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DISSERTAÇÃO DE MESTRADO

Thesis presented to the Programa de Pós-graduação em Engen-
haria Mecânica, PUC–Rio as partial fulfillment of the require-
ments for the degree of Mestre em Engenharia Mecânica.

Advisor: Prof. Jaime Tupiassú Pinho de Castro
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Abstract

Góes, Rafael Cesar de Oliveira; Castro, Jaime Tupiassú Pinho de.
Linear-Elastic three-dimensional effects in notch and crack
tip fields. Rio de Janeiro, 2013. 82p. MSc Thesis — Departmento
de Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Notches and cracks are usually treated as two-dimensional problems in most

structural design and analysis tasks, employing 2D limit solutions obtained from

plane elasticity theories to evaluate the severity of stress/strain concentration

effects around their tips. However, due to restrictions to the Poisson strains

induced by the stress gradients around such tips, these regions may be affected

by important three-dimensional effects that can affect their stress/strain fields

and possibly lead to non-conservative damage and life predictions if neglected.

Fatigue crack initiation, plastic zone size and shape estimation, and plane

stress/plane strain dominance issues on K-controlled fields are typical examples

of problems sensible to such effects. Linear Elastic Finite Element techniques

are used to simulate 3D effects along notch fronts, such as how the thickness-

to-notch root radius B/ρ affects the stress and strain fields that surround them.

The influence of such 3D effects is evaluated from the structural design point

of view. Then versatile submodeling techniques are used to study similar 3D

effects along the fronts of short and long cracks. Finally, a stepwise remeshing

routine is used to show how an initially straight crack must slightly curve its

front during its propagation by fatigue.

Keywords
3D notch tip fields; 3D crack tip fields; crack front curvature; material

constraint.
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Resumo

Góes, Rafael Cesar de Oliveira; Castro, Jaime Tupiassú Pinho de.
Efeitos tridimensionais lineares elásticos em campos em torno
de pontas de entalhes e trincas. Rio de Janeiro, 2013. 82p.
Dissertação de Mestrado — Departamento de Engenharia Mecânica,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Entalhes e trincas são normalmente tratados como problemas bi-dimensionais

na maioria das análises e projetos, com o emprego de soluções limites 2D

obtidas de teorias de elasticidade plana para avaliar a severidade dos efeitos

de concentração de tensão e deformação próximo à sua ponta. Contudo, devido

à restrição por deformações de Poisson induzidas pelos gradientes de tensão em

torno da ponta, estas regiões podem sofrer efeitos tridimensionais importantes

em seus campos de tensão e deformação, os quais, se negligenciados, podem

levar a predições não conservasdoras de dano e vida. A iniciação de trincas

por fadiga, estimativas de tamanho e formato de zona plástica e dominância

de estado plano de tensão ou deformação em campos controlados por K são

exemplos t́ıpicos de problemas senśıveis a tais efeitos. Técnicas de Elementos

Finitos Linear Elástico são utilizadas na simulação de efeitos 3D ao longo

da frente de entalhes, tais como a influência da razão espessura-raio-de-

arredondamento sobre os campos de tensão e deformação que a cercam. A

influência de tais efeitos 3D é examinada do ponto de vista de projeto estrutural.

Então, a versátil técnica da submdelagem é empregada no estudo de efeitos 3D

similares ao longo da frente de trincas curtas e longas. Finalmente, uma rotina

de remalhamento passo-a-passo é utilizada para demonstrar como uma trinca

inicialmente reta deve se curvar conforme propaga por fadiga.

Palavras–chave
campos 3D em ponta de entalhe; campos 3D em ponta de trinca; curvatura

da frente da trinca; restrição material.
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1
Introduction

The calculation of stress and strain fields around notches is a frequent

matter in engineering. Notches usually behave as localized stress raisers, very

likely to originate cracks or cause creeping, yielding, environment assisted

cracking and other failure mechanisms driven by stresses.

Catalogs for Stress Concentration Factors (SCF) and Stress Intensity

Factors (SIF), see ahead, list solutions obtained from analytical, numerical,

and/or experimental methods, usually treating the stress analysis problem as

if it was two-dimensional (2D), assuming Linear Elastic (LE) plane stress (pl-σ)

or plane strain (pl-ε) conditions around the notch tip.

Nevertheless, recent literature shows that the material close to notches

and crack tips is subjected to material constraint effects, and the stress state

is in fact three-dimensional (3D). The present work investigates, through 3D

Finite Element (FE) analyses, LE 3D effects acting on the stress and strain

fields of notched and cracked uni-axially tensiled plates with finite thickness

and, in case of cracks, the influence of such effects on the development of the

crack front shape while it propagates.

Along this chapter, a brief bibliographic revision presents a background

on the 3D notch problem (section 1.1) and 3D crack problem (section 1.2).

Section 1.3 summarizes the objectives of this work and, in section 1.4, its main

contributions are listed.

1.1.
Three-dimensional effects on notch-tip fields

For design purposes, the maximum stress σ0 that acts at notch tip is

usually calculated by using a Stress Concentration Factor (SCF) Kt to multiply

the nominal stress σn that would act there if the notch had no effect on the

stress and strain fields that surround them (see Figure 1.1):

σ0 = Ktσn (1.1)
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Figure 1.1 – 2D representation of σ0 classical notch tip stress

SCF’s are usually dependent on geometry and load acting on the spe-

cimen. The first analytical solution for LE stress/strain fields around notches

was obtained by Kirsch in 1898 [14], for an infinite plate with a circular hole,

described by:

σr =
σn
2

(
1− ρ2

r2

)
+

(
1− 4ρ2

r2
+

3ρ4

r4

)
cos 2θ

σθ =
σn
2

(
1− ρ2

r2

)
−
(

1 +
3ρ4

r4

)
cos 2θ (1.2)

τrθ = −σn
2

(
1− 3

ρ4

r4
+ 2

ρ2

r2

)
sin 2θ

with cartesian and cylindrical coordinate systems origins placed at the center

of the circular hole, see Figure 1.2(a).

x

y
r

q

r

1.2(a): Kirsch plate: circular hole
at infinite plate

x

y

a

b

1.2(b): Inglis plate: elliptical hole
at infinite plate

Figure 1.2 – Pioneer analytical solutions for 2D stress concentration problems:
Circular (Kirsch) and Elliptical (Inglis) hole at infinite plate. The coordinate
system origin is placed at the center of the circular or elliptical hole.

In the notch root, where r = ρ, the ratio σθ/σn becomes 3, the well known

value of Kt for the circular hole in infinite plate. Regarding the x direction
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ahead of the notch root, eq. 1.2 can be rewriten in the alternative form (Li et

al, [16]):

σx =
Ktσn

2

[(
1 +

x

ρ

)−2
−
(

1 +
x

ρ

)−4]
(1.3)

σy =
Ktσn

3

[
1 +

1

2

(
1 +

x

ρ

)−2
+

3

2

(
1 +

x

ρ

)−4]
(1.4)

Later, Inglis in 1913 [11] presented the exact analytical solution for the

elastic field around an elliptical hole in an infinite plate under multi-axial load,

for which the Kirsch solution is a particular case. The general solution obtained

for the multi-axial problem is not trivial, and the multi-axial load case is out

of the scope of the present work. Instead, let us consider the plate loaded in

mode I, where the nominal stress σn is applied perpendicular to the major

semi-axis (a) of the ellipsis. Considering that the ellipsis semi-axes a and b are

parallel to cartesian axe x and y respectively (see Figure 1.2(b)), the σy stress

component ahead of the hole root can be described by:

σy = σn

[
1 +

(a2 − 2ab)(x−
√
x2 − a2 + b2) + ab2(a− b)x

(a− b)2(x2 − a2 + b2)
√
x2 − a2 + b2

]
(1.5)

Also, in the ellipsis vertice (x, y) = (a, 0), equation 1.5 becomes:

σy = σn(1 + 2
√
a/ρ) (1.6)

For analysis purposes, equation 1.6 becomes a fine approximation for Kt

of any notch that fits within depth a and tip-radius ρ:

Ktapprox = (1 + 2
√
a/ρ) (1.7)

Both presented examples are exact within the infinite medium assump-

tion and 2D limitation. Other analytical solutions were obtained for stress

concentrations, but most of them equally limited to infinite geometries and

are based in 2D, plane or axi-symmetric geometries.

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 1. Introduction 18

Creager and Paris [5] presented a method to estimate the Kt of a notch

from the SIF of a similar crack as Kt ≈ 2KI/σn
√
πρ, but, again, most of the

avaiable SIF catalogs are based on 2D solutions, see [25].

Later Glinka and Newport [8] used this solution to estimate the stress

fields ahead of relatively deep notches, obtaining:

σx =
Ktσn

2
√

2

[(
1

2
+
x

ρ

)−1/2
− 1

2

(
1

2
+
x

ρ

)−3/2]
(1.8)

σy =
Ktσn

2
√

2

[(
1

2
+
x

ρ

)−1/2
+

1

2

(
1

2
+
x

ρ

)−3/2]
(1.9)

It is worth mentioning that Kirsch Plate and the deep notch can be taken

as two conceptual limit solutions for plain notches concerning the ratio a/ρ: in

the first, the notch depth is equal to the notch tip radius (a/ρ = 1), while in

the second, the notch depth is much larger then the tip radius (a/ρ→∞).

With the advent of Finite Elements and the boost of numerical compu-

tational capacity, SCF’s were obtained for a wide variety of geometries under

various loading conditions although, once again, mostly restricted to 2D do-

main. Many of them are related in Peterson’s Stress Concentration Factors [20],

a widely used catalog of SCF’s.

But the 2D representation of a notched component presents limitations,

even in the simplest cases. Consider, for instance, the case of a notched

tensioned plate with uniform thickness, where the material far from the notch

is subjected to dominating plane-stress (pl-σ) conditions, with σy = σn and

the remaining stress components σx = σz = τxy = τyz = τxz = 0. The strains at

the notch tip are εy = σn/E and εx = εz = −νσn/E, which are easily obtained

from Hooke’s Law for the LE case:

εx = [σx − ν(σy + σz)] /E

εy = [σy − ν(σx + σz)] /E

εz = [σz − ν(σx + σy)] /E

εxy =
σxy
2G

, εyz =
σyz
2G

, εxz =
σxz
2G

(1.10)

Using a coordinate system centered at the notch root, see Fig. 1.3 (from

now on, this reference system shall be used for every notch analysis), the

classical LE 2D approach expressed by eq. 1.1 results in σy(x = y = 0) = σ0 =

DBD
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y

x

z

B

a

Figure 1.3 – 3D representation of notched plate under uni-axial load: the
coordinate system’s origin is placed at the center of the notch tip. The presence
of the notch causes a stress gradient ahead of the tip and, due to the Poisson’s
contraction, the stress state of an element close to the notch tip will be 3D.
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Ktσn, εy = Ktσn/E, and εx = εz = −νKtσn/E. But the tendency of the notch

root to have a much higher transversal strain εz than the rest of the piece

is restrained by it. This restriction generates a tensile σz component around

the notch root. Hence, the stress and strain fields close to notch tips must in

fact be 3D, due to the restriction to the Poisson contraction induced by the

stress/strain gradients that act there. To quantify this restriction, a transversal

constraint factor Tz can be defined at any given point by the ratio between

the out-of-plane stress σz and the sum of the in-plane stress components σx

and σy that act there. Under pl-σ limit condition, the only non-null stress

components are σx and σy, which means that Tz = 0 in such cases, whereas

under plane-strain (pl-ε) limit condition, Hooke’s Law leads to Tz = ν. Thus,

in resume:

Tz =
σz

σx + σy
=

{
0 pl-σ

ν pl-ε
(1.11)

Youngdahl and Sternberg solved the infinite solid with a 3D ellipsoidal

cavity problem, one of the very few analytical solutions available for LE 3D

notch problems. They also obtained approximate solutions for the 3D stresses

in an infinite plate of finite thickness with a circular hole [31].

