A lot of care

is taken in order to obtain repeatable results.
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Figure 3.3: Steps for setting up the rheometric experiments.

For every run, a new gel sample is used. The gel is loaded on the center of

the lower plate with a glass syringe (Figs. 3.3-1 and 2). Air bubbles need to be

eliminated from the sample so as not to violate the continuum hypothesis,

which states that the gap needs to be at least ten times bigger than the

particle/droplet/bubble size. With the aid of an empty syringe, the bubbles

are “sucked” from the sample, one bubble at a time (Fig. 3.3-3). Once all

bubbles are removed, the upper fixture is slowly lowered (Fig. 3.3-4) to avoid

air entrapment and the gel spreads across the gap. When a 1.05mm gap is

reached, the sample is carefully trimmed with a cotton swab (Fig. 3.3-5).

Finally, the gap is set to 1.00mm (Fig. 3.3-6). Then, a solvent trap cover

is placed to minimize evaporation of the sample.
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Before testing, the sample is kept at rest for stabilization of the temper-

ature and relaxation of the material. It was observed that if the sample is not

kept at rest for enough time, total relaxation will not occur and a residual

stress can a↵ect the results. If this happens, the output stress wave, and thus

the Lissajous curve, will be vertically shifted, i.e., maximum and minimum

values have not the same modulus, although the amplitude of the wave is cor-

rect. Hence, this step is particularly important for the experiments presented

in Sec. 4.7, where we observe the response of the individual oscillation cycles,

and not just the amplitude values. Residual torque might be generated from

spreading of the material across the gap or from trimming the sample. Hence,

after setting up the test, the torque acting on the sample is monitored. After

about 15 minutes, the torque stops decreasing and reaches an approximate

constant value, so that the rheometric experiment can be performed.

3.1
Rheometric experiments

A large set of rheometric experiments was carried out to fully characterize

the material behavior. Every curve plotted in Chapter 4 is an average of

at least three tests, except for the Lissajous plots. All strain-rate controlled

experiments, i.e. constant shear rate, strain- and time sweeps, were performed

in the ARES-G2 rheometer, whereas the stress controlled tests (creep and

stress sweeps) were carried out in the AR-G2 rheometer. Flow curves and time

sweeps were carried out in both rheometers for comparison purposes.

Indeed, the steady state flow curve is perhaps the most popular rheomet-

ric experiment. It shows the general behavior of the material, for example if

shear thinnnig, shear thickening or viscoplastic. Moreover, the parameters of

the appropriate constitutive equation for shear stress (or shear viscosity) can

be obtained. In our case, the Herschel-Bulkley model, given by

⌧(�̇) = ⌧
y

+ k �̇ n (1)

was chosen to fit the data of the viscoplastic gel and consequently the yield

stress (⌧
y

), the consistency index (k), and the power-law exponent (n) can be

determined.

Constant shear rate tests are useful to obtain the time needed for the

material to reach steady state at di↵erent shear rates, and thus the minimum

point time input for the flow curve. Moreover, the steady state values of shear

stress and viscosity can be compared with the ones obtained from the flow

curve, for di↵erent shear rates.
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Creep (constant stress) tests are commonly performed to assess the yield

stress of a material. A constant stress is applied to the sample and the strain

and/or strain rate responses are measured as a function of time. If the applied

stress is below ⌧
y

, the strain tends to a constant value and the shear rate

goes to zero, indicating that no flow occurs. At each experiment, the applied

stress is increased until it is su�ciently high to make the material flow. If the

viscosity response over time is analyzed instead, viscosity bifurcation curves

are obtained [33, 34].

In addition, di↵erent oscillatory experiments were performed, namely 1)

stress amplitude sweep, and 2) strain amplitude sweep, and 3) time sweep.

Oscillatory tests consist mainly of tuning frequency and strain or stress

amplitudes by imposing a sinusoidal motion to the sample.

Stress and strain amplitude sweeps are similar tests. Both are carried out

at a fixed frequency, sweeping either the strain or stress amplitude. From these

tests, the linear viscoelastic region can be determined as the region where G’

and G” are constant (and parallel to each other).

Time sweeps were performed to evaluate possible changes in the sample

due to evaporation. A fixed frequency and a constant strain amplitude (be-

longing to the viscoelastic region) are applied to the sample, and the response

of the G’ and G” material functions are recorded over time. If the sample is

stable, no changes occur in the moduli, i.e. G’ and G” remain constant over

the duration of the test. Hence, from this test we can obtain the maximum

test time.

The LAOS results are achieved using individual time sweeps under the

transient acquisition mode. This means that instead of obtaining the data in

terms of the wave amplitudes, as in regular oscillatory experiments, the “raw

data”, i.e. data corresponding to the entire individual cycles, is saved. Since

the focus of this work is on the large amplitude domain, these experiments are

described next in detail.

3.2
Quasi-linear LAOS methodology

The idea of the employed LAOS methodology is to probe the material

under a wide range of time scales and amplitudes. In this work, we chose to

investigate the material’s behavior under a broad range of frequencies, varying

from 0.01 to 100 Hz, for four di↵erent stress amplitudes, namely 10 Pa, 95 Pa,

125 Pa, and 312Pa. Di↵erent stress levels correspond to di↵erent structuring

levels (�) of the material.

To obtain inertia-free torque measurements, the strain rate controlled
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rheometer was employed. That means we actually control the strain amplitude

instead of the stress amplitude. Nevertheless, it is possible to indirectly control

the stress amplitude: for each frequency, a preliminary strain amplitude sweep

test was performed, and the strain amplitude that corresponds to the sought-

for stress amplitude was determined.

To guarantee that steady state data was always achieved, each LAOS

result corresponds to an individual time sweep test with fixed frequency and

amplitude, as previously mentioned. To obtain the raw data, i.e. data for each

individual cycle performed, instead of the regular amplitude data recorded from

oscillatory tests, the “correlation” mode of data acquisition must be changed

to “transient” mode. Then, the number of points per cycle, the delay time

and/or delay cycles, and the sampling cycles can be set. Obviously, the number

of recorded cycles depends on the imposed frequency and on the duration of

the test. More details on the set-up of these experiments is given in Appendix

C.

It is also important to note that since the parallel-plate geometry was

employed, the stress amplitude obtained from each test is corrected using the

equation presented in Appendix B:

⌧
R,a

=
T
a

2⇡R3


3 +

d ln (T
a

/2⇡R3)

d ln �̇
R,a

�
(2)

where the derivative
d ln(Ta/2⇡R3)

d ln �̇R,a
is a function of the amplitude �̇

R,a

and

needs to be evaluated at a constant frequency and varying �̇
R,a

around the

value of interest. Unfortunately, this correction is applicable only to the stress

amplitude, and not to the instantaneous stress along the cycle, so that the

Lissajous curves cannot be corrected. Moreover, Equation 2 is valid only for

sinusoidal responses.

To analyze the LAOS results, a model-based framework, the quasi-linear

LAOS (QL-LAOS) methodology, is employed. As mentioned in the end of

Sec. 2.2, the structuring-level-dependent Je↵reys model proposed by de Souza

Mendes and Thompson [8] is applied to rheometric oscillatory flows to obtain

physically meaningful material functions.

It is important to emphasize that this methodology di↵ers significantly

from the ones usually employed in the literature, since most works focus on

analyzing the structure changing motions, i.e. the non-sinusoidal responses.

During a cycle in a large-amplitude oscillatory experiment, the stress varies

from zero to large values. Consequently, the state of the microstructure changes

along each cycle, rendering the task of assessing the mechanical behavior of

the material rather di�cult. Contrariwise, when performing experiments in
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the quasi-linear regime, for each � the mechanical behavior of the material is

measured at a fixed microstructural state.

As previously discussed and according to de Souza Mendes and

Thompson [8], elliptical curves are obtained when: (i) ⌧
a

< ⌧
y

, for all fre-

quencies, and (ii) ⌧
a

& ⌧
y

for t
eq

� 1/!, as illustrated in Fig. 3.4.Quasi-linear LAOS methodology 
Structure changing motions 

(non-sinusoidal response) 
Constant structure motions 

(sinusoidal response) vs. 

