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In this chapter, you will learn about basic circuit elements like voltage and current sources, resistors, capacitors 
and inductors. These elements are central to the design and analysis of any electrical or electronics circuit, and 
will accompany you throughout all of your circuit theory studies. You will also begin to familiarize yourself with 
some standard circuit symbology and basic properties required to analyze these elements and circuits. 

CHAPTER 1
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Basic Circuit Elements



SECTION 1

The concept of electrical resistance is related to 
that of electrical resistivity. Resistivity is a physi-
cal  parameter  that  measures  the  opposition to 
the passage of current through an electrical con-
ductor. It is conceptually similar to the notion of 
friction  in  classical  mechanics.  Resistivity  is  a 
microscopic  parameter  present  in  all  materials 

(except superconductors, which have resistivity 
equal to zero).

! Resistance, on the other hand, is a macro-
scopic parameter related to the resistivity of  a 
given material and its geometry. For a material 
with uniform cross  section,  resistance is  given 
by

What you will learn...

1. what is a resistor.
2. how resistors are 

characterized.

Below, the symbols for a resistor.

Figure 1.1 Resistors with different resistances.

Resistors are one of the most common components in electrical circuits. The colored stripes on their bodies indi-
cate both its value and its tolerance.

Resistors
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R =
ρl
A

 

where R is resistance, ρ is resistivity, l is the length of the material, 
and A the area of it's cross section.

! The resistance of an object is defined as the ratio of voltage 
across its terminals to the current flowing through it, that is,

R =
v
i

 

Resistance  is  measured  in 
volt per ampere (V/A), a unit 
that is also called Ohm (Sym-
bol:  Ω)  in  honor  of  German 
physicist Georg Simon Ohm. 
When the value of R does not de-
pend on V or I, the above equation is 
called  Ohm's  Law,  and  the  elements  for 
which it is valid are called “Ohmic materials”. 
An ideal resistor is any device characterized by its re-
sistance that functions in accordance to Ohm's Law.

! Take note that an ideal resistor's resistance may still depend 
on exterior factors, like mechanical stress, temperature, the pres-
ence of light, or mechanical settings - it only has to be independ-
ent of the voltage and current passing through it. 

! If a resistor's resistance value depends on mechanical stress, 
it  is  called  a  piezoresistor.  If  it  depends  on  temperature,  it  is 
called a thermistor.  If  it  depends on the presence of  light,  it  is 
called a photoresistor. If it depends on mechanical settings, it is 
called a potentiometer. All of these types of resistors are impor-
tant for technological applications.

! Now that we have learned about resistors,  we can review 
our concepts of voltage and current sources and construct less ide-
alized models for them.
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SECTION 2

Voltage
The concept of voltage is integral to any study 
in the area of electromagnetism. In the context 
of circuit theory, it is sufficient to know that the 
voltage across a  generic  element’s  terminals  is 
proportional  to  amount  of  work  necessary  to 

move a charged particle through them. That is, 
the voltage across an element is proportional to 
the energy necessary for charge to flow through 
it.

! It  is  important to remember that the volt-
age is defined as the difference between the elec-
trical potential between two points. With that in 

What you will learn...

1. the concepts of voltage, 
current and power.

2. the properties of ideal 
sources.

3. source symbology in circuit 
designs

Below, the symbols for a DC voltage 
source, AC voltage source and 
current source.

Figure 1.2 A non-ideal voltage source.

The AA batteries are a common example of a voltage source. They are not ideal, of course, as in real life nothing 
is ideal. Current and power sources are not as common as voltage sources.

Sources
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mind,  there  is  no  definition  of 
voltage for a single point, or node 
- instead, we have the potential at 
that node. We can only talk about 
voltages  when  comparing  two 
nodes.

! The voltage unit is  the volt 
(symbol:  V) in tribute to the Ital-
ian physicist Alexandre Volta.

Current
Current is defined as the flow of 
positive  charges  through  a  wire 
or,  more precisely,  as  the rate  in 
which  charge  changes  with  re-
spect  to  time.  Even  though  we 
now  know  that  the  electron, 
which is the particle that "carries" electricity, has negative charge, 
this was not known when circuit theory began its development. 
Therefore, we maintain the standard of the current being the flow 
of  positive  charge  due  to  historical  reasons,  even  though  we 
know that  it  is  the negative charges that  are  really moving.  In 
mathematical terms, the definition of current is thus:

i(t) =
dq(t)

dt
where i(t) represent the current as a function of time and q(t) rep-
resent the electric charge as a function of time.

! The  current  unit  is  the  am-
pere (symbol: A) in tribute to the 
French mathematician and physi-
cist  André-Marie  Ampère.  Note 
that 1A = 1C/s.

Power
When an electric  charges  moves 
through  a  potential  difference 
(voltage), there is the conversion 
of the potential  electrical  energy 
into other  forms (kinetic  energy, 
heat,  etc).  This  conversion of  en-
ergy  is  done  through  electrical 
work,  which  for  circuits  can  be 
defined as

W(t) = q(t)v(t)

where  W  represents  the  work,  q 
represents the electric charge and V represents the voltage.