Through the last decades, the great boost of computational capability

possibilitated the solution of larger and larger numerical models. Great effort

has been dedicated, since then, in obtaining solutions for the 3D fields in stress

concentrators.

Figure 1.4 – Notch configurations analysed by Guo et al. [16]

Guo et al. [16] used 3D finite elements to model the linear elastic tip-

fields of several notch configurations. Three basic configurations of notch in a
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plate were deeply investigated, namely: circular hole, U-notch and V-notch (see

figure 1.4), varying the following parameters: the tip radius ρ, the normalized

notch depth a/W and the plate width B, resulting in important conclusions:

– The SCF in a 3D-notch root is closely related with the dimensionless

thickness B/ρ and the notch configuration. If, with respect to the tip

radius ρ, the plate is very thin (B/ρ→ 0) or very thick (B/ρ→∞), the

SCF will be the same as in the 2D pl-σ solution. For a plate with finite

thickness, the SCF’s in the notch root are greater than the corresponding

2D value: it grows with B/ρ from the plane Kt to a peak value, after

which it decreases until reaching a steady value, which depends on the

ρ/a ratio.

– Taking σy0(z) as the σy stress component at the notch root at a particular

z along the thickness, the normalized stress σy/σy0 along x/ρ independs

of B and of the notch configuration, and is well predicted by the 2D

solution.

– Strong 3D effects may exist close to a stress concentrator, and the 3D

affected zone is characterized by Tz > 0 (see eq. 1.11). For relatively

closed notches, the size of the 3D-effect zone is insensity to the notch

geometry and is about 3B/8 on the mid-plane.

– No matter how thick the plate is, due to the finite radius ρ, unlike cracks

the notch root never assumes the pl-ε state.

– If Tz0 is the out-of-plane constraint at the notch root, (Tz/Tz0)mp vari-

ation along normalized x/B is insensitive to the notch configuration and

the plate thickness, and can be well described by the equation:

(
Tz
Tz0

)
mp

= 1− 4.35
(

1 + 0.628
x

B

)−2
+ 4.35

(
1 + 0.628

x

B

)−4
(1.12)

Yang et al. [30] presented similar results and showed that stress and

strain concentration effects are decoupled along the thickness, even within the

linear elastic (LE) regime. Instead of the single SCF Kt = σmax/σn used in

2D analyses, independent Kσ = σmax/σn and Kε = εmax/εn stress and strain

concentration factors should be considered when analyzing 3D notch problems.

In further works, investigating finite-thickness plates with elliptical holes,

She and Guo [23] and Yu et al. [32] obtained the relationship between the
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maximal SCF along the notch-root thickness, the SCF at the free surface Kσsurf

and the 2D Kt. As observed, Kσsurf/Kt is a monotonic decreasing function of

the dimensionless plate thickness, the ellipsis aspect-ratio t = b/a and Poisson’s

ratio. Kσmax/Kσsurf , on the contrary, is a monotonic increasing function of the

same parameters:

Kσmax/Kσsurf = f1(B/ρ, t, ν) (1.13)

Kσsurf/Kt = f2(B/ρ, t, ν) (1.14)

1.2.
Three-dimensional effects in crack tip-fields

Consider a cracked plate with thickness B, uni-axially loaded in mode-

I (y-direction) by the nominal stress σn, with the cartesian and cylindrical

coordinate systems origin placed at the center of the crack tip, as illustrated

in Figure 1.5.

The 2D classical description of the LE stresses and strains ahead of

a crack tip was obtained independently by Williams ( [27]) and Irwin [13].

Williams used an infinite series that provides an asymptotic solution for

the crack tip stress/strain fields, usually approximated by its first term, the

stress intensity factor (SIF). This one-parameter SIF-based description for

the stress field around crack tips loaded in mode I gives the well-known

σij = (KI/
√

2πr)gij(θ) solution, where i, j = x, y:

σx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
σy =

KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(1.15)

τxy =
KI√
2πr

cos
θ

2

(
sin

θ

2
sin

3θ

2

)

This classical solution is singular at the crack tip, but as infinite stresses

are physically impossible, its idealized LE fields are always perturbated by some

yielding (or by other non-linear deformation mechanisms) around real crack

tips. In spite of this limitation, classical Linear Elastic Fracture Mechanics

(LEFM) concepts are very much useful. Nevertheless, they are applicable only

when the unavoidable plastic zones (pz ) that always accompany crack tips
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are contained within a small region close to them, i.e. when such pz sizes are

much smaller than the cracked component dimensions. Therefore, when LEFM

concepts are employed, good estimates for pz(θ) sizes and shapes are needed

to verify the consistency of their predictions.

Souza [24] recently discussed the limitations of pz(θ) estimates based on

SIF alone. In particular they showed that the T -stress correction (the second

term in the Williams series solution for the stress fields around crack tips) may

not be sufficient to achieve good pz size estimates in many practical cases, since

the nominal stresses used in most engineering designs nowadays are typically

associated to yielding safety factors 3 > φY > 1.25 ⇒ 0.33 < σn/SY < 0.8,

where SY is the material yielding strength. Indeed, neither SIF alone nor (SIF

+ T) approximations for the stress fields around crack tips can reproduce the

nominal stress σn far from it, and to neglect the influence of such relatively

high σn on pz estimates leads to non-negligible errors. This topic is not further

pursued here, since the main focus of this work is to evaluate 3D effects

around notch and crack tips under predominantly LE conditions, such as

those usually encountered in fatigue applications. Nevertheless, such pz are

intimately linked to the amount of material subjected to compatibility-induced

constraints around the crack tip. This fact alone can raise questions such as:

how do such restrictions ahead of a crack tip behave? Are such 3D effects

always negligible or there are practical cases where they must be considered?

If 3D notches present differences between the stresses in the free surface and

the interior, will a crack present a similar behavior?

Concerning the crack behavior at free surfaces, Bazant and Estenssoro [2]

demonstrated that the singularity along the entire crack front remains propor-

tional to 1/
√
r during fatigue crack propagation under LEFM conditions. They

used a spherical hemisphere to model the region where the crack front edge

meets the free surface of the cracked piece under several intersection angles β.

Through eigenvalue analyses, they conclude that for a crack loaded in mode

I only a single β, dependent on Poisson’s ratio ν, attends that singularity

condition. In the particular case of a crack perpendicular to the free surface

(β = π/2), KI must be zero in this point, so fatigue cracks cannot propagate

with a straight front.

Nakamura and Parks [19] presented valuable results after numerically

analyzing 3D LE stress and strain fields around crack tips within a SIF-

dominated zone in a plate. The region close to the crack tip was modeled as a

disk centered at the crack tip (see figure 1.6). The crack size a was considered

long with respect to the cracked plate thickness (a >> B). The boundary of

the disk (r = R) was loaded by the displacement field generated by the SIF KI
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and KII applied on the plate, using the so called Boundary Layer approach,

expressed by:

ui =

√
R

2π

1 + ν

E
[KIfIi(θ) +KIIfIIi(θ)] ; i, j = 1, 2 (1.16)

with


fI1(θ) = cos(θ/2)

[
κ− 1 + 2 sin2(θ/2)

]
fI2(θ) = sin(θ/2)

[
κ+ 1− 2 sin2(θ/2)

]
fII1(θ) = sin(θ/2)

[
κ+ 1 + 2 sin2(θ/2)

]
fII2(θ) = cos(θ/2)

[
κ− 1 + 2 sin2(θ/2)

]
where κ = (3− ν)/(1 + ν) for pl-σ and κ = 3− 4ν for pl-ε limit conditions.

Parks and Nakamura’s model was revisited by She and Guo [22], who used

a more refined FE mesh to further explore 3D effects around crack tips. Fitting

expressions for their FE solutions, they proposed a 2-parameter description of

the tip fields, using the SIF K and the transversal constraint Tz as parameters

to describe them. Their in-plane stress components are obtained from equations

very similar to the classical K-field description:

σij =
KIf

I
ij(θ) +KIIf

II
ij (θ)

√
2πr

, i, j = 1, 2 (1.17)

with



f I11(θ) = cos(θ/2) [1− sin(θ/2) sin(3θ/2)]

f I22(θ) = cos(θ/2) [1 + sin(θ/2) sin(3θ/2)]

f I12(θ) = cos(θ/2) sin(θ/2) cos(3θ/2)

f II11 (θ) = − sin(θ/2) [2 + cos(θ/2) cos(3θ/2)]

f II22 (θ) = sin(θ/2) [sin(θ/2) cos(θ/2) cos(3θ/2)]

f II12 (θ) = cos(θ/2) [1− sin(θ/2) sin(3θ/2)]

When the cracked plate is modeled as a 3D stress analysis problem, the

SIF KI and KII around the crack tip vary through the plate thickness due

to the transversal constraint effect induced by the Poisson contraction that is

very much active there. These local KI and KII are obtained from the applied

2D SIF K far
I and K far

II that govern the LE fields further from the crack tip,

which are exempt of such constraint effects:

KI(z/B) = K far
I FI(z/B) (1.18)

KII(z/B) = K far
II FII(z/B) (1.19)
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Assuming that TzI and TzII are the out-of-plane constraint factors under

pure mode I and II, respectively, the transversal stress component close to the

crack tip can be written as:

σz =
TzIKI [fI11(θ) + fI22(θ)] + TzIIKII [fII11(θ) + fII22(θ)]√

2πr
(1.20)

The correction terms FI , FII , TzI and TzII are functions of r0 = r/B and

z0 = 2z/B. As the present work scope is restricted to cracks loaded in mode

I, only TzI and FI are described below:

TzI = T̃zI(r0, θ, z0)

= ν(1 + br0.50 ) exp(crd0), −90o ≤ θ ≤ 0o (1.21)

with



b = −1.518− 0.342z20(1− z0)−0.5

c = −3.444− 2.223z30(1− z0)−1 exp(0.062z30)

d = Q1 cos θ +Q2 sin2 θ +Q3

Q1 = 0.82078− 0.58758z0 − 0.13642z20

Q2 = 0.0242 + 0.16947z0 + 0.0114z20 − 0.16721z30

Q3 = 0.98172− 0.23712z0 − 0.8194z20 + 0.93912z30

FI(z0) = m1 [1− zm2
0 ]m3 (1.22)

with


m1 = 0.25ν1.5 exp(1.69ν) + 1

m2 = 2.61ν3 exp(1.71ν) + 3.14

m3 = 0.096ν exp(3.95ν2)

Strong 3D effects are observed within a distance r = B/2 from the

crack tip, and the 3D-2D transition occurs within B/2 < r < 3B/2. She

and Guo showed that a long crack with a straight front under pure mode-I

loads presents a non-uniform KI distribution. At the free surfaces, KI must

vanish, as observed by Bazant and Estenssoro [2], but in the middle plane KI

is approximately 6.7% higher than the classical 2D solution for ν = 0.3.