(for all !’s) 
⌧a < ⌧y

(                ) 
⌧a & ⌧y

teq � 1/!

Figure 3.4: Focus of our quasi-linear LAOS methodology.

However, in general it is not guaranteed that a constant-structure motion

is always attainable. There may exist materials whose time scale of microstruc-

ture buildup is so small that the structuring level will change significantly

along the cycle even at the highest frequencies available. For these materi-

als, QL-LAOS might not be useful. For the hair gel employed here, however,

constant-structure motions were attained for a wide range of frequencies as

will be seen in Chapter 4.

From each Lissajous curve it is possible to calculate the ratio ⌧
a

/�̇
a

,

referred to as QL-LAOS viscosity. Thus, for each stress amplitude ⌧
a

(or struc-

turing level �) a plot of the LAOS viscosity vs. frequency can be obtained,

and the experimental results can be fitted by the following expression [30]:

⌧
a

�̇
a

=

s
(⌘

v

/⌘
r

)2 + [(⌘
v

� ⌘
r

)(!/G
s

)]2(1�↵)

1 + [(⌘
v

� ⌘
r

)(!/G
s

)]2(1�↵)
(3)
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Hence, the following parameters can be obtained from the curve fitting:

– ⌘
v

, the asymptotic value of the QL-LAOS viscosity as the frequency

becomes very small;

– ⌘
r

, the asymptotic value of the QL-LAOS viscosity for high frequencies;

– G
s

, a measure of the slope of the curve at intermediate frequencies;

– ↵, empirical constant which indicates the departure from the Je↵reys-like

behaviour, since the value predicted by the analytical solution is zero;

– ✓1, the relaxation time, calculated with the previously obtained ⌘
r

, ⌘
v

,

and G
s

with:
✓1 = (1 � ⌘

r

⌘
v

)
⌘
v

G
s

(4)

– ✓2, the retardation time, also calculated with the previously obtained ⌘
r

,

⌘
v

, and G
s

;
✓2 = (1 � ⌘

r

⌘
v

)
⌘
r

G
s

(5)

A numerical result for the QL-LAOS viscosity is illustrated in Fig. 3.5

together with the obtained parameters.

Figure 3.5: Focus of our quasi-linear LAOS methodology.

As will be shown in Chapter 4, the agreement between the theoretical

predictions and experimental data is quite remarkable.
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4
Results and Discussion

This chapter contains the results of the rheological characterization of

the elasto-viscoplastic gel. First, constant shear rate results (Sec. 4.1) are

presented. Steady state values of stress and viscosity are compared to the

flow curve (Sec. 4.2). The yield stress of the material is inferred from constant

stress tests (Sec. 4.3). Next, results pertaining to oscillatory experiments are

exhibited in Secs. 4.4 (time sweeps), 4.5 (stress sweeps), and 4.6 (strain sweeps).

Then, LAOS results are presented in Sec. 4.7 in terms of the wave shapes

(4.7.1), of the Lissajous-Bowditch plots (4.7.2) and of the LAOS viscosity

(4.7.3).

4.1
Constant shear rate tests

Constant shear rate tests were performed to evaluate the time needed

for the material to reach steady state, which is an input of the flow curve.

Moreover, the values of shear stress and viscosity at equilibrium can be

compared to those obtained in the flow curve, as will be illustrated in Sec.

4.2. Results for five di↵erent shear rates are presented in Fig. 4.1.

As expected, samples submitted to high shear rates reach steady state

almost instantly. As the shear rate is decreased, the time needed to reach

equilibrium increases. For the lowest shear rate, �̇ = 0.001 s�1, more than

1000 seconds are needed to reach a constant value of stress (and consequently

of viscosity). As will be discussed later in Sec. 4.4, the duration of a test

performed in the ARES rheometer is limited to 1000 seconds, so that the

steady state was not obtainable for this shear rate.

From Fig. 4.1a, it is possible to note that the steady-state values of stress

decrease as the applied shear rate decreases and approach the yield stress as the

shear rate tends to zero. The same results are plotted in terms of viscosity in

Fig. 4.1b. The steady-state viscosity values decrease progressively with increase

of applied shear rate. Again, for the lowest shear rate, the equilibrium was not

obtained in the experiment time.
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(a)

(b)

Figure 4.1: Constant shear rate tests: (a) Stress vs. time (b) viscosity vs. time.

Although the values of stress and viscosity should be corrected due to

the non-homogeneous flow, the information obtained on the time needed to

reach steady state still is valid. Moreover, the values of stress and viscosity

at equilibrium can be compared to the non-corrected flow curve, and then

the entire flow curve can be corrected using the Weissenberg-Rabinowitsch

equation.

4.2
Steady state flow

A large number of steady state flow curves were carried out in both

rheometers over a wide range of shear rates. The average of these tests is
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plotted in Fig. 4.2 together with the values of equilibrium stress (Fig. 4.1a)

and viscosity (Fig. 4.1b) obtained from the constant shear rates experiments

presented in the previous section.

(a)

(b)

Figure 4.2: Steady state flow curve and constant shear rate tests plotted
together: (a) Stress vs. shear rate (b) viscosity vs. shear rate.

The flow curve reveals a shear-thinning behavior of the gel and the

existence of a yield stress. As can be seen, the agreement between the di↵erent

rheometric experiments is good. In the low shear rate region, the stress values

slightly decrease, instead of reaching a plateau corresponding to the yield

stress, which indicates that maybe not enough time was waited for the sample

to reach steady state or that the shear rate was not low enough.
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Nevertheless, this flow curve needs to be corrected with the Weissenberg-

Rabinowtisch equation (Eq. 1). Fig. 4.3 shows the comparison between the

corrected and the non-corrected data.

Figure 4.3: Steady state flow curve: comparison between corrected and non-
corrected curves.

It is possible to note that the correction is not a constant, being of greater

importance in the vicinity of the yield stress. At high shear rates (power-law

region), the ratio between the corrected stress and the non-corrected is equal

to 0.85, whereas at the low shear rate range this ratio equals to 0.75.

The corrected curve is presented in Fig. 4.4 along with a curve fitting

with the Herschel-Bulkley equation.

100

1000

1 1010�4 10�3 10�2 10�1 102 103

⌧
(P

a
)

�̇ (s�1)

K = 67.0 Pa.sn

n = 0.38

�̇1 = (⌧y/K)1/n = 0.83 s�1
⌧y ' 62.5 Pa (from creep tests)

parallel plates, W-R corrected

Figure 4.4: Steady state flow curve, Weissenberg-Rabinowitsch corrected.
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As can be seen, the equation fits well the flow-curve data, with a yield

stress of ⌧
y

⇡ 62.5 Pa, a consistency index of K = 67 Pa.sn, and a power-law

index of n = 0.38.

4.3
Constant stress tests

Next, constant stress tests were carried out to assess the yield stress of

the gel. A wide range of stresses, from 50 to 200Pa, was investigated as can be

seen in Fig. 4.5. Results are presented in terms of strain (Fig. 4.5a) and shear

rate (Fig. 4.5b) versus time.

(a)

(b)

Figure 4.5: Creep tests: (a) Strain vs. time and (b) Shear rate vs. time.
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There are two expected results in creep tests: if the applied stress is not

su�cient to make the material flow, the strain is constant over time, and the

shear rate goes to zero. On the other hand, if the stress is above the yield

stress, an increasing strain and consequent constant shear rate are observed.

In this case, the strain response may be misleading, once all curves seem

to have increasing strain with time, so that from this plot we may assume the

yield stress is below 50 Pa.

However, if results are plotted in terms of the shear rate, it is evident that

the shear rate goes to zero for 50 and 60 Pa, indicating that no flow occurs.

For slightly higher stresses, an interesting response is observed: the shear rate

initially decreases, tending to zero, but at some point around 2000 seconds, it

stops diminishing and increases again. This delayed response may be explained

due to the thixotropy of the material. Also, the higher the applied stress, the

smaller the time needed to reach a steady state. For high enough shear stresses

(125, 150 and 200 Pa), the shear rate tends to a constant value rather quickly.

Therefore, from the results it is clear that the yield stress is between 60 and

65 Pa, which is in accordance with the steady state flow curve.

Although the yield stress is not a time-dependent material property,

because of the delayed response of the material it is important to evaluate

the sample response along a su�cient amount of time. For instance, if the

duration of our creep experiments was of only 100 seconds (which is common

to see in the literature), we would wrongly estimate the yield stress to ⇡ 90 -

100 Pa.

Considering the strict definition of yield stress, it cannot really be

measured over a finite time of observation. However, for practical purposes,

when measuring the yield stress of a material it is important to always bear in

mind its associated application’s characteristic time. For example, in drilling

operations, a maximum stoppage time of 6 hours is considered before restarting

the flow in the well annulus, so that the yield stress of drilling mud or cement

pastes needs to be estimated for this amount of time. Thus, it is important to

tune duration of the test with the characteristic time of the application.

In the case of the present research, no specific application is considered,

though. Nevertheless, due to experimental limitations, such as evaporation of

the sample, the duration of each rheometric experiment is limited. As will be

discussed in the next Section (4.4), a duration of 10.000 seconds was considered

in the stress-controlled rheometer employed for the creep tests.

Furthermore, it is important to emphasize that the results displayed in

Fig. 4.5 also need correction due to the non-homogeneous flow. However, the

estimated yield stress is still correct, because the point below which no flow
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occurs does not depend on the correction, once the correction accounts for the

varying shear rate across the radius (and in this case the shear rate is zero).

4.4
Time sweep tests

As previously explained, time sweeps were performed to evaluate possible

changes in the sample due to evaporation, once the hair gel has alcohol

(which is highly volatile) in its composition. Experiments were performed

in both rheometers with a frequency of 1 Hz and duration of 10.000s. The

tests presented in Fig. 4.6 are essentially the same, except that in the stress

controlled rheometer (AR-G2) a stress amplitude of 10 Pa was imposed (black

curves), while a corresponding strain amplitude was maintained in the strain-

controlled ARES-G2 (blue curves), with both amplitude values corresponding

to the linear viscoelastic regime. The results are shown in terms of G’ and G”.

Figure 4.6: Time sweep performed with ⌧
a

= 10 Pa and f = 1 Hz.

A remarkable di↵erence can be observed between the rheometers’ results.

The black curves show that in the AR-G2 rheometer the sample is very stable,

with both moduli constant throughout the entire duration of the test.

However, in the ARES-G2 the sample is very stable until approximately

1000 seconds of test, when both moduli start to decrease. A dotted line,

corresponding to constant values of G’ and G”, was plotted with the ARES-

G2 data to clarify the deviation from the linear behavior. Indeed, if the test is

stopped beyond this point, visual inspection of the sample shows that gel has

evaporated. This e↵ect can be significant, because a slight reduction of 1mm
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in the radius of the sample leads to a 10% error in the stress calculated by the

rheometer for this geometry. Thus, for all rheometric experiments performed in

the ARES-G2 rheometer, a maximum duration of 1000 seconds is considered,

whereas in the AR-G2 experiments may be carried out with a duration of up

to 10.000 seconds. The di↵erence in amount of sample evaporation between

rheometers remains to be investigated.

4.5
Stress sweep tests

Stress sweeps were performed at four di↵erent frequencies to unveil

the elastic behavior of the material along a broad range of imposed stress

amplitudes. Results are presented in Fig. 4.7, in terms of the storage modulus

(G’, filled markers), and of loss modulus (G”, empty markers).

Figure 4.7: Stress sweeps performed at di↵erent frequencies. The four dotted
lines indicate the aimed stress amplitudes in the LAOS tests.

For all frequencies, G’ is higher than G” for a great range of stress

amplitudes, indicating the solid-like/elastic behavior of the gel.

Also, the four vertical dotted lines indicate the stress amplitudes chosen

for the LAOS experiments. It is possible to note that ⌧
a

= 10 Pa pertains to

the linear viscoelastic region, once this value of stress is below the yield stress

(⌧
y

). The other three stress amplitudes, 95 Pa, 125 Pa, and 312 Pa correspond

to approximately 1.5 ⌧
y

, 2 ⌧
y

, and 5 ⌧
y

, respectively.
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4.6
Strain sweep tests

As previously said, stress and strain sweeps are analogous tests. From

both it is possible to obtain the linear viscoelastic region, either in terms of

stress or strain amplitude, respectively. To illustrate the agreement between

these two tests, sweeps for two di↵erent frequencies of 0.1Hz (Fig. 4.8a) and

10Hz (Fig. 4.8b) are presented next. The results are plotted in terms of the

strain amplitude. The black curves correspond to the stress sweeps and the

colored curves to the strain sweeps. Again, the filled markers correspond to G’

and the empty markers to G”.

(a)

(b)

Figure 4.8: Comparison between strain and stress sweeps, plotted as G’ / G”
vs. strain (%).
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It is clear that both tests give rise to the same result. This shows that,

a priori, it is indi↵erent wether we perform stress- or strain-controlled exper-

iments for oscillatory testing. For our research, this is particularly important,

once we actually perform strain-controlled experiments to evaluate the results

in terms of the stress amplitudes.

Next, we present the strain amplitude sweeps results for all frequencies

investigated. To better accommodate the large amount of data, results were

divided into four di↵erent plots, each for a range of frequencies, namely 0.01 -

0.1Hz (Fig. 4.9a), 0.1 - 1Hz (Fig. 4.9b), 1 - 10Hz (Fig. 4.9c), and 10 - 100Hz

(Fig. 4.9d).

(a) (b)

(c) (d)

Figure 4.9: Strain sweeps at di↵erent frequency ranges: (a) 0.01 - 0.1 Hz; (b)
0.1 - 1 Hz; (c) 1 - 10 Hz; (d) 10 - 100 Hz.

It is clear that all strain sweeps present the same general behavior:

presence of a linear viscoelastic region at low strain amplitudes, with constant

G’ and G”, where G’ > G”. This linear viscoelastic region is followed by a

decrease in G’, which indicate the yielding of the material. In the case of G”,

the curve first increases and then drops. The crossover of G’ and G” occurs

approximately at the maximum of the G” curve.

Although G’ and G” are no longer valid quantities in the large amplitude

oscillatory shear regime, Hyun et. al [35] arguee that the behavior observed in
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a strain sweep can be linked to microstructural changes. In their work, it was

found that there exists at least four types of LAOS behavior, as presented in

Fig. 4.10.

Figure 4.10: Types of LAOS behavior, presented in dimensionless strain sweeps:
(a) strain thinning; (b) strain hardening; (c) weak strain overshoot; (d) strong
strain overshoot. Reproduced from [35].

The four types of LAOS behavior are:

– Type I - strain thinning : G’ and G” decreasing (Fig. 4.10a);

– Type II - strain hardening : G’ and G” increasing (Fig. 4.10b);

– Type III - weak strain overshoot: G’ decreasing, G” increasing followed

by decreasing (Fig. 4.10c);

– Type IV - strong strain overshoot: G’ and G” increasing followed by

decreasing (Fig. 4.10d).

Clearly, the behavior of the hair gel pertains to the type III. According

to Hyun et. al, when an external strain is imposed to the sample, the

microstructure initially resists against this deformation, which increases G”,

up to a certain critical strain above which the polymer chains align with the

flow field, leading to a decrease in G”.

The di↵erence between the imposed frequencies is not clear in Fig. 4.9.

Therefore, the same results are plotted in a di↵erent way in Fig. 4.11. Each

graph contains four frequencies pertaining to four di↵erent decades.

DBD
PUC-Rio - Certificação Digital Nº 1121442/CA



Chapter 4. Results and Discussion 54

(a)

(b)

(c)

Figure 4.11: Strain sweeps performed at di↵erent frequencies: (a) multiples of
1.0Hz; (b) multiples of 2.15Hz; (c) multiples of 4.64Hz.
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As can be seen in the three graphs, as the frequency is increased,

both moduli G’ and G” increase. At the highest frequencies, the curves

are interrupted because the rheometer stops increasing the strain amplitude,

possibly because of di�culty in controlling a large deformation at short times

or in switching the transducer mode. In LAOS experiments, however, tests

were conducted without any problems.