Although ingenious, Nakamura and Parks’ model presents some concep-

tual limitations that should not be disregarded. It assumes that the crack is

much longer than the plate thickness, meaning that the model may not rep-

resent well a crack in its early stages of propagation, when its size a is of the
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order of the plate thickness B or even lower. Also, the response is obtained

for a SIF boundary load, meaning that all limitations associated to K-field as-

sumptions are incorporated by the model. For instance, all 3D correction terms

are taken as functions of r/B and 2z/B, but the K-dominance of the stress

field is strictly valid only very close to the crack tip. These assumptions fail to

describe the situation where the 3D affected zone surpasses the K-dominated

region.

Furthermore, ideally straight cracks are just a convenient mathematical

trick. Even if a crack could somehow be created with a straight front e.g. on

plate edge, experimental observations show that its front curves when it starts

to propagate, a phenomenon known as crack tunneling. Extensive research on

the tunneling phenomenon [10, 15, 21] show that, in a through-cracked plate,

the curved front shape can present a difference between its maximal and surface

dimensions (amax and asurf) up to 5% of the plate thickness B, according to [21].

This apparently slight curvature is shown to bring considerable impact on SIF

calculations close to the free-surface.

Through a recursive remeshing algorithm, Wu [29] was able to numer-

ically obtain the shape of the crack front for a given KI distribution in a

through-cracked plate. Crack tunneling depth around 0.025B was observed

e.g. for the uniform KI distribution. He also discusses the influence of the

crack length a and of the plate thickness B on the crack front shape and on

the KI differences with respect to 2D solutions.

1.3.
Objectives

The objectives of the present work are: the identification of the 3D effects

exerted by the finite thickness in the stress/strain tip fields ahead of a single

notch or crack in a plate, the achievement of a linear-elastic estimate of the

limits of KI dominance on the stress fields ahead of a crack; the identification

of similarities and divergences between the behaviour of long cracks/thin plates

and shallow cracks/thick plates through the examination of the influence of the

thickness-to-crack length ratio B/a on the stress fields; to observe the crack

front cuvature development from an initially straight crack in LE propagation

under Paris’ rule.
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1.4.
Main contributions

This work revisits the most recent literature concepts on 3D LE notches

through several FE models results, and discusses the importance of 3D effects

on notch design issues. Furthermore, it obtains SIF distributions for cracked

SE(T)-like semi-infinite plates with several B/a ratios, to evaluate their true

influence on the KI distribution, using powerful submodeling techniques that

intrinsically avoid K-field domination and long crack hypothesis limitations.

On the sequence, the FRANC3D code 1001[4] is used to simulate the 3D growth

of an initially straight front crack of initial length a0 under simple Paris rule,

to observe how the crack front shape and the KI distribution develop. The

influence of a0/B and of Paris’ exponent n is also discussed.

1.5.
Summary

This work is divided in four chapters (Introduction, Methodology, Results

and Conclusions), a Bibliography Index and Appendices

Chapter 2 presents the methodology used in the examination of the 3D

effects on notches and crack tip fields. Section 2.1 describes the construction

of 3D FE notch models in Abaqus [6] used to reproduce She and Guo’s results

in [23]. Section 2.2 describes the modelling process used in the finite thick-

ness cracked plates models in Abaqus [6], which employed the submodeling

technique. Finally, section 2.3 briefly presents the models used in FRANC3D

associated with Abaqus [6] to simulate the propagation of an initially straight

crack in a finite-thickness plate under tension.

The results are presented and discussed in chapter 3. Section 3.1 presents

the comparison of the results obtained in the present work with the recent

literature on 3D notches, and the relevance of the 3D effects is discussed from

a design point of view. In section 3.2, the influece of the B/a ratio on the

stress fields ahead of a straight passing crack are presented and discussed.

Finally, section 3.3 presents the behaviour of a passing crack, initially straight,

propagating in LE regime and Paris’ rule starting with different initial lengths.

The main conclusions are summarized in chapter 4.

Additionally, the appendices bring relevant data concerning the Finite

Element models runs.
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Figure 1.5 – Cracked plate with thickness B and crack length a loaded in pure
mode-I by nominal stress σn, with coordinate system origin at the center of the
crack tip.
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Figure 1.6 – Nakamura and Parks FE model for KI dominated region around
crack tip, see [19,22]
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2
Methodology

This chapter presents the methodology used for the study of 3D effects

on notch and crack tip fields, which consisted of three stages:

1. 3D FE analysis of LE tensile plates with through notches

2. 3D FE analysis of LE tensile plates with through edge cracks with

straight front

3. Simulation of the propagation of an initially straight front crack under

pulsating load and simple Paris’ rule

The analysis of 3D fields in notches is performed for gain of confidence in

the 3D FE modeling of the stress concentration problem without the presence

of the singularity (crack). For that purpose, several models of plates with

Elliptical Holes (EH) and Semi-Elliptical (SE) notches were analysed. Two

benchmark solutions are used to check the adequacy of the models to detect 3D

effects in the stress concentration: EH (Inglis’ plate) and SE notch analytical

solutions and She and Guo’s results in [23].

After the reproduction of literature results for notches, the problem of the

cracked plate is approached, introducing the singularity in the plate models.

Several B/a ratios are examined. In this stage, the crack is modeled with a

straight front, and the Submodeling Technique (see section 2.2.1) is employed

for application of the load avoiding excessive computational cost. SIF and

stress fields are analysed and compared with the classical 2D K-solution and

with the long crack solution presented in [22].

Finally, a crack growth simulation is performed for initially straight

cracks, in order to observe the impacts the 3D effects bring to the crack front

shape and to the SIF distribution along the crack front while it propagates.

All FE analyses were performed with Abaqus v6-10 software [6], using

traditional quadratic continuous elements and LE regime. The analyses were

run in an ASUS Laptop, with an Intelr CoreTMi7 processor (complete

specification in Table 2.1).
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Table 2.1 – Computer characteristics

Manufacturer: ASUSTeK Computer Inc.
Model: ASUS Notebook N53Jq

Series
Processor: Intel R©CoreTMi7 CPU Q740

@1.73GHz
Installed Memory (RAM): 4.00GB

System Type: 64-bit Operating System

Several analyses used Abaqus [6] parallel processing tool, due to the large

number of degrees of freedom used in the models.

2.1.
Notch FE models

Several FE models were built in order to represent infinite plates with

Elliptical Holes (EH) and semi-infinite plates with Semi-Elliptical (SE) notches

with finite thickness B. The models were built using C3D20 full integration

solid element from Abaqus [6] library. C3D20 is a traditional 20-node quadratic

brick, containing 3 degrees of freedom per node (ux, uy, uz).

Figure 2.1 – 20-node brick element

She and Guo’s results presented in [23] served as benchmark for the

present models development. In their work, similar to what is described here,

3D plates of several thicknesses with elliptical holes under uni-axial tension

are analysed. The relations between Kσmax and Kσsurf with respect to the 2D

Kt are adjusted by monotonic functions of B/ρ and ρ/a, with t = b/a (the

ellipsis aspect ratio), for the particular Poisson’s ratio used (ν = 0.33).

Kσmax/Kσsurf (B/ρ) = a1 − (a1 − 1) [1 + (B/ρ)n1 ] exp [b1(B/ρ)c1)] (2.1)
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with:


a1

b1

c1

n1

 =


1.3403t−0.112 − 0.3009t0.888 + 0.3531t1.888 − 0.1482t2.888

−0.2953t4 + 0.3689t3 − 0.1832t2 − 0.3066t− 0.7493

−0.6718t4 + 2.2765t3 − 2.9337t2 + 2.1754t+ 0.1980

0.8996− 0.8366/ [1 + exp(10.8225t− 1.8301)]



Kσsurf/Kt = a2 − (a2 − 1) [1 + (B/ρ)n2 ] exp [b2(B/ρ)c2)] (2.2)

with:


a2

b2

c2

n2

 =


(1.6132t−1.882 + 0.3757) log(0.5137t2 + 1)

0.7288t4 − 1.7403t3 + 1.2620t2 − 0.5594t− 0.7590

−2.3682t4 + 6.0150t3 − 5.5302t2 + 2.5281t+ 0.1867

t/(0.37 + 2.1245t− 0.8911
√
t)



The 2D reference SCF for the EH case (KtEH
) is given by eq. 1.6, repro-

duced below. The SCF for SE notch, though, has no closed form expression,

but Bowie in 1966 [3] was able to fit a correction term φ to adjust the SCF of

an EH (KtSE) with the same t.

KtEH
(t) = 1 + 2/t (2.3)

KtSE(t) = φ ·KtEH
(t) (2.4)

The parameters used in the models construction are presented in tables

2.3 and 2.4. The material parameters E = 200GPa and ν = 0.33 were the

same used by She and Guo in [23].

Plate width W values were chosen to avoid boundary effects and to

acchieve the infinite (for EH cases) and semi-infinite (for SE cases) plate

condition. Every model was built with symmetry with respect to the xy plane

at the plate mid-thickness and to the xz plane. The EH models received

additional symmetry with respect to yz plane. The uniform tensile load was

applied as negative unitary pressure on the superior plate face (y = H).

Figure 2.2 shows an example of the σy distribution along x-axis obtained

with a 2D pl-σ EH model with ρ/a = 0.5, where the semi-infinite plane solution
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Table 2.2 – Correction term φ for SE notch SCF

t φ
0 1.1215

0.0526 1.106
0.1111 1.092
0.1765 1.08
0.25 1.069

0.3333 1.059
0.4286 1.05
0.5385 1.042
0.6667 1.034
0.8182 1.028

1 1.022

Table 2.3 – Notch FE model parameters I

Parameter Symbol Value

Poisson’s ratio ν 0.33
Young’s modulus E 200GPa
Width W 60mm
Height H 60mm

is well-reproduced, showing that the used dimensions are enough to describe

the infinite plate behaviour.