Also, these strain sweeps were carried out at di↵erent frequencies to

obtain the strain amplitude values that should be imposed to the gel sample

in LAOS experiments to achieve the sought-for stress amplitude, as previously

explained (Sec. 3.2). The strain amplitude values [%] to be imposed in LAOS

experiments, for each frequency (di↵erent columns) and stress amplitude

(di↵erent rows), are displayed in Tables 4.1 and 4.2.

Table 4.1: Values of strain amplitudes [%] to be imposed in LAOS experiments,
range ! = 0.01 - 0.464 Hz.

⌧
a

[Pa] 0.01 Hz 0.0215 Hz 0.0464 Hz 0.1 Hz 0.215 Hz 0.464 Hz

10 4.21 3.64 3.46 2.79 2.70 2.64
95 149.93 134.92 89.79 61.69 54.78 44.83
125 2499.61 449.78 299.32 164.57 139.42 109.56
312 75088.85 32020.20 16469.1 6780.9 3505.0 1741.9

Table 4.2: Values of strain amplitudes [%] to be imposed in LAOS experiments,
range ! = 1 - 100 Hz.

⌧
a

[Pa] 1 Hz 2.15 Hz 4.64 Hz 10 Hz 21.54 Hz 46.42 Hz 100 Hz

10 2.37 2.27 2.49 2.18 1.96 1.57 1.12
95 37.53 30.85 26.81 21.70 18.13 13.32 7.95
125 74.66 54.74 45.69 33.85 27.06 19.49 10.46
312 835.79 509.56 248.35 147.74 95.583 - -

It is important to note that these values already account for the parallel

plate correction. This was done by correcting the stress amplitude from the

strain sweeps, so that the displayed values of strain amplitude already belong to

corrected values of stress. However, as previously explained, the instantaneous

stress cannot be corrected, only the amplitude of the wave. Hence, in all figures

presented in Secs. 4.7.1 and 4.7.2, no stress correction is present. Nevertheless,

the results of LAOS viscosity presented in Sec. 4.7.3 account for the stress

correction, once they only depend on stress amplitude ⌧
a

and shear rate

amplitude �̇
a

.
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4.7
LAOS tests

This section presents LAOS results corresponding to four di↵erent stress

amplitudes ⌧
a

, namely 10, 95, 125 and 312 Pa. Actually, ⌧
a

= 10 Pa does not

belong to the large amplitude oscillatory shear regime, but tests were carried

out at this amplitude for comparison purposes. The other stress amplitudes

correspond approximately to 1.5 ⌧
y

, 2 ⌧
y

and 5 ⌧
y

, respectively.

As previously explained (Sec. 3.2), the LAOS experiments consist of

individual time sweep steps, performed under fixed frequency and strain

amplitude. An example of a complete LAOS experiment is shown in Fig. 4.12

in terms of stress as a function of the shear rate.

Figure 4.12: Viscous Lissajous plot as an example of a complete time sweep
test.

From the figure it is possible to see the initial transient response of the

material, beginning in the origin, and that the steady state regime (indicated

by the superposed curves) is achieved within few cycles. Henceforward, in all

figures presented in this section, a single cycle corresponding to the steady

state was selected.

Hereafter, the di↵erences between shapes of the input and output waves

are analyzed. Then, viscous Lissajous plots are used to unveil characteristics

of the mechanical behavior of the elasto-viscoplastic material under di↵erent

circumstances. All results obtained are summarized in a Pipkin diagram (Fig.

4.22). Finally, quasi-linear LAOS viscosity plots are presented to compare the

experimental results with the theoretical predictions of the Je↵rey’s framework

and with the numerical results by de Souza Mendes and Thompson [8].
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4.7.1
Wave shapes

The shear rate and stress waves pertaining to the LAOS experiments are

presented in Figs. 4.13, 4.14, 4.15, and 4.16, where each figure corresponds to

a di↵erent stress amplitude. In each figure we present a set of plots of both

shear rate and stress responses as a function of a dimensionless time (!t / 2 ⇡),

for four di↵erent frequencies, namely 0.01, 0.1, 1 and 10 Hz. The blue curves

correspond to the shear rate waves, which are the input of the test, and the

red curves correspond to the stress response, which is the output of the test.
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Figure 4.13: Input shear-rate wave and output raw-stress wave of ⌧
a

= 10Pa
for di↵erent frequencies: (a) 0.01Hz; (b) 0.1Hz; (c) 1.0Hz and (d) 10Hz.

For ⌧
a

= 10 Pa (Fig. 4.13), it can be seen that for all frequencies the stress

response is sinusoidal, even for the lowest frequency of 0.01Hz. It is also clear

that the result for the highest frequency is not good, with “oscillations” within

the waves. As will be shown later, this actually occurs for all frequencies higher

than 4.64Hz, so that it seems to be some kind measurement artifact. Indeed,

this is puzzling, once di�culty in controlling the oscillatory motion would be

expected in the case of very low frequencies, or else for high frequencies in

large amplitudes, and none of both presented such problem. TA Instruments,

manufacturer of the rheometer, was contacted to clarify this issue, but no

response was avaiable at the time this thesis was written.
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The results for the other stress amplitudes indicate a di↵erent trend. In

general, a clear non-sinusoidal stress wave is observed for lower frequencies,

but the sinusoidal response is recovered at high enough frequencies.

(a)

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

-100

-50

0

50

100

�̇
(s

�
1
)

⌧
(P

a)

!t/2⇡ (·)

shear rate (input)
stress (output)

⌧a = 95Pa

0.01Hz

(b)

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-100

-50

0

50

100

�̇
(s

�
1
)

⌧
(P

a)

!t/2⇡ (·)

shear rate (input)
stress (output)

⌧a = 95Pa

0.1Hz

(c)

-2

0

2

0 0.2 0.4 0.6 0.8 1

-100

-50

0

50

100

�̇
(s

�
1
)

⌧
(P

a)

!t/2⇡ (·)

shear rate (input)
stress (output)

⌧a = 95Pa

1Hz

(d)

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1

-100

-50

0

50

100

�̇
(s

�
1
)

⌧
(P

a)

!t/2⇡ (·)

shear rate (input)
stress (output)

⌧a = 95Pa

10Hz

Figure 4.14: Input shear-rate wave and output raw-stress wave of ⌧
a

= 95Pa
for di↵erent frequencies: (a) 0.01Hz; (b) 0.1Hz; (c) 1.0Hz and (d) 10Hz.

For ⌧
a

= 95 Pa, the two lowest frequencies (0.01 and 0.1Hz) exhibit a

non-sinusoidal stress response, so that at a frequency of 1 Hz a sinusoidal stress

response is again obtained. As for the stress amplitude of 125 Pa, clear non-

sinusoidal responses are observed both for 0.01 and 0.1 Hz, and for 1 Hz the

stress wave is almost sinusoidal, so that only at 10 Hz a sinusoidal response

was obtained. In the case of ⌧
a

= 312 Pa, very non-sinusoidal stress waves are

obtained for the low frequencies. Only the highest frequency shown (21.54 Hz)

displays a sinusoidal stress response.

As can be seen, if high enough frequencies are applied a sinusoidal stress

response seems to be always attainable. As the stress amplitude is increased,

the frequency at which the sinusoidal response is restored also increases. This

fact is also illustrated in the next subsection with the aid of Lissajous figures.
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Figure 4.15: Input shear-rate wave and output raw-stress wave of ⌧
a

= 125Pa
for di↵erent frequencies: (a) 0.01Hz; (b) 0.1Hz; (c) 1.0Hz and (d) 10Hz.
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Figure 4.16: Input shear-rate wave and output raw-stress wave of ⌧
a

= 312Pa
for di↵erent frequencies: (a) 0.01Hz; (b) 0.1Hz; (c) 10Hz and (d) 21.54Hz.
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4.7.2
Lissajous-Bowditch figures

When the results of the LAOS experiments are plotted in terms of stress

vs. shear rate, viscous Lissajous curves are obtained. In the present work,

viscous Lissajous plots were chosen to display the results, once we find it is

the obvious choice since we are dealing with materials that flow. Indeed, Dealy

and coworkers [36] observed that departures from linear viscoelasticity were

clearer on a stress vs. shear rate plot, as opposed to a stress vs. strain plot.