The meshing process followed some common guidelines. The notch tip

region was mapped-meshed, with a maximum element size of 0.1ρ at the notch

tip. At a certain distance from the notch tip, the number of elements through

thickness was reduced in order to save computational effort. Figure 2.3 shows

a particular mesh created for a Semi-Elliptical Notch model with b/a = 0.5,

ρ/a = 0.25.

The resulting linear equation systems were solved using Abaqus [6] sparse

solver. Fig. 2.4 presents the number of nodes and the CPU time used in the

analysis of each model.

Fig. 2.5 clearly shows that the results obtained by the present EH models

(circles) reproduce with very good agreement She and Guo’s results (lines),

represented by eq. 2.1 and 2.2. This successful comparison shows that the

present models are able to capture the 3D effects previously observed in

literature.
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Table 2.4 – Notch FE model parameters II

Notch a(mm) b(mm) ρ/a B/ρ

EL 1 1 1 0.1, 0.2, 0.4, 0.6, 1, 1.5, 2, 3, 4, 6, 8, 10, 20
1 0.5 0.25 0.4, 0.8, 2, 2.8, 4, 6, 8, 12, 16, 32, 48
1 0.2 0.04 3, 6, 10, 15, 20, 30, 50, 75, 100
1 0.1 0.01 0.4, 0.6, 1, 2, 4, 6, 10, 20, 40, 60, 100

SE 1 1 1 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10, 20, 30
1 0.5 0.25 0.16, 0.24, 0.4, 0.8, 2, 4, 8, 12, 16
1 0.2 0.04 0.5, 1, 3, 10, 20, 30
1 0.1 0.01 0.6, 6, 10, 20, 40, 60, 100, 200, 400

Figure 2.2 – 2D Stress distribution ahead of EH tip with apect ratio t = b/a =
0.5, ρ/a = 0.25: Inglis [11] analytical solution and 2D FE results

Figure 2.3 – 3D FE model of notched plate with b/a = 0.5 and B/ρ = 4. For
SE cases, 1/4 symmetry (with respect to planse xy and xz); for EH cases, 1/8
symmetry (xy, xz and yz)).
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Figure 2.4 – (a) Number of nodes used in SE and EH notch analyses and (b)
CPU time demanded for analysis

2.2.
3D crack FE models

Several LE FE 3D analyses were performed in Abaqus [6] to evaluate

the influence of thickness to crack size B/a ratios on the crack tip fields of

large SE(T)-like cracked plates. The software routines of submodeling were

used to reduce the computational cost without compromising the accuracy of

the resulting stress and strain distributions around their crack tips.

2.2.1.
Submodeling technique

Submodeling is very useful for local analyses, when the detailed modeling

of only a small part of a model is required, and when this partially detailed

modeling does not affect the overall solution of the global model. They are

helpful e.g. when dense refinements are needed only in a specific region of

the model, such as in crack problems, or else in localized plasticity analyses,

where a LE global model can be used to generate the loads for a more complex

elastic-plastic sub model.

A Submodeling analysis includes two basic steps. First, the solution of the

relatively simple global model is obtained, without detailing the region around

the critical point. Then, a second submodel is built for that critical region,

containing all the details needed for the local analysis (e.g. dense refinements,

non-linear material characteristics...). The nodes of the submodel boundary are

loaded by the properly interpolated stress and/or displacement fields generated

by the global model at those points. Finally, the local analysis is run with a

refined mesh or other features appropriate for the local analysis purposes.

The adequacy of the submodeling technique is case-dependent, since it

does not automatically update global analyses. However, it is particularly

useful for numerical analyses of lightly loaded cracked structures within the
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Figure 2.5 – Kσmax/Kσsurf and Kσsurf/Kt VS B/ρ for EH: comparison of present
results and those obtained by She and Guo, given by eq. 2.1 to 2.2

scope of this work. Indeed, globally LE structures ignore the influence of crack

tips in regions far enough from them, whereas local features, such as the 3D

effects studied in this work, are important only near those tips [18,19]. Indeed,

the transversal restriction which is important near crack tips, due to the high

stress gradients that act there, may be negligible far from it, as in the case of

the large plate studied here, which works under pl-σ conditions far form its

crack tip. Therefore, the use of 3D FE in this case is really required only in a

limited region around the crack tip, an ideal situation for sub models.

Moreover, besides being numerically efficient, the submodeling technique

used here also has some non-negligible advantages over the Boundary Layer

approach [18, 19, 22]. Its crack tip fields are calculated considering all the

load characteristics, since they are not restricted to K-hypothesis limitations.

Hence, it recognizes e.g. the nominal stress effects far from the crack tip, which

are intrinsically ignored when K-field loading conditions are assumed to be

valid. Finally, it allows the examination of cracks with high B/a ratios, thus

of relatively shallow cracks and thick plates.

2.2.2.
2D global model

The global model was built with CPS6 and CPS8 elements from Abaqus

[6] library. CPS6 and CPS8 are respectively 6-node and 8-node quadratic pl-σ
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Figure 2.6 – Submodeling technique applied in the evaluation of 3D effects
close to crack tips in globally pl-σ loaded specimen

element, with two degrees of freedom per node. The crack tip was modeled with

collapsed quadrilateral quadratical quarter point elements, able to reproduce

the 1/
√
r singularity, as described elsewhere [1,9]. Such elements are originaly

quadrilateral 8-nodes elements, but the nodes of a face are made coincident

and remain so during the analysis.

In order to approximate the semi-infinite cracked plate, avoiding bound-

ary influence, the global model was built with width and height (Wglobal and

Hglobal) equal to 1000a.

Since the global model would be run only once and feed submodels with

different sizes, a very refined mesh was used. 36013 elements and 11960 nodes

were used in the mesh construction, with sizes smoothly decreasing from 100a

at the model far boundaries to a/1000 at the crack tip (see figures 2.7 and

2.8).
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Figure 2.7 – (a) Global Model Mesh using pl-σ elements and (b) detail of the
mesh close to the crack tip

Figure 2.8 – Quarter Point Elements around crack tip

2.2.3.
3D submodels

The submodels were built covering a wide range (3 orders of magnitude)

of B/a ratios. Like the notch models described in section 2.1, C3D20 elements

were used in the mesh construction. The submodels were built with height

and width Hsub = Wsub ≥ 2.5B, which demonstrated to be enough for the 3D

effects to fade (see section 3.2).

The mesh was created using the sweep method, repeating a plane mesh

in the free surface several times along the z-direction (thickness). A finer mesh

(more divisions in z-direction) was used close to the free surface and to the

crack tip, for reasons which will be illustrated. A bias ratio equal to 51, same

as in [22], was used in this one-way refinement.

Collapsed 20-node quadratic brick quarter-point elements [9, 12] were

created along the crack front.
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Figure 2.9 – Collapse of a 20-node brick element into a prismatic element
(source: [12])

Such collapsed elements are created from regular 20-node brick elements

by collapsing an entire face of the element, so that some of the nodes become

coincident (see figure 2.9). These nodes remain coupled during the analysis.

Figure 2.10 – Quarter-point collapsed brick elements around the crack front

Figures 2.10, 2.11 and 2.12 show an example of a mesh in a submodel

with B/a = 0.6.

The SIF KI was calculated in Abaqus [6] for every node along the crack

front, using a built-in J-integral routine and the correlation:

J =
1

Ē
K2
I (2.5)

Ē = E/(1− ν2)

A refinement study was performed in order to achieve an adequate

mesh able to capture the 3D effects close to the crack front. The case of

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 2. Methodology 40
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Figure 2.11 – Mesh of a submodel with B/a = 0.6
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Figure 2.12 – Mesh of a submodel with B/a = 0.6 close to the crack tip
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B/a = 10 is here presented as an example. A starting relatively coarse mesh

was progressively refined, and SIF and σymp were monitored for the several

analyses. Two parameters were taken as representative of the mesh refinement:

the number of divisions used in z-direction (thickness) and the size of the crack-

tip elements (ltip).

Figure 2.13 shows the KI/KI2D VS z/B distribution along the plate

thickness for several refinements in z-direction, while Figure 2.14 presents

KImax , KImp and KIsurf VS z/B behavior with the increase of mesh refinement.
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Figure 2.13 – Submodel B/a = 10, convergence check: KI/KI2D VS z/B
distribution along the crack front for several refinements along z-direction.
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Figure 2.14 – Submodel B/a = 10, convergence check: KImp , KImax and KIsurf

variation with the number of elements used in z-direction

As it can be seen in Figure 2.14, KImp and KImax reach assymptotic limits

for 16 elements along the thickness. In Figure 2.13, the KI/KI2D distributions

can barely be distinguished along most of the thickness.
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The exception occurs in the free surface (z/B = 0.5) and its very close

vicinities, where KI seems to diverge with the refinement. Such behavior is

already expected from Bazant & Estenssoro [2] results. As discussed in chapter

1.2, KI in the free surface should be zero, as the crack is under pure mode-I

and its front is perpendicular to the free surface. She & Guo [22] highlight the

very same behaviour in their research on thin plates.

Besides, the SIF calculation in the used software is based on a correlation

appropriate for pl-ε condition, which cannot provide accurate results in the free

surface, where the material is under pl-σ
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/σ n ltip /acrack tip element size:

Figure 2.15 – Submodel B/a = 10, convergence check: σymp gradient ahead of
crack tip

Concerning σymp stress gradient ahead of the crack tip, Figure 2.15 shows

that, the thinner the mesh, the closer the σy profile gets to the K-solution close

to the crack tip. Also, it shows that elements shorter than 0.125a at the crack

tip were necessary to capture the transition from the K-dominated region to

the nominal stress σn-dominated region.

2.3.
Crack growth model

FRANC3D was used to simulate the growth of large and small edge

cracks with an initially straight front in a large plate. This versatile Fracture

Mechanics code is equipped with specific routines to track the local propagation

of each point along a 3D crack front and to obtain the crack front shape of the

next propagation step, as described elsewhere along this chapter. Within this

work scope, the fatigue cracks are assumed to grow under LEFM conditions.