An example of a viscous Lissajous plot is presented in Fig. 4.17 to identify

both stress amplitude (⌧
a

) and shear rate amplitude (�̇
a

) values and illustrate

the symmetry of the plot.

Figure 4.17: Example of viscous Lissajous plot highlighting ⌧
a

and �̇
a

.

As will be seen, the shape of the Lissajous curves is a strong function of

the imposed values of stress amplitude and frequency.

Each figure presented next corresponds to a stress amplitude (Figs. 4.18,

4.19, 4.20 and 4.21). Since 13 frequencies were tested for each stress amplitude,

the results were divided into di↵erent plots. Thus, each plot contains results

for four di↵erent frequencies pertaining to a decade, e.g. 0.01 - 0.1 Hz (Figs.

4.x(a)), 0.1 - 1Hz (Figs. 4.x(b)), 1 - 10Hz (Figs. 4.x(c)), and 10 - 100Hz

(Figs. 4.x(d)). Hence, in the plots (b), (c), and (d) for each ⌧
a

, the inner cycle

corresponds to the outer cycle of the previous plot. The di↵erence in the width

of the same curve plotted in two di↵erent scales may give an idea of how the

shear rate amplitude varies significantly as the frequency is increased.

The first stress amplitude tested was equal to 10 Pa. Obviously, it

pertains to the linear viscoelastic regime, as it is below the yield stress of the

material (Sec. 4.3). Thus, the material remains fully structured throughout
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the whole cycle, for all imposed frequencies, and it is expected that all

viscous Lissajous curves present a circle shape (when properly scaled), once

the response of the material is purely elastic. The results are shown in Fig.

4.18.
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Figure 4.18: Viscous Lissajous-Bowditch curves for ⌧
a

= 10Pa.

In this case, the stress response is nearly orthogonal to the shear rate

input: when the shear rate is at its maximum, the stress is zero. Contrariwise,

when the shear rate is zero, the stress attains its maximum value. Below the

yield stress, the material remains fully structured throughout the whole cycle,

so that the orbits are always elliptical. Though, it is noticeable that for higher

frequencies the curves present some oscillation within the cycle, probably due

to measurement artifacts.

It is also possible to note that in this case, since no stress correction is

needed, the stress amplitude of the Lissajous figures correspond exactly to the

sought-for imposed stress amplitude value of 10 Pa. This is not the case for

the other three stress amplitudes investigated, as can be seen next (Figs. 4.19,

4.20, and 4.21).
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Figure 4.19: Viscous Lissajous-Bowditch curves for a corrected stress amplitude
of ⌧

a

= 95Pa. The plotted stress is not corrected.
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Figure 4.20: Viscous Lissajous-Bowditch curves for a corrected stress amplitude
of ⌧

a

= 125Pa. The plotted stress is not corrected.
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Figure 4.21: Viscous Lissajous-Bowditch curves for a corrected stress amplitude
of ⌧

a

= 312Pa. The plotted stress is not corrected.

It is seen that the shape of the curves dramatically change as the stress

amplitude and frequency are increased. Also, the magnitude of the shear

rate amplitude increases significantly from the lowest to the highest applied

frequency. The non-elliptical orbits occur due to intra-cycle changes of the

structuring level. Overall, the degree of non-ellipticity increases with stress

amplitude and with decrease in frequency. Fig. 4.21a exhibits the biggest

departure from elliptical behavior, and can be explained by the fact that higher

stress amplitudes lead to lower structuring levels. However, as the frequency

is increased, the cycle period becomes much smaller than the time scale of

microstructure buildup (t
eq

). Therefore, the microstructural state remains

unchanged along the cycle, and a quasi-linear viscoelastic regime is attained.

All 52 previous presented Lissajous curves were plotted together in the

Pipkin diagram in Fig. 4.22. To enable a better comparison of the shapes of

the curves, the results were normalized by dividing the instantaneous stress ⌧

by the stress amplitude ⌧
a

, and the instantaneous shear rate �̇ by the shear

rate amplitude �̇
a

.
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Figure 4.22: Summary of Lissajous curves on the Pipkin space.
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For a given stress amplitude, it is seen that the area contained in the

curves increase as the frequency is increased. Indeed, the area is usually related

to the elasticity of the material, so that it is expected that the area increases

with frequency (as previously explained, the elastic e↵ects predominate for high

De). Conversely, the smaller the area contained in the viscous Lissajous curve,

the more the behavior of the material resembles the purely viscous behavior.

The plots corresponding to ⌧
a

= 312 Pa, from 0.062 to 2.915 rad/s, and to ⌧
a

=

125 Pa for 0.062 rad/s exhibit a purely viscous behavior in its extremities,

where the stress is approximately proportional to the shear rate. Indeed, when

the shear rate is at its maximum, the shear stress also attains its maximum

value, and in these cases the ratio ⌧
a

/�̇
a

is equal to ⌘
v

.

It is clear that for all stress amplitudes tested elliptical Lissajous curves

were obtained at high enough frequencies. This fact is in agreement with

the results observed from the input and output wave shapes, indicating that

sinusoidal stress responses are always attainable.

Moreover, the shapes of the Lissajous curves obtained experimentally

can be compared to the model predictions made by de Souza Mendes and

Thompson [8]. A case corresponding to an apparent yield stress fluid (⌘0�̇1/⌧yd

6= 1) and no thixotropy (t
eq

�̇1 = 0) was chosen and is reproduced in Fig. 4.23.

It presents results for three di↵erent dimensionless stress amplitudes and three

dimensionless frequencies in a Pipkin space.

Figure 4.23: Model predictions of de Souza Mendes and Thompson [8].
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It is possible to observe a qualitative concordance between the numerical

and experimental results. For a stress amplitude below the yield stress (bottom

row), the same trend is observed as in Fig. 4.22: the Lissajous figures are

circles, but at high enough frequencies develop to a tilted ellipse. For the cases

pertaining to higher stress amplitudes (middle and top rows), it is seen that

the area contained in the cycles increases with frequency, once again showing

that the elastic contribution is bigger at lower time scales. Also, as predicted

by the theory, an elliptical Lissajous is obtained for 20⇡, indicating that a

sinusoidal stress response is attainable at high enough frequencies.

4.7.3
Quasi-linear LAOS viscosity

Next, to quantitatively compare the experimental results with the Jef-

frey’s model predictions, the obtained data is plotted in terms of the QL-LAOS

viscosity. The ratio ⌧
a

/�̇
a

was calculated for each Lissajous curve presented pre-

viously and fitted with Eq. 3. Figures 4.24, 4.26, 4.27 and 4.28 show the results

for each stress amplitude in plots of ⌧
a

/�̇
a

as a function of the frequency !,

where the red dots correspond to experimental data and the blue curve to the

theoretical predictions. Also, the material functions ⌘
v

, ⌘
r

, and G
s

(and thus

also ✓1 and ✓2) are indicated in each plot. Each curve corresponds to a given

structuring level of the material, given by the applied stress amplitude.

100

101

102

103

104

1 1010�1 102 103

⌧ a
/�̇

a
(P

a.
s)

! (rad/s)

⌘
r

= 1.4Pa.s

⌘
v

> 7 ⇥ 103 Pa.s

G
s

= 134.4Pa

↵ = 0.10

✓1 > 20 s
✓2 = 0.010 s

data
theory

⌧a = 10Pa

Figure 4.24: QL-LAOS viscosity for ⌧
a

= 10 Pa.

For this amplitude, the QL-LAOS viscosity is actually a “SAOS viscosity”

corresponding to the linear viscoelastic regime. In this case, the ratio ⌧
a

/�̇
a

is

equal to the modulus of the complex viscosity ⌘*. Indeed, this was verified
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experimentally by performing a frequency sweep in the linear viscoelastic

regime and plotting the results in terms of ⌘* vs. ! (Fig. 4.25).

Figure 4.25: Comparison between complex viscosity ⌘* and QL-LAOS viscos-
ities for ⌧

a

= 10 Pa.

The results of the QL-LAOS viscosity for the other three stress amp-

litudes investigated are presented next.

100

101
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103

104

1 1010�2 10�1 102 103

⌧ a
/�̇

a
(P

a.
s)

! (rad/s)

⌘
r

= 1.4Pa.s

⌘
v

= 670.4Pa.s

G
s

= 120.7Pa

↵ = 0.21

✓1 = 5.5 s
✓2 = 0.012 s

data
theory

⌧a = 95Pa

Figure 4.26: QL-LAOS viscosity for ⌧
a

= 95 Pa.
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⌘
r

= 1.4Pa.s
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= 99.5Pa.s

G
s

= 100.7Pa

↵ = 0.29

✓1 = 1.0 s
✓2 = 0.014 s

data
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Figure 4.27: QL-LAOS viscosity for ⌧
a

= 125 Pa.
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⌘
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G
s
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↵ = 0.47

✓1 = 0.1 s
✓2 = 0.012 s

data
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⌧a = 312Pa

Figure 4.28: QL-LAOS viscosity for ⌧
a

= 312 Pa.

Firstly, it is evident that there is a remarkable agreement between

experimental data and the theoretical predictions for all stress amplitudes.

Curiously, even for the cases of structure changing motions, i.e. non-sinusoidal

responses, the theory seems to correctly predict the response of the material.

This fact indicates that the Je↵rey’s framework seems to be very suitable to

describe the mechanical behavior of an elasto-viscoplastic material.

DBD
PUC-Rio - Certificação Digital Nº 1121442/CA



Chapter 4. Results and Discussion 69

The expected general behavior for the LAOS viscosity consists of a

plateau corresponding to the total viscosity ⌘
v

at low frequencies, followed by

a region of decrease in viscosity (where ⌧
a

/�̇
a

⇡ ⌘↵
s

(G
s

/!)1�↵) at intermediate

frequencies, and finally, at very large frequencies, a plateau corresponding to

the retardation viscosity ⌘
r

. As previously stated, the points lying in the

⌘
v

plateau correspond to the Lissajous plots which exhibit a purely viscous

behavior in its extremities. From the figures, it is possible to note that only

Fig. 4.24 does not exhibit an ⌘
v

plateau in the range of frequencies studied.

The obtained values of the Je↵rey’s model parameters are summarized

in Tab. 4.3 for better comparison:

Table 4.3: Summary of the parameter values for each structuring level.

⌧
a

[Pa] ⌘
v

[Pa.s] ⌘
r

[Pa.s] G
s

[Pa] ↵ ✓1[s] ✓2 [s]

10 7000 1.4 134.4 0.10 20 0.010
95 670.4 1.4 120.7 0.21 5.5 0.012
125 99.5 1.4 100.7 0.29 1.0 0.014
312 8.3 1.4 98.1 0.47 0.1 0.012

As can be seen, ⌘
v

decreases drastically as ⌧
a

is increased, whereas ⌘
r

remains constant. Thus, once ⌘
s

= ⌘
v

- ⌘
r

, the relaxation viscosity ⌘
s

also

decreases significantly with increase of ⌧
a

. The elastic modulus G
s

decreases

mildly. ↵ increases with ⌧
a

, i.e. as the structuring level is decreased. Indeed,

this parameter was added to Eq. 3 (Chap. 3) in order to better adjust the

experimental data. It can be interpreted as a measure of the departure from

the Je↵reys-like behavior. With the combination of the before mentioned

parameters through Eqs. 4 and 5, ✓1 and ✓2 can be obtained. While ✓1 decreases

with increase in the stress amplitude, ✓2 remains approximately constant.

In addition, it is noted that the material functions ⌘
v

and ⌘
r

are

independent on imposed frequency, whereas G
s

weakly depends on frequency.

The knowledge of these three material functions should be enough to fully

describe the mechanical behavior of a material subjected to shear. This consists

one major advantage to describe the mechanical behavior of a material,

specially when comparing to the typical material functions suggested in the

LAOS literature. Moreover, even in the linear viscoelastic regime, in which G’

and G” greatly depend on imposed frequency (Fig. 4.11), the results suggest

that the Je↵rey’s material functions are more meaningful and robust.
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5
Concluding Remarks

Large amplitude oscillatory shear flow (LAOS) is presently considered

one of the most promising methodologies to investigate the behavior of com-

plex materials. LAOS experiments allow probing the material under a wide

range of conditions in the nonlinear viscoelastic regime while exploring the

advantages of oscillatory motions, i.e. tunning amplitude and frequency inde-

pendently. Since a wide range of industrial processes involves large deforma-

tions, understanding how complex materials behave under these conditions is

fundamental for operation and design purposes.

A qualitative idea of the behavior of a material under LAOS can be

given by Lissajous curves, where the degree of nonlinearity is given by the

degree on “non-ellipticity” of the orbits. Although Lissajous curves may give a

good insight into the material behavior, mathematically defined and physically

meaningful quantities are necessary for proper description of the mechanical

behavior of complex materials.

To this end, many research groups around the world have proposed di↵er-

ent approaches for analyzing nonlinear data, among which may be mentioned

the Fourier-transform rheology (FT-rheology) by Wilhem, the stress decom-

position (SD) by Cho et al., the Chebyshev analysis by Ewoldt and coworkers,

and the “sequence of physical processes” (SPP) by Rogers. Nonetheless, there

is still a need for a more general, capable of accommodating all kinds of beha-

viors and physically meaningful model to analyze LAOS results.

In this work, a novel methodology for the rheological characterization and

interpretation of the results under LAOS was tested under the guidelines pro-

posed by de Souza Mendes and Thompson [8]. While all present LAOS analysis

focus on non-sinusoidal stress responses, which imply major microstructural

changes along the cycles, the proposed methodology relies on data obtained

from sinusoidal responses, or the“constant-structure motions” which resembles

the linear viscoelastic regime. This quasi-linear LAOS (QL-LAOS) methodo-

logy is a model-based framework, in which the structuring-level-dependent

Je↵reys model is applied to rheometric oscillatory flows to obtain physically

meaningful material functions.
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An elasto-viscoplastic hair gel was chosen and di↵erent rheometric ex-

periments were performed so as to characterize the mechanical behavior of the

material at hand. Constant shear rate, flow curve, and constant stress tests, as

well as oscillatory strain, stress and time sweeps were carried out. Thus, the

material was probed under a wide range of conditions and results were correl-

ated with its mechanical behavior. From the LAOS experiments, it was seen

that the degree of “non-ellipticity” of the curves, which indicates the degree of

nonlinearity of the response, depends on both applied stress amplitude and fre-

quency. The nonlinear behavior is more pronounced for high stress amplitudes

and low frequencies. In addition, the existence of a quasi-linear viscoelastic

regime was verified whenever the frequency is high enough so that the period

of a cycle is much lower than the timescale of microstructural changes, i.e. t
eq

� 1/!.

Moreover, the QL-LAOS viscosity was defined as the ratio ⌧
a

/�̇
a

. For

each stress amplitude (or structuring level), a plot of the QL-LAOS viscosity

vs. frequency can be obtained. From a curve fitting with Eq. 3 of Chap. 3,

the model parameters ⌘
v

, ⌘
r

, G
s

, and ↵ can be calculated. The results showed

a remarkable agreement between the theoretical predictions and experimental

results, even for nonlinear responses. It was observed that the material func-

tions G
s

, ⌘
v

, and ⌘
r

present only weak (the first) or even no dependence at

all (two latter) on the frequency. It is suggested that the knowledge of these

three functions su�ces to describe the mechanical behavior of a complex ma-

terial. Therefore, the methodology employed here o↵ers a major advantage

to describe the mechanical behavior of a material over the typical material

functions suggested in the LAOS literature.