Since the solution of linear elastic problems is unique and proportional

to the imposed load, the calculated SIF Kcalc along the crack front can be
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interpreted as a shape function. Therefore, the following equations apply to

describe the various crack loading parameters:

Kmax = Kcalc (2.6)

Kmin = R ·Kcalc (2.7)

R =
Kmin

Kmax

(2.8)

∆K = Kmax −Kmin (2.9)

Without any loss of generality, the analyses developed here considered

R = 0 and P = 1, thus in the propagation cases described below:

∆K = Kmax = Kcalc (2.10)

It is assumed that the local crack advance at any specific point of the

crack front follows the simple Paris’ fatigue crack propagation rule. From the

provided Kcalc values at the front nodes in the present step, a crack propagation

vector ~δa is obtained, which can be described as the product of a local advance

module ∆a and a unitary vector ~p determining the local crack propagation

direction. The local direction vector ~p is fixed: it must be parallel to the crack

plane (xz in this case) and normal to the crack front at each point, as the model

is symmetric with respect to the xz plane. The crack advance increments are

assumed to follow Paris’ rule, thus they can be described for any given node i

at every jth growth step in terms of a given advance parameter ∆amean by:

∆aji = ∆ajmean

(
∆Kji

∆Kjmean

)
(2.11)

Note that, as a result of the assumed hypotheses (LE conditions, constant

amplitude loading, Paris’ rule, no crack closure), the SIF distribution along the

entire crack front K(z), and therefore the ratios between the SIF increments

at each crack front node and the mean SIF increment at each load step,

∆Kji/∆Kjmean , are a function uniquely of ai(z), the crack length at each

node in that step. Hence, ∆ajmean becomes an arbitrary analysis parameter,

dissociated from the number of load cycles and everything else. Moreover, as

ai(z) as well as ∆aji(z) are expected to vary along the crack front, the term

crack length is not adequate in the strict sense, since the modeled cracks have

several lengths along the plate thickness, as real cracks normally do. However,
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since the crack propagation problem in plate-like components is usually treated

as if it was essentially 2D, their cracks are normally described by a single overall

length, in spite of their fronts being in fact slightly curved. Therefore, in the

present case the length value at the plate free surface, asurf , is adopted as a

descriptive parameter of the crack overall length. This specific value would

be the one measured by optical methods, or by any other surface-dependent

technique for measuring crack length, such as crack gages, e.g.

After solving each particular crack propagation step, the obtained crack

front increment is smoothed and fitted by a 7th degree polynomial, in order to

minimize the unavoidable numerical noise associated with the KI(z) solution.

Such a high order polynomium was chosen in order to capture and describe

the effects of odd KI distributions in relatively shallow cracks.

The simulated edge-cracked plates are built with the same overall dimen-

sions H, B, and W . The initial cracks are introduced in one of their edges all

with straight fronts, but with different depths a0. The plate models assume

symmetric boundary condition at the plate mid-plane z = 0 and are supposed

tensioned by a unitary uniformly distributed load at their upper and lower

boundaries.

In the mesh construction, quarter-point quadratic wedge elements from

Abaqus [6] library are used to model the crack front, a default procedure in

FRANC3D software. The SIF KI is internally calculated by FRANC3D from

Abaqus’ results, using an in-built J-integral routine.

Figure 2.16(a) shows the overall model used in these simulations and

Figure 2.16(b) illustrates two possible curved crack fronts after the initially

straight crack propagates for a while. Table 2.5 presents the parameters used

in the various models:

Table 2.5 – Crack growth model parameters

Parameter Symbol Value
Poissons ratio ν 0.3
Young’s modulus E 200GPa
Thickness B 5mm
Width W 4B
Height H 2.5B
Crack initial length a0 0.02B, 0.2B, B
Paris rule exponent n 2.0, 4.0
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2.16(a): Plate under uni-axial load with
initially straight crack with
length a0
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2.16(b): Crack tunneling and anti-
tunneling: length measurement at
different points of the crack front

Figure 2.16 – Crack propagation model
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3
Results

This chapter presents the results obtained with the models described in

chapter 2.

3.1.
3D effects on notch tip fields

Figure 3.1 shows the stress and strain concentration factors Kσ and Kε

distributions at the notch tip along the plate thickness for an elliptical hole

with t = b/a = 0.5 and ρ/a = 0.25, to illustrate the typical results obtained

from such analyses. Note in particular that Kσ 6= Kε and that for relatively

thick plates (high B/a ratios) their maximum values occur close to the plate

surface (z/B close to 0.5), whereas for thinner plates such values occur at the

plate center (z/B = 0). These results corroborate Yang’s observation that Kσ

and Kε are different along the notch tip even in the LE case [30].

Figure 3.2 shows how the stress and strain concentration factors Kσmax

and Kεmax behave as a function of the plate thickness-to-notch tip radius ratio

B/ρ. For relatively thin plates or blunt notches (low B/ρ ratios), the maximal

stress will occur in the plate middle plane. For thicker plates and sharper

notches, both Kσmax and Kεmax dislocate towards the free surface. Note how

different such values can be (up to 15% for the analyzed models) and how

their positions are slightly dissociated. Note also that Kσmax can be up to

about 8% higher than the 2D SCF Kt. But, more importantly, note that it

also shows that Kt measurements made (as usual) in the free surface may

severely underestimate the maximal stress that occurs at the notch root, up to

almost 25%. This result indicates that 3D effects on the stress and strain fields

along notch roots may indeed be non-negligible for some practical applications.

Figure 3.4 shows how Kσmax , Kσmp , and Kσsurf vary with B/ρ for the

elliptical hole. It synthesizes much of what has been recently published in the

literature. It reinforces that the error in Kσmax predictions based on 2D models

can be up to about 8%.
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Figure 3.1 – Kε/Kt (a) and Kσ/Kt (b) along z/B for an Elliptic Hole with
b/a = 0.5, ρ/a = 0.25
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Figure 3.2 – Kσmax/Kt and Kεmax/Kt variation with B/ρ for elliptical holes

Figure 3.3 – z/B Position of Kεmax/Kt and Kσmax/Kt for different B/a values
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Figure 3.4 – Variation ofKσmax/Kt,Kσmp/Kt, andKσsurf/Kt with the thickness
to root radius ratio B/ρ for the elliptical holes

Figure 3.5 shows how the out-of-plane constraint factor Tz0 varies along

the tip of semi-elliptical notches in relation to its maximum value at the notch

center, Tz0mp . As expected, Tz0 is maximal at the mid-plane and zero at the

free surface. Tz0 increases monotonically from the free surface inwards, and the

thicker the plate is, the closer to the plate face it reaches the maximal value

Tz0mp .

The behavior of the transversal constraint Tz0mp at the middle point of

the notch tip is illustrated in Figure 3.6, normalized by Poisson’s ratio ν. Note

that the ratio Tz0mp/ν increases with B/ρ, but not indefinitely. It grows from

0, in very thin plates (B/ρ ≤ 0.1), and asymptotically reaches a saturated

value, characteristic of the ρ/a value, which quantifies how sharp the notch is.

This means that, as expected, very thin notched plates are dominated by a

pl-σ limit condition around the notch tip. As the plate relative thickness B/ρ

increases, the ratio Tz0mp/ν also increases, but its saturated value is always

smaller than 1. In other words, no matter how sharp the notch is, it is never

able to provide enough transversal constraint for achieving pl-ε limit conditions

around its tip. This limit state can only be achieved around ideal crack tips,

as studied further on. Nonetheless, figures 3.5 and 3.6 clearly show how the

transversal constraint tends toward the pl-ε limit case Tz0 = ν as both B/ρ

and a/ρ→∞, when the elliptical notches became idealized LE cracks, which

are discussed in detail in section 3.2.

Figure 3.7 shows the behavior of the main normal stress σymp gradient
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Figure 3.5 – Tz0/Tz0mp vs. z/B for the semi-elliptical notch with ρ/a = 0.01

Figure 3.6 – Tz0mp/ν versus B/ρ for elliptical and semi-elliptical notches
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at the middle of the plate ahead of the notch tip, normalized by the stress

at the notch tip σy0mp . As already mentioned in the introduction, both Kirsh

and Creager-Paris solutions (eq. 1.3 and 1.9) give good approximations for the

σy/σy0 ratio.

Figure 3.7 – Normalized gradient σymp/σy0mp vs x/ρ for several notches with
different ρ/a ratios

Figure 3.8 illustrates how the σy/σy0 ratio varies ahead of the notch tip

for several z/B positions along the notch front, for a particular elliptical hole

with ρ/a = 0.25 and B/ρ = 12. These results confirm that the σy/σy0 gradient

is almost independent from the thickness-to-notch root radius B/ρ ratio and

from the position z/B along the plate thickness, as mentioned in section 1.1.

The maxima stress and strain position indicates the location for crack

initiation, whereas the stress gradients ahead of such critical points affect

how a short crack propagates from the notch tip. According to the results

presented above, if the cracks do prefer to start at maxima stress and strain

points, as usually assumed in most damage models, they should do so in

the center of the thinner notched plates (z/B = 0) and closer to the free

surfaces (z/B = 0.5) of the thicker ones. But the growth of such initially small

surface cracks is strongly dependent on the stress gradient around the notch

tip, as discussed elsewhere [7, 17, 28]. Since the studied notches have much

stronger stress gradients in x than in z-direction, the short crack driving force

decrease is sharper ahead than along the notch tip direction. Therefore, it may

be argued that cracks initiated at a notch tip should prefer to advance first

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 3. Results 52

Figure 3.8 – σy/σy0 vs. x/ρ for an elliptical hole with ρ/a = 0.25 and B/a = 12
at different z/B positions

Figure 3.9 – Normalized out-of-plane constraint factor Tzmp/Tz0mp ahead of
the notch tips
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along it, trying to become a through crack, then along the x-direction, inwards

the specimen. However, although reasonable, such speculations certainly need

further investigation.

3.1.1.
3D effects on notch design procedures

It is important to verify the influence the studied 3D stress/strain fields

around notch tips may have in the main failure criteria employed to design

structural components, by comparing typical predictions based on them with

traditional predictions made using simplified 2D hypotheses. As the only

non-null stress components along notch roots are σy and σz (since they are

free surfaces), they are both tensile principal stress components. Using the

previously defined out-of plane constraint factor Tz, then

σz = Tzσy

σTresca = σy (3.1)

σMises = σy
√

1− Tz + T 2
z (3.2)

where

σTresca = (σ1 − σ3) (3.3)

σMises =
{[

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
]
/2
}0.5

(3.4)

Therefore, the transversal constraint Tz does not affect σTresca but tends

to decrease σMises, as it restricts distortion despite not affecting τmax along the

notch tip. Let us assume, e.g., that σy0 at the notch root is calculated from a

2D solution (σ02D = Ktσn), thus contains an intrinsic error with respect to the

3D solution. At the notch tip, the errors in Tresca and Mises stresses are:

1 + errTresca = σy0/Ktσn (3.5)

1 + errMises = σMises/Ktσn (3.6)

The results presented in section 2 show that y0 > Ktσn when the

transversal constraint induced by the thickness is accounted for. Therefore,

they also show that 2D stress concentration predictions are intrinsically non-
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conservative, but not that much. Figure 3.10 shows the ratio σMises/Ktσn varies

as a function of the transversal constraint Tz for several arbitrary errors on σy0

calculated from 2D plane solutions. Therefore, although σy0 predictions based

on SCF Kt calculated assuming 2D conditions are always non-conservative,

the Mises stresses around notch tips caused by the 3D conditions that actually

act there may be conservatively or non-conservatively estimated by Ktσn, a

somewhat non-intuitive result.