Future steps include testing the commercial hair gel under di↵erent shear

flows, such as stress step changes, so as to obtain the material functions and

compare with the quasi-linear LAOS methodology. Also, another important

step would be testing the quasi-linear LAOS methodology on di↵erent mater-

ials to see if a sinusoidal stress response is always attainable at high enough

frequencies. Indeed, a shear-thinning polyacrylamide solution is presently being

tested, with the advantage of using cone and plate geometry, so that no stress

correction is needed. Moreover, instead of focusing only on steady state re-

sponse, e↵ects of thixotropy might be investigated using for instance a Lapon-

ite suspension.
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A
Geometry selection

As mentioned in Chapter 3, the cross-hatched parallel plates were used

throughout the rheological characterization presented in this work. In this

Appendix we briefly discuss the apparent wall slip artifact and show some

results to corroborate our geometry choice.

In rheometry, the best geometry choice is usually one that maintains a

homogeneous flow, i.e. where the shear rate is the same in the entire sample, as

for example the cone and plate geometry. In the concentric cylinders (Couette),

the shear rate is approximately constant if the gap is narrow (R
i

/R
o

<

0.99). The possibility of using the Couette geometry was discarded, since this

kind of geometry is better suited for low viscosity systems. Also, oscillatory

measurements in this geometry are not indicated. Still, this geometry might

be used for high shear rates experiments, when the viscosity is much lower and

wall slip is not a problem.

Regarding the cone and plate, the main disadvantage of this geometry is

the fixed gap due to the cone angle. When using a multiphase material with

particles or droplets in suspension, the small gaps, specially near the cone

tip (where the truncation is of the order of dozen of microns), might induce

measurement errors. Particularly in our case, this was not an issue. For our gel

in hand, the main issue are the smooth walls. However, roughening the walls of

the cone, e.g. by applying a grit sandpaper, and not a↵ecting the small angle

and/or truncation is a complicated task.

The parallel plates have the advantage of easily varying the gap and

roughening surfaces, but the major disadvantage of variable shear rate across

the radius and consequent need for stress correction of the results.

After this discussion, two geometries are left to use: the cone and plate

with smooth walls or the parallel-plate geometry. If apparent wall slip is not

an issue, the cone and plate is a better choice. Else, the parallel plate with

roughened walls should be used. Therefore, we need to evaluate the e↵ect of

wall slip on our results.
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A.1
Apparent wall slip

When a dispersion is in contact with a smooth wall, the original micro-

structure is locally disturbed and the disperse phase moves away from smooth

walls. This e↵ect is known as wall depletion. Thus, a very thin layer of continu-

ous (usually low viscosity) phase is formed at the wall, with typical thickness

of 0.1 - 10 µm. This narrow layer acts as a lubricant facilitating the flow of the

adjacent bulk with original concentration [37, 38].

Apparent wall slip can be eliminated by altering the nature of the

geometry walls, either chemically or physically. In the first case, the intention

is to avoid repulsion e↵ects. In the latter case, the idea is to physically “break”

the low viscosity layer by roughening of the walls. Sandblasting or sticking

grit sandpaper to the walls has been widely used. A common profiled parallel

plate geometry o↵ered by rheometer manufacturers is the cross hatched plate.

It consists of 1x 1mm base pyramids, with heights equal to 1mm, covering the

entire surface of the plates, as can be seen in Fig. A.1.

Figure A.1: Detail of the cross hatch profiling by TA Instruments.

The manifestation of apparent wall slip in the rheological results is

usually characterized by lower apparent viscosity, sudden breaks in the curves

at moderate shear rates, and “unexpected lower Newtonian plateaus, with

“pseudo” yield stress at even lower stresses” [38]. Also, di↵erent geometries

and gaps will generate di↵erent results. For smaller gaps, the e↵ect of the

continuous phase layer is more important, and hence lower stresses/viscosities

are expected. Some authors show that slip-free results can be obtained by

extrapolating the results for di↵erent gaps [38, 39].

As mentioned above, the e↵ect of apparent wall slip needs to be evaluated

so as to properly choose the geometry for the rheological characterization of

the gel. The result of this investigation is presented in Figs. A.2(a) and A.2(b).

The di↵erent geometries employed are:
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1. Cone and plate, 60mm diameter, 1° angle, and truncation of 24µm ;

2. Smooth parallel plates, 60mm diameter, with gaps of 0.5 mm, 1.0 mm,

1.5 mm, and 2.0 mm ;

3. Cross hatched parallel plates (Fig. A.1), 60mm diameter, and 1.0 mm

gap.

(a)

(b)

Figure A.2: Steady state flow curves for di↵erent geometries - (a) Stress vs.
shear rate and (b) Viscosity vs. shear rate.
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The curves for all geometries coincide for high shear rates ( > 3s�1).

Actually, at the very high shear rate range, it is expected that the cross

hatched parallel plates give rise to lower stresses, and hence lower viscosities,

once secondary flows between the protrusions might occur. However, as can

be observed, this e↵ect is limited to the last two shear rate values and seems

to have a minor impact on the results, at least for the range of shear rates

applied to the sample.

Regarding the low shear rate range, it is clear that apparent wall slip

occurs in all geometries, except for the cross hatched plates. Moreover, from

the results of the four di↵erent smooth parallel plate gaps it is possible to note

that increasing the gap indeed diminishes the e↵ect of slip, but does not su�ce

to eliminate it. Thus, the obvious geometry choice for our material is to use

the cross hatched parallel plates.
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B
Parallel-plate correction

The parallel plate geometry is widely used in rheometry for a great variety

of materials, such as polymer melts, suspensions, dispersions and emulsions.

One of its advantages over the cone and plate or the concentric cylinder

geometries is the easiness of varying the gap, which is crucial in the case of

systems with particles or droplets. Moreover, the shear rate range is adjustable

by varying the plate diameter or gap.

However, unlike the cone and plate or the narrow gap concentric cylinder

geometries, the shear rate is not constant along the radius. Thus, to account

for the non-homogeneous flow, the measured stress needs to be corrected. The

Weissenberg-Rabinowitsch equation [40] accounts for the shear-rate depend-

ence of non-Newtonian fluids, correcting the stress as follows:

⌧
R

=
T

2⇡R3


3 +

d ln (T/2⇡R3)

d ln �̇
R

�
(1)

where R is the radius of the plate, T the measured torque, and �̇
R

the shear

rate at the rim. In the case of Newtonian fluids, the derivative of the logarithm

of the torque with respect to the logarithm of the shear rate at the rim equals

to one, and Eq. 1 reduces to

⌧
R

=
2T

⇡R3
(2)

For non-Newtonian materials, the derivative needs to be calculated. It

can be determined through di↵erentiation of experimental data, if a su�cient

amount of data is provided [12]. Nevertheless, commercial rheometers still use

the Newtonian expression to calculate an apparent shear stress at the disk rim,

which is used in further calculations, i.e. apparent viscosity. Stress corrections

are available as a post-experiment step.

Another alternative to correct steady state flow data is to use the single-

point method developed by Giesekus and Langer [41]. They generalized the

concept of the representative viscosity to an exact method. The method is
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applied to channel-, tube-, torsional-, and Couette flow, for both power-law

and viscoplastic fluids, by considering that the apparent and the actual stress

are equal at some position of the radius. It was found that this occurs at

approximately r / R = 0.76. A similar and simpler study was performed by

Schummer ad Wortho↵ [42].

Cross and Kaye [43] developed a similar method, where the idea is to

approximate the derivative of the torque at a specific angular velocity by the

torque value at some other speed. For shear-thinning fluids, the first order

approximation leads to errors of less than 1%. Geiger [44] proposed a simpli-

fied form for the torque-shear rate relation based on the Carreau-type flow to

expand the range of use of parallel disks for the characterization of polymer

solutions and melts. Carvalho et. al [45] extended previous single-point meth-

ods to correct shear viscosity data and developed a new single point correction

for the normal stress coe�cient. Experimental results were compared to val-

ues obtained by numerical di↵erentiation of raw data. They found that the

single-point method yielded more accurate results than the apparent values

calculated by regular rheometer software and faster than numerical di↵erenti-

ation, which is useful specially for process-line measurements.