Figure 3.10 – σMises/Ktσn as a function of Tz0, for various σy0 values

Poisson’s ratio ν is the upper bound limit to Tz, never reached for notches

with finite tip radii, no matter how thick the plate is. Guo et al. proposed an

estimate for the Inglis’ hole Kσmax [23]:

Kσmax/Kt ≈ 1 + 0.01 exp

[
ν

0.14364 + 0.07b/a

]
(3.7)

Since in this case Kt = 1 + 2a/b = 1 + 2
√
a/ρ, and since this Kt can be

used as a reasonable approximation for the SCF of many other notches with

size a and notch tip radius ρ, then the maximum SCF for other notches could

be estimated by:

Kσmax/Kt ≈ 1 + 0.01 exp

[
ν

0.14364 + 0.14/(Kt − 1)

]
(3.8)
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However, such approximated predictions are questionable for Kt >> 3.

For design purposes, 1.08Kt is a better assumption for the Kσmax upper bound

and, consequently, for Tresca’s analyses based on 2D SCF. But as mentioned

above, the maximum value of Mises around notch tips tends to be still less

sensitive to such 2D approximations, see Figure 3.11.

Figure 3.11 – Kσmax , Kσmp , and KσMises = σMises/Ktσn as a function of B/ρ

3.2.
Crack analyses results

As the submodel does not assume a relatively long crack (much larger

than the plate thickness), it can be used to study the behavior of small cracks

and to identify how different it can be from the long crack behavior. Figure 3.12

shows how much the SIF distribution along an idealized straight crack front

KI(z) deviates from the standard 2D solution. KI/KI2D distributions along

the crack front are presented for a wide range of B/a values, including short

and long cracks (compared to the plate thickness). Direct comparison with

previous results obtained expression for long cracks [19,22] shows that, exactly

as expected, as the cracks get longer (or as their B/a value decreases), the

KI distribution along the crack front gets closer to those results (calculated

assuming K-dominated far field boundary conditions in the Boundary layer

approach).

However, relatively shallow cracks behave in a different way. Their SIF

distribution tends to the 2D solution along most of the crack front, but
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increases close to the plate free surface. KImax , which occurs at the middle

plane for low B/a, dislocates towards the free surface. This behavior is better

observed in Figure 3.13, and is analog to the dislocation of the maximum Kσ

and Kε position in notches (see Figure 3.3).

Therefore, the difference between the short and the long crack behaviors

should not be neglected when analyzing them. However, it must be noted

that long cracks here mean large in comparison to the plate thickness B, not

with the plate width W . The analysis of very deep cracks must include the

influence of the back face plane on the LE fields ahead of the crack tip, a

problem considered beyond the scope of this work.
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Figure 3.12 – KI/KI2D distribution along the crack front for several B/a
ratios. The solutions are compared with She & Guo’s fit expression (eq. 1.18)
for KI/KI2D along the front of a long crack.

Figure 3.12 shows that in all cases the SIF value drops in the vicinity

of the free surface. As the crack front is assumed perpendicular to the free

surface in such 3D analyses, KI in fact should be null at the surface, where

z/B → 0.5, as previously mentioned in section 1.2. But such a limit value could

not be achieved with any reasonable level of mesh refinement. Anyway, its real

importance is to force real cracks to slightly curve their fronts during their

propagation, as studied later on. But before tackling this task, the T -stress

distribution along an idealized straight crack front is presented in Figure 3.14,
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Figure 3.13 – z/B coordinate along the crack front where the maximum SIF
KImax occurs

for a wide range 0.1 ≤ B/a ≤ 100 values, which include both short and long

cracks. The numerical noise observed very close to the plate surface is an

unavoidable consequence of the idealized straight crack front, which forces KI

to be zero at the plate face. It should not obscure the fact that the T -stress

distribution is almost constant along the crack face, but its value, like the KI

value previously studied, is also dependent on the crack size. In fact, the T -

stress shows much more variation then KI , as T/KI2D

√
πa it goes from -0.09

to -0.15, a 66.6% increase in terms of absolute values.

Figure 3.15 shows how the KImax/KI2D and KImp/KI2D ratios vary with

the edge crack size in this large edge-cracked plate, and compares them with

its long crack K-dominated limit solution. This figure clearly shows how the

SIF values tend to She & Guo’s long crack solution [22] for cracks with very

low B/a, and how the SIF KImp in the middle of the plate tends to the 2D

solution as the cracks get shorter. Also, the separation of the KImax and the

KImp curves shows that even for very short cracks, with high B/a ratios, KImax

remains higher than the reference KI2D value (about 3% higher for the Poisson

coefficient ν = 0.3 used in these numerical simulations).

Interesting analogies can be made if the crack is considered an elliptical

notch with ρ → 0. The KI distribution along the crack tip shown in Figure

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 3. Results 58

Figure 3.14 – T−stress/KI2D
√
πa distribution along the front of short and long

cracks

3.12 is notably similar to the Kσ and Kε distributions along the notch root

presented in Figure 3.1. They all tend to concentrate more stress in the middle

of thinner plates and close to the free surface of thicker plates.

KImax/KI2D and KImp/KI2D presented in Figure 3.15, for instance, behave

very much like Kσmax/Kt and Kσmp/Kt after peak shown in Figure 3.4. Even

the fact that KI must be zero at the free surface is suggested in Figure 3.4,

where Kσsurf/Kt is shown to decrease as the notch sharpens.

Note how the submodeling technique used for analyzing this large edge

cracked plate can clearly identify the size of the K-dominated stress field ahead

of the crack tip, enhancing the role played by σn on the σy(x) gradient that

acts there. As discussed in [24], the nominal stress σn, which is neglected on

traditional LEFM analyses, may have an important effect on LE estimates

for the size and shape of pz(θ), which are so important to validate LEFM

predictions. Figure 3.16 illustrates how σymp/σn, the ratio between the normal

stress perpendicular to the crack faces at the middle plane of the crack front

and the nominal stress varies with the relative distance x/a ahead of the

crack tip. At distances from the crack tip up to x/a ≈ 0.2 the σymp/σn stress

distribution is clearly dominated by KI alone, but σymp → σn for distances

x/a > 2. Since this value is independent of the crack size (at least for the

studied range 0.1 ≤ B/a ≤ 100), this means that estimates for the LE stress

field far from the crack tip in this large edge-cracked plate should include a σn

correction for distances x/a > 0.2. Moreover, since this analysis includes all

LE stress components ahead of the crack tip, it shows that the T -stress term

is not sufficient to account for this effect.

The graphs shown in Figures 3.17(a) to 3.17(c) illustrate how σy(z)/σn,
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Figure 3.15 – KImax/KI2D and KImp/KI2D variation with the crack size in large
plates
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Figure 3.16 – σymp/σn distribution ahead of the crack tip in the large edge
cracked plate
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the ratio between the normal stress perpendicular to the crack faces and the

nominal stress at various positions z/B along the crack front, varies with the

relative distance x/a ahead of the crack tip, for cracks with sizes B/a = 0.4,

4, and 40. These figures show that the z/B influence on the stress gradient is

slightly more important close to the free surface.

Particular attention is called upon the transversal constraint behavior.

In section 3.1 it was shown that the highest constraint in notched plates is

achieved in their mid-plane (at z/B = 0), and that Tz increases and tends

to ν as the notch becomes sharper, but never reaches this value as notch

tips radii ρ remain finite. Figures 3.18 and 3.19 show the behavior of the

transversal constraint factor along the mid-plane of the cracked plate Tzmp/ν

versus the position ahead of the crack tip, for cracks with sizes in the large

range 0.1 ≤ B/a ≤ 100. In Figure 3.18, the x-coordinate is normalized by the

plate thickness B; whereas in 3.19 it is normalized by the crack length a.

Note that at the middle point of the crack front (x→ 0, z = 0) the limit

condition Tzmp = ν is achieved, no matter the crack size. In other words, under

LE conditions, any crack (with ρ→ 0) would reach the pl-ε limit value for the

transversal constraint Tzmp at mid-point of the crack tip. Differences can be

observed, though, in the Tz gradient ahead of the crack tip, which is a good

indicative of how much material is subjected to high transversal constraints

due to the crack.

For relatively long cracks, say with B/a > 6, Tzmp converges to a function

of (x/B) (better visualized in 3.18) which agrees reasonably well with eq.

(1.12), fit for notches, and with Guo’s long crack solution (see section 1.2).

Essentially, this means that the size of the restricted zone ahead of a long

crack is proportional to the plate thickness B. However, for shorter cracks,

with higher B/a ratios, the present results show that the transversal constraint

level decreases more rapidly ahead of the crack tip, which can be noted in the

steeper gradients of Tzmp VS x/B in Figure 3.18.

The short crack limit behavior is better noted in Figure 3.19: as B/a

increases, Tzmp tends to a function of x/a, meaning that the restricted zone

induced by a very short crack is in fact proportional to the crack length itself.

Indeed, Figure 3.19 indicates that the constrained region advances as B/a

grows, until it stagnates at an upper limit for B/a ≥ 20. From this value on, the

crack is no longer able to induce more transversal restriction on the specimen,

and in fact the partially constrained zone is confined within a distance from

the crack tip of about x/a < 10.

However, keep in mind that under LE assumptions, the concepts here

referred as long and short crack are equivalent to thin and thick plate
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respectively, as the only varying parameter is the B/a ratio. Therefore, it

is equivalent to say that in thin plates the size of the restricted zone ahead of

the crack tip is proportional to the plate thickness and, in thick plates, to the

crack length.

It is well known that the material toughness depends on the specimen

thickness (and also on their geometry), unless they are measured under ”plane-

strain conditions”. Typical toughness tests usually yield higher values when

measured in thinner specimens, which decrease as their thickness increases

until reaching a material-independent ”plane strain fracture toughness” value

KIC . The classical ASTM E 399 standard specifies B > 2.5(KIC/SY )2 as

the minimum thickness required to measure a valid KIC . But it also specifies

a relatively small crack size range 0.45 < a/W < 0.55 to validate such

measurements. Much less stringent, but similar requirements apply for J or for

critical CTOD tests. Figure 3.20 shows some data to illustrate this behavior

in a Ti alloy [26].

B (mm)

B

Figure 3.20 – Example of toughness Kc dependence on the specimen thickness
B for a Ti-6Al-6V-2Sn alloy (see [26])

The presented results are obviously aligned with this concept. The

maximal restriction, which occurs under pl-ε conditions, was reached at some

point by all cracks, due to the very high stress gradients ahead of their crack

tip. Although the calculated values are based in LE assumptions, this indicates

that the definition of dominant plane strain conditions must be associated to

the amount of material that is subjected to very high transversal constraints,

not only to the capacity of reaching it at some point. In fact the size of the
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highly constrained zone was found to be dependent on the plate thickness,

growing with it until asymptotically reaching a stable value at some B/a ratio.

Figure 3.21 – Iso-lines where Tz = 0.5 along the thickness of the plate for
several cracked plates with different B/a ratios

For analysis purposes, the restricted zone ahead of the crack can be

considered as the area where Tz > γν, being γ an arbitrary value between 0

and 1. This regon is therefore limited by the very crack front (x = 0) and by

the line x = x(z/B) where Tz is constant and equal to γν. Figure 3.21 shows

the shape of such iso-Tz lines ahead of the crack for γ = 0.5 in a x/a VS

z/B space. Note that the iso-Tz lines are curved and penetrate deeper into the

specimen material as B/a increases. When B/a is approximately equal to 0.4,

though, the iso-Tz lines’ depth x/a grows no further, and its shape tends to a

rectangle of dimensions (c · a)×B, with area c · a ·B.

Figures 3.22 clearly shows that the area of the restricted zone normalized

by a2 tends to a straight line, with the inclination depending only on γ.

Therefore, for large B/a ratios, Area(Tz = γ · ν)/a2 ≈ c · a · B. Figures 3.23

and 3.24 present the same area of restriction ahead of the crack, alternatively

normalized by B2 and B/a.

Figure 3.24 shows the area ahead of the crack tip x/a up to where Tz/ν

falls within an arbitrary γ value. In other words, the size of the transversally

restricted zone ahead of the crack tip is very small for relatively short B/a

cracks, indicating that they should tend to have higher freedom to activate

plasticity related phenomena, such as the toughness. Hence, short cracks tend

to be less damaging not only because they are small, but also because they

induce less transversal restriction ahead of their tips. As B/a increases, so

does the size of the restricted zone ahead of the crack tip. Thus its effect on
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Figure 3.22 – Area ahead of the crack where Tz > γ ·ν normalized by a2 versus
B/a

Figure 3.23 – Area ahead of the crack where Tz > γ · ν normalized by B2

versus B/a
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Figure 3.24 – Area ahead of the crack where Tz > γ · ν normalized by B · a
versus B/a

the toughness is expected to also increase, up to a critical B/a value, after

which the restricted zone grows no further. At this point, the toughness is

expected to reach its minimal value and become independent on the crack

size. Once again, although based on LE calculations, this behavior can be

a reasonable explanation for why the SIF KI can control plasticity-induced

damage mechanisms like fatigue crack propagation.

But the model studied so far is too simple to explain some features of

the fatigue cracking problem, even when it is clearly K-controlled. Indeed,

even if the crack somehow originates with a perfectly straight front on the

plate edge, experimental observations show that the propagating crack front

is in fact curved. The next section explores this problem, and studies how an

initially ideally straight crack front must curve as the crack grows by fatigue.

3.3.
Crack front curvature development

Figure 3.25 shows how the SIF ratio KI(z)/KI2D varies along the crack

front with increasing values of asurf for the particular case of a0/B = 0.02

and of a Paris’ exponent n = 2, and also the crack front shape evolution (see
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Figure 2.16(b)) along the plate thickness for the very same crack incremental

stages, quantified by the ratio (a(z) − amin)/B. The configurations assumed

by the crack front while it propagates from the initially straight shape with

a0/B = 0.02 show first an anti-tunneling and then a tunneling effect, driven

by the non-uniform KI(z) distribution along the crack front at each crack

increment. This non-intuitive behavior occurs because the crack front naturally

curves itself looking for a more uniform SIF distribution along it. The non-

uniform SIF distribution along the initially straight crack front tends to

disappear after the crack propagates for a while and gradually assumes its

characteristic slight curved front. Figure 3.26 shows similar results for a higher

Paris exponent, n = 4.

Figure 3.25 – Crack front shape evolution for a0/B = 0.02 and n = 2

Figure 3.26 – Crack front shape evolution for a0/B = 0.02 and n = 4

It should be noted that both for n = 2 and for n = 4 the cracks start

propagating close to the plate free surfaces, exactly where their SIF values

along the crack front for high B/a ratios in Fig. 3.12 are maxima. Hence, in

this particular a0/B = 0.02 case the crack first experiences the anti-tunneling

behavior schematized in Fig. 2.16(b), in a more pronounced way for n = 4
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than for n = 2. Moreover, as the crack front advances and curves, the SIF

distribution along the crack front KI(z) grows flatter, until each reaches a

steady state value approximately 6% higher than the 2D solution for both

studied Paris’ exponent n.

Figure 3.27 shows the stable [a(z)−amin]/B ratio along the curved crack

front for all studied cracks, achieved after the transient from their initially

straight fronts. Let us assume, for instance, that the difference between the

maximum and the minimum crack size amax−amin can be taken as a descriptive

parameter of the (curved) steady state crack front, and that ∆atrans is the

distance the crack covers before achieveing a steady front shape (i.e. the

transient propagation distance).

Figure 3.28 shows that all studied cracks achieve a steady state [amax −
amin]/B ratio that is more or less independent of a0 and n, after having grown

for a distance of about 0.6·[asurf−a0]/B. However, note that cracks that initiate

at a deeper a0/B achieve a steady state front shape sooner than the shallower

cracks, presenting smaller ∆atrans. Cracks that propagate under n = 4 achieve

such stable regime shape sooner than cracks that propagate under n = 2, as

well.

Figure 3.27 – Slightly curved front shapes under steady growth conditions

The deeper cracks with a0/B = 0.2 and 1.0 presented a more pronounced

advance in the plate interior from the beginning of their propagation from an

initially straight front, while the shallower ones with a0/B = 0.02 presented

a higher advance close to their borders. This behavior is consistent, since the

shallower cracks tend to have KI peaks close to their free surfaces, while the

deeper ones have maximum KI values in the middle of their fronts.
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Figure 3.28 – (amax − amin)/B variation as the crack grows from an initially
straight front a0.

Figure 3.29 shows how the ratio KImax/KI2D varies as the cracks propag-

ate from their initially straight fronts with size a0. It is worth mentioning that,

except for the shortest studied crack with size a0/B = 0.02, the cracks are

well represented by the straight front crack solution. The differences between

this particular case and the others are caused by the intense shape changes

suffered by the crack front along the early propagation stages, easily observed

in figures 3.25 and 3.26. The presented results show that the transient crack

propagation distance ∆atrans is closely related to a0/B and fairly independent

of n. Table 3.1 shows the approximate values obtained for ∆atrans.

Table 3.1 – Transient distance ∆atrans/B covered by the crack before achieve-
ment of steady front shape for different initial lengths a0/B

a0/B 0.02 0.2 1
∆atrans/B 0.25 0.1 0

Figure 3.30 also shows that results obtained for long cracks with straight

fronts in [18,19,22] are reasonably good approximations for KImax . Finally, Fig.

3.30 shows the angle β between the crack front and the free surface. In the

present work, it was found that after a short propagation distance, β stabilized

in a fixed value (around 98◦), for all simulated cases. The obtained results are
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Figure 3.29 – KImax/KI2D VS. (asurf − a0)/B

27% lower than Bazant and Estenssoro predictions [2], in terms of difference

from 90◦.
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Figure 3.30 – Incidence angle β at free surface with crack propagation
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4
Conclusions

Several FE analyses were performed in order to observe 3D effects on

the stress/strain fields close to notch and crack tips. The obtained results are

aligned with the recent literature published on the matter. It was observed

that the stress and strain concentration along the notch tip is variable, but

the σy gradient ahead of the notch tip can be obtained from the plane 2D

solution. Also, the very same gradient causes an out-of-plane restriction on the

material, which tends the notch tip to plane-strain condition as the tip radius

grows sharper (ρ → 0). Concerning notched specimens design, the present

results show that, for notches with reasonably low SCF’s (Kt ≤ 3), 8% is a

safe margin to estimate the maximum non-conservative error committed in the

maximum stress and in Tresca’s equivalent stress predictions, if 3D effects are

ignored (i.e., if the 2D solution is used), and also that σMises at the notch tip

is much less sensitive to 3D effects.

Further on, submodeling techniques were used to examine the 3D effects

present in cracks on the edge of tensioned large plates with different thickness-

to-crack-length (B/a) ratios. Crack tip LE stress/strain fields were obtained

taking into account the full load description, not restricted to K-field limit-

ations and long crack assumptions. Also, the T -stress and the nominal stress

influence were intrinsically computed. Both KI and T -stress were observed to

vary along the crack front, presenting maximum KI values always higher than

the 2D solution. The influence of the B/a ratio on the KImp was obtained, and

it describes a smooth transient from the long crack solution presented in [22]

(for B/a ≤ 0.1) and the plane 2D solution (for B/a ≥ 100). It was observed

that KImax is always higher than the 2D predictions.

The obtained stress gradients showed good agreement withK-solution for

plates with B/a between 0.1 and 100 up to x = 0.2a. From this point on, non-

negligible influence of nominal stress was observed. Considerable differences

were observed in the restricted zone caused by short and long cracks. For long

cracks, the reach of the restricted zone ahead of the crack tip is proportional to

the plate thickness (limited to x = 0.4B), while for short cracks, the restricted

zone is limited by the crack length (up to x = 10a).
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Finally, several crack growth simulations under Paris rule were per-

formed. Initially straight cracks with different initial lengths a0 and Paris ex-

ponent n progressively curved their front during propagation, simultaneously

flattening the KI distribution along the front. After some transient propaga-

tion, all cracks converged to the same regime crack propagation front, with

tunneling depth close to 2.5% of B.

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



5
Bibliography

1 Barsoum, R. S. Triangular quarter-point elements as elastic and

perfectly-plastic crack tip elements. International Journal for Numerical

Methods in Engineering 11, 1 (1977), 85–98.

2 Bazant, P. Z., and Estenssoro, L. F. Surface singularity and crack

propagation. International Journal of Solids and Structures 15, 5 (1979),

405 – 426.

3 Bowie, L. O. Analysis of edge notches in a semi-infinite region. Tech.

Rep. AMRA TR 66-07, U.S. Army Materials Research Agency, Materials

Engineering Division, september 1966.

4 Carter, B. J., Wawrzynek, P. A., and Ingraffea, A. R. Auto-

mated 3-d crack growth simulation. International Journal for Numerical

Methods in Engineering 47 (2000), 229–253.

5 Creager, M., and Paris, P. C. Elastic field equations for blunt

cracks with reference to stress corrosion cracking. International Journal

of Fracture 3 (1967), 247–252. 10.1007/BF00182890.

6 Dassault Systemes. Abaqus v6.10 Manual.

7 de Castro, J. T. P., Meggiolaro, M. A., Miranda, A. C. O.,

Wu, H., and Benseddiq, N. Prediction of fatigue crack initiation lives

at elongated notch roots using short crack concepts. International Journal

of Fatigue 42, 0 (2012), 172 – 182.

8 Glinka, G., and Newport, A. Universal features of elastic notch-tip

stress fields. International Journal of Fatigue 9, 3 (1987), 143 – 150.

9 Henshell, R. D., and Shaw, K. G. Crack tip finite elements are

unnecessary. International Journal for Numerical Methods in Engineering

9, 3 (1975), 495–507.