Although it is clear that data pertaining to transient rheometric tests

performed with the parallel plate geometry also need correction, only few

studies were found. Soskey and Winter [46] obtained a correction similiar to

the Rabinowitsch equation to apply to parallel-disk data in the large strain

domain. Focus was given into obtaining the shear relaxation modulus for both

linear and branched polymers. Corrected parallel plate results showed good

agreement with the cone and plate geometry.

MacSporran and Spiers [47, 48] developed a parallel plate correction for

large amplitude oscillatory flows in a Weissenberg rheogoniometer. However,

none of the citing articles of this work have actually used this correction.

The only work found to discuss this measurement artifact in oscillatory flows,

specifically on the Lissajous curve results for yield materials, was performed

by Ewoldt et. al [17]. By comparing plate-plate to cone-plate responses, little

qualitative di↵erence in the general shapes of the Lissajous curves could be

observed. It was found that, in general, “the inhomogeneous strain field softens

the nonlinear features of the response and leads to small overestimation of

stresses for shear-thinning and yield stress materials”.

The importance of correcting the stress response is evident, though. Thus,

we also propose a di↵erent stress correction for oscillatory flows (Sec. B.1), as

presented next and to be published in a near future.
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B.1
Analysis for oscillatory flows

Considering a sinusoidal input for the angular velocity of amplitude ⌦
a

⌦(t) = ⌦
a

sin(!t) (3)

and hence

�̇(r, t) =
r⌦(t)

H
=

r⌦
a

H
sin(!t) . (4)

The shear rate evaluated at the rim ( r = R ) is

�̇
R

(t) ⌘ �̇(R, t) =
R⌦(t)

H
=

R⌦
a

H
sin(!t) (5)

and hence

�̇(r, t) = �̇
a

(r) sin(!t) (6)

�̇
R

(t) = �̇
R,a

sin(!t) . (7)

When the stress response is also sinusoidal, shifted by a phase angle �

T (t) = T
a

sin(!t+ �); ⌧(r, t) = ⌧
a

(r) sin(!t+ �) . (8)

It is important to note that a sinusoidal response is not exclusive to the small

strain region. If high enough frequencies are employed, a sinusoidal response

can be “recovered”, as observed by [8] .

The torque balance in the geometry gives

T (t) =

Z
R

0

r⌧(r, t)2⇡rdr = 2⇡

Z
R

0

r2⌧(r, t)dr (9)

Substituting (8) in (9)

T
a

sin(!t+ �) = 2⇡

Z
R

0

r2⌧
a

(r) sin(!t+ �)dr (10)

we obtain

T
a

= 2⇡

Z
R

0

r2⌧
a

(r)dr . (11)
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Changing variables from r to �̇
a

using

�̇(r, t)

�̇
R

(t)
=

�̇
a

(r)

�̇
R,a

=
r

R
(12)

r =
R

�̇
R,a

�̇
a

and dr =
R

�̇
R,a

d�̇
a

(13)

gives

T
a

= 2⇡

Z
�̇R,a

0


R

�̇
R,a

�̇
a

�2
⌧
a

(�̇
a

)
R

�̇
R,a

d�̇
a

(14)

T
a

= 2⇡


R

�̇
R,a

�3 Z
�̇R,a

0

�̇2
a

⌧
a

(�̇
a

)d�̇
a

(15)

�̇3
R,a

T
a

2⇡R3
=

Z
�̇R,a

0

�̇2
a

⌧
a

(�̇
a

)d�̇
a

. (16)

By di↵erentiating using Leibnitz’s rule we obtain

d

d�̇
R,a


�̇3
R,a

T
a

2⇡R3

�
= �̇2

R,a

⌧
R,a

(17)

where ⌧
R,a

⌘ ⌧
a

(�̇
R,a

). Rearranging for ⌧
R,a

⌧
R,a

=
T
a

2⇡R3


3 +

d ln (T
a

/2⇡R3)

d ln �̇
R,a

�
(18)

where the derivative
d ln(Ta/2⇡R3)

d ln �̇R,a
is a function of the amplitude �̇

R,a

and needs

to be evaluated at a constant frequency and varying �̇
R,a

around the value of

interest.

It is worth noting that the same analysis is valid for the reverse case, i.e.

a stress input and strain rate output, as long as both are sinusoidal.

To illustrate the correction, a 1.5% polyacrylamide solution was used to

perform strain sweep tests with two di↵erent geometries, namely a cone and

plate and smooth parallel plates with 1mm gap. Since apparent wall slip does

not occur for this material, smooth walls can be used without any concerns.

Instead of presenting the results in Fig. B.1 in terms of G’ and G”, a plot of

the stress vs. strain was used. The vertical axis is displayed in linear scale to

highlight the di↵erences between the curves.
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Figure B.1: Strain sweep for a 1.5 % polyacrylamide solution, with di↵erent
geometries.

Firstly, it is possible to note that all curves coincide in the small

strain region, which pertains to the linear viscoelastic regime. Indeed, in this

region, the derivative is approximately equal to 1, already indicating that no

correction is needed. However, when comparing the results for the cone and

plate (black curve) and the parallel plate (blue curve), it becomes evident that

the di↵erences increase with strain amplitude and are not negligible. In fact,

it was verified that errors induced by the non-homogeneity can be as great

as 25%. Nonetheless, the curve corresponding to the corrected curve coincides

with the cone and plate resuls, showing that the developed stress correction is

able to successfully correct the results for the parallel plate geometry.
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C
Details on the LAOS experiments

As previously discussed, in regular oscillatory experiments the recorded

data corresponds to the amplitudes of the input and output waves. For instance

in a strain sweep, each data point in a G’ / G” vs. strain plot corresponds to

the amplitude of the input strain wave.

However, in LAOS experiments there is a need to collect the “raw data”.

This means that, instead of saving only the amplitude information, the software

also needs to collect intra-cycle data. In order to do this, some adjustments

must be done when setting up the rheometric experiment. Fig. C.1 shows the

print screen of a time sweep procedure used in this investigation:

Figure C.1: Oscillation time sweep set up.
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As can be seen, the main test parameters are the duration (s), sampling

rate (pts/s), strain amplitude (%), and frequency (Hz) are set. The di↵erence

to regular time sweep tests is the data acquisition. Instead of using the

“correlation acquisition mode”, the “transient” mode must be selected. Also,

in order not to miss any time e↵ects, the “frequency based correlation” must

be unchecked. Both delay cycles and delay time must be set to 0s, as they

indicate the number of cycles and the time, respectively, to apply the sinusoidal

deformation before beginning the data collection. Moreover, we chose to use

one sampling cycle (2 half cycles) with 128 points per cycle.

According to the manufacturer, a step of conditioning the transducer is

indicated when collecting raw data. This enables achieving better performance

of the motor and higher accuracy of the torque transducer. Fig. C.2 shows the

conditioning transducer set-up.

Figure C.2: Conditioning transducer set up.

The transducer mode switching is set to FRT (force rebalance transducer)

for both normal force and torque transducer modes, which imply a sti↵ mode,

recommended in the case of moderate to high viscosity systems. In addition,

the motor state is set to “locked”, preventing the motor from drifting during

the sample equilibrium, and consequently introducing a residual torque to the
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sample at the beginning of the oscillation time step. The “equilibration” time

indicates the time for the material to relax. Once we wait for the material to

relax before starting the rheometric experiment, a time of 10.0 s seems to be

su�cient for this equilibrium delay.

Regarding the range selection for the transducer, the appropriate range

depends on the material used. The manufacturer recommends the low range

for 0.05 to 5000 µNm, the med range for 0.4 to 20.000 µNm, and high range

for 4 to 200.000 µNm. Thus, for our elasto-viscoplastic material, the low range

was selected for the lowest stress amplitude, and the medium range for the rest

of the tests. It is necessary to emphasize that choosing the appropriate range

is important to avoid the loss of torque sensitivity. Moreover, the transducer

zero time is recommended to be set to standard for regular experiments and

to fast for high frequency experiments. Also, it is important to check the “zero

torque” box for the torque to be zeroed prior to starting the experiment.
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