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 5. Bibliography 75

10 Hwang, K., Leblond, B., Mouchrif, S. E., and Perrin, G. The

tensile tunnel-crack with a slightly wavy front. International Journal of

Solids and Structures 33, 14 (1996), 1995 – 2022.

11 Inglis, C. E. Stress in a plate due to the presence of cracks and sharp

corners. Philosophical Transactions of the Royal Society series A 215

(1913), 119–233.

12 Ingraffea, A. R., and Manu, C. Stress-intensity factor computation

in three dimensions with quarter-point elements. International Journal for

Numerical Methods in Engineering 15, 10 (1980), 1427–1445.

13 Irwin, G. R. Analysis of Stresses and Strains Near the End of a Crack

Traversing a Plate. J. Appl. Mech. 24 (1957), 361–364.

14 Kirsch, G. Die theorie der elastizitat und die bedurfnise der fest-

igkeitslehre. Vereines Deutcher Ing. 42, 11 (1898), 797–807.

15 Lazarus, V., and Leblond, J. Three-dimensional crack-face weight

functions for the semi-infinite interface crack-i: Variation of the stress

intensity factors due to some small perturbation of the crack front. Journal

of the Mechanics and Physics of Solids 46, 3 (1998), 489 – 511.

16 Li, Z., Guo, W., and Kuang, Z. Three-dimensional elastic stress fields

near notches in finite thickness plates. International Journal of Solids and

Structures 37, 51 (2000), 7617 – 7632.

17 Meggiolaro, M. A., Miranda, A. C. O., and de Castro, J. T. P.

Short crack threshold estimates to predict notch sensitivity factors in

fatigue. International Journal of Fatigue 29, 9-11 (2007), 2022 – 2031.

18 Nakamura, T., and Parks, D. Three-dimensional crack front fields in

a thin ductile plate. Journal of the Mechanics and Physics of Solids 38, 6

(1990), 787 – 812.

19 Nakamura, T., and Parks, D. M. Three-dimensional stress field near

the crack front of a thin elastic plate. Journal of Applied Mechanics 55, 4

(1988), 805–813.

20 Pilkey, W., Pilkey, D., and Peterson, R. Peterson’s stress concen-

tration factors. John Wiley, 2008.

21 Pindra, N., Lazarus, V., and Leblond, J. B. Geometrical disorder

of the fronts of a tunnel-crack propagating in shear in some heterogeneous

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 5. Bibliography 76

medium. Journal of the Mechanics and Physics of Solids 58, 3 (2010), 281

– 299.

22 She, C., and Guo, W. The out-of-plane constraint of mixed-mode cracks

in thin elastic plates. International Journal of Solids and Structures 44, 9

(2007), 3021 – 3034.

23 She, C., and Guo, W. Three-dimensional stress concentrations at elliptic

holes in elastic isotropic plates subjected to tensile stress. International

Journal of Fatigue 29, 2 (2007), 330 – 335.

24 Sousa, R. A., Castro, J. T. P., Lopes, A. A. O., and Martha,

L. F. On improved crack tip plastic zone estimates based on t-stress and

on complete stress fields. Fatigue & Fracture of Engineering Materials &

Structures 36 (2013), 25–38.

25 Tada, H., Paris, P., and Irwin, G. The stress analysis of cracks

handbook. No. v. 1 in The Stress Analysis of Cracks Handbook. Del

Research Corp., 1973.

26 Wallin, K. The size effect in kic results. Engineering Fracture Mechanics

22, 1 (1985), 149 – 163.

27 Williams, M. L. On the stress distribution at the base of a stationary

crack. Journal of Applied Mechanics 24, 1 (1957), 109–114.

28 Wu, H., Imad, A., Benseddiq, N., de Castro, J. T. P., and

Meggiolaro, M. A. On the prediction of the residual fatigue life of

cracked structures repaired by the stop-hole method. International Journal

of Fatigue 32, 4 (2010), 670 – 677.

29 Wu, Z. On the through-thickness crack with a curve front in center-cracked

tension specimens. Engineering Fracture Mechanics 73, 17 (2006), 2600 –

2613.

30 Yang, Z., Kim, C. B., Cho, C., and Beom, H. G. The concentration

of stress and strain in finite thickness elastic plate containing a circular

hole. International Journal of Solids and Structures 45, 3-4 (2008), 713 –

731.

31 Youngdahl, C. K., and Sternberg, E. Three-dimensional stress

concentration around a cylindrical hole in a semi-infinite elastic body.

Journal of Applied Mechanics 33, 4 (1966), 855–865.

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



Chapter 5. Bibliography 77

32 Yu, P., Guo, W., She, C., and Zhao, J. The influence of poissons

ratio on thickness-dependent stress concentration at elliptic holes in elastic

plates. International Journal of Fatigue 30, 1 (2008), 165 – 171.

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



A
Notch FE models data

This Appendix contains a summary of computational parameters from

Notch Finite Element model runs.

Table A.1 – EH model runs: ρ/a = 1.0

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

EH 1 0.1 13932 61726 152.6 155
EH 1 0.2 13977 61915 153.6 155
EH 1 0.4 13797 61159 152.9 155
EH 1 0.6 14610 64682 156.3 158
EH 1 1 14910 65942 170 173
EH 1 1.5 15405 68021 155 195
EH 1 2 9073 40954 106.3 33
EH 1 10b 15630 68966 308.3 141
EH 1 10c 15555 68651 267.7 117
EH 1 20c 15255 6767391 275.7 137
EH 1 20d 29010 126102 1987.2 1277
EH 1 2a 9169 41356 71.5 71
EH 1 2b 16497 72542 195.4 300
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Table A.2 – EH model runs: ρ/a = 0.25

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

EH 0.25 0.1 21538 94802 356.1 804
EH 0.25 0.2 44076 189967 1640 3396
EH 0.25 0.5 21654 94334 349.6 562
EH 0.25 0.7 21637 94260 382.8 588
EH 0.25 1 23862 103664 502.3 817
EH 0.25 1.5 23814 103466 518.1 926
EH 0.25 2 24006 104036 616.8 1076
EH 0.25 3 24438 105818 463.4 668
EH 0.25 4 26056 112574 503.5 797
EH 0.25 6 36418 156012 1000.7 1796
EH 0.25 6 36418 156012 924 1522
EH 0.25 8 23670 102650 414.8 611
EH 0.25 0.1a 28270 123018 753.6 1236

Table A.3 – EH model runs: ρ/a = 0.04

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

EH 0.04 0.04 20138 87166 5654.9 5720
EH 0.04 0.12 20503 88692 2375.4 2400
EH 0.04 0.24 20075 86935 988.4 1051
EH 0.04 0.4 21116 91219 846.4 858
EH 0.04 0.6 21018 90800 395 430
EH 0.04 0.8 21456 92579 349.5 361
EH 0.04 1.2 21533 92893 266.8 275
EH 0.04 2 40976 173479 437.7 525
EH 0.04 3 39364 166827 317.2 386
EH 0.04 4 20260 87672 151.7 160
EH 0.04 4 38664 163952 291.3 347

Table A.4 – EH model runs: ρ/a = 0.01

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

EH 0.01 0.004 23301 102015 421.7 665
EH 0.01 0.006 22435 97520 489.9 681
EH 0.01 0.01 23241 100882 522.6 761
EH 0.01 0.02 22864 99275 467 670
EH 0.01 0.04 22714 98663 494.4 736
EH 0.01 0.06 22700 98622 1355.6 1447
EH 0.01 0.1 38341 163327 3363.5 3452
EH 0.01 0.2 38341 163327 3399.3 3520
EH 0.01 0.4 30423 130416 639.2 713
EH 0.01 0.6 29558 126878 405.5 474
EH 0.01 1 36241 154810 378.7 410
EH 0.01 3 86081 358609 909.9 1655
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Table A.5 – SE model runs: ρ/a = 1.0

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

SE 1 0.2 13300 59142 114.6 116
SE 1 0.3 13300 59142 110.8 112
SE 1 0.5 13300 59142 110.9 111
SE 1 0.7 13300 59142 109.2 110
SE 1 1 9715 43814 75.7 76
SE 1 2 8530 38602 58.5 59
SE 1 3 8625 39015 103.3 31
SE 1 5 8695 39295 62.6 63
SE 1 7 8620 38980 63.5 64
SE 1 10 8485 38413 59.6 60
SE 1 20 8365 37921 59.7 60
SE 1 30 8140 36976 53.3 53

Table A.6 – SE model runs: ρ/a = 0.25

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

SE 0.25 0.02 21522 96424 355.2 498
SE 0.25 0.04 21666 97018 335.5 516
SE 0.25 0.06 21902 97986 347 481
SE 0.25 0.1 22622 100956 357.8 585
SE 0.25 0.2 27330 120602 442.5 685
SE 0.25 0.5 24984 109799 353.7 563
SE 0.25 1 27192 119129 494.9 714
SE 0.25 2 27336 119501 522.1 823
SE 0.25 3 27768 121283 527.4 790
SE 0.25 4 28440 124055 604 968
SE 0.25 6 25824 113264 469.6 724
SE 0.25 8 27000 118115 517.4 811

Table A.7 – SE model runs: ρ/a = 0.04

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

SE 0.04 0.02 19298 84693 381.4 559
SE 0.04 0.04 20016 87652 361.5 517
SE 0.04 0.12 19840 86320 328.9 532
SE 0.04 0.4 20994 91059 367.6 596
SE 0.04 0.8 21765 94248 385.8 643
SE 0.04 1.2 21748 94156 430.2 649
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Table A.8 – SE model runs: ρ/a = 0.01

Notch ρ/a B/ρ elements nodes cpu time (s) clock time (s)

SE 0.01 0.06 36168 154624 1200.1 2285
SE 0.01 0.1 36468 155833 2103.8 1028
SE 0.01 0.2 39488 168063 3482.4 3612
SE 0.01 0.4 39198 166897 1555.2 1605
SE 0.01 0.6 38323 163364 1158.5 1190
SE 0.01 1 36213 154804 576.8 589
SE 0.01 2 49808 210375 567.6 665
SE 0.01 4 43708 185045 318.9 714

DBD
PUC-Rio - Certificação Digital Nº 1011995/CA



B
Crack submodels runs

Table B.1 – Crack submodels

B/a elements nodes cpu time (s) wallclock time (s)

0.1 23070 100027 700.1 1457
0.2 23070 100027 642.3 1264
0.4 17385 75398 386 861
0.6 17385 75398 357.3 487
1 23160 100358 634.1 1156
2 23160 100358 319.4 515
4 23970 103995 316.1 524
6 24225 105207 1504.2 2168
10 26955 117143 940.2 1334
20 26955 117143 2487.8 610
40 29655 129047 2882.8 756
60 29610 128858 2740.7 745
100 30495 132810 3119.2 908
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