! In analogy with classical mechanics, we can then define elec-
trical power as the rate of doing work, measured in watts (sym-
bol: W) in honor of Scottish engineer James Watt. Mathematically, 
we define the electrical power in a generic element as the product 
of  the  voltage  across  its  terminals  with  the  current  passing 
through it, or

p(t) = v(t)i(t)

9
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where p(t) ,v(t) and i(t) represent the power, voltage and current 
as a function of time.

! Notice that this result can be either positive or negative, and 
both signs carry different interpretations. The interpretation for 
the positive sign is that energy is being absorbed by the element, 
while the negative sign implies that the element is providing en-
ergy to the circuit.

Ideal Voltage Source
We have defined the voltage across a generic element as the differ-
ence in the electrical potential in its terminals. It is natural that 
this  voltage  should  depend  on  several  factors  such  as  the  ele-
ment's nature and properties, the circuit's design and any number 
of other external factors (like temperature, pressure, or even the 
presence of light).

! We define an ideal voltage source as an element which pro-
vides  a  known,  chosen value of  voltage across  its  terminals  re-
gardless of external circumstances or circuit design. 

! Two things are worth mentioning here. First, this value need 
not  be  constant  for  the  voltage  source  to  be  considered  ideal, 
though constant voltage sources are a common occurrence in cir-
cuit theory. Second, there is no information given about the cur-
rent that passes through an ideal voltage source, only it's voltage. 
Indeed, there is no way of knowing what that current is without 
employing some method of circuit analysis.

Ideal Current Source
Just as we have defined an ideal source for voltages, we will now 
define what is an ideal source for electrical currents. Again, it is 
natural  that  the current flowing through an element should de-
pend on several factors such as the element's nature and proper-
ties, as well as external considerations such as temperature, pres-
sure, etc, and that is indeed what happens on usual elements.

! We define an ideal current source as an element which pro-
vides a known, chosen value of current flowing across it regard-
less of external circumstances or circuit design.

! Note that,  as with ideal voltage sources, this current need 
not be constant (though constant sources are a common topic of 
study).  There  is  also  no  information  given  about  the  voltage 
across the ideal current source's terminals, only it's current. There 
is  no way of  knowing what that  voltage is  without employing 
some method of circuit analysis.

Ideal Power Source
We  have  defined  both  ideal  voltage  sources  (that  provide  a 
known voltage value) and ideal current sources (that provide a 
known current value). A third type of ideal source, though less 
used, is the ideal power source, which provides neither a known 
voltage  value  nor  a  known current  value,  but  rather  a  known 
power value. Recall that electrical power is defined by 

p(t) = v(t)i(t) 
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! Therefore, we have no actual information about current or 
voltage, but rather about their product.  While they're generally 
less  useful  for  circuit  analysis  than  voltage  or  current  sources, 
power sources are common in some technological  applications, 
and therefore we have included them here for the sake of com-
pleteness.

Realistic Voltage Source Model 
An ideal voltage source is one in which the output voltage does 
not change. However, realistic sources are actually con- strained 
by the power they are able to provide, so when using a real volt-
age source, if there is a large current being drawn, the output volt-
age should decrease so that the power output remains the same. 

! As such, a more realistic model would have the output volt-
age change according to the current that is being drawn from the 
source; the larger the current, the lower the voltage should be. 

! We can use both ideal voltage sources and resistors to model 
a real voltage source, by having our real voltage source be simply 
the series connection of an ideal voltage source of nominal value 
vint  (sometimes called electromotive force)  and an internal  resis-
tance Rint . Therefore, we have have that the voltage source’s out-
put is 

v = vint − Rinti 

where i is the current being drawn by the circuit. Alternatively, 
this voltage can be written as 

v =
Rin

Rin + Rint
vint 

where Rin is the input resistance of the connected circuit.

Realistic Current Source Model 
A similar analysis can be used for current sources.  Rather than 
provide a constant current value, the output of a realistic current 
source should vary according to how much current the connected 
circuit actually draws. 

! Just like our realistic voltage source model, we can achieve a 
model for the current source by using an ideal current source and 
a resistor. Instead of connecting them in series, however, to make 
our realistic current source we connect the ideal source and the 
internal resistance in parallel.

! By making an analysis of the resulting circuit (explained in 
the next chapter), we can reach the following equation for the out-
put current: 

i =
Rint

Rint + Rin
iint 

where iint  is  the nominal  current  value,  Rint  is  the internal  resis-
tance, and Rin is the input resistance of the connected circuit. 
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SECTION 3

Capacitors
The capacitor is an element widely used in elec-
trical  and  electronics  circuits  to  filter  high  fre-
quency signals and to suppress ripple. It is a pas-
sive  element  with  two  terminals  that  may  or 
may  not  be  distinguishable.  Each  terminal  is 

connected  to  a  electric  conductor  (a  plate 
shaped one in the simplest models) and they are 
separated by an insulator such as ceramic, air or 
glass.

! You  should  remember  from  your  electro-
magnetism studies that electric charges generate 
electric fields. A capacitor is based on this sim-

What you will learn...

1. what a capacitor is and 
which equations describe its 
ideal behavior.

2. what an inductor is and 
which equations describe its 
ideal behavior

Below, the symbols for a capacitor on 
the left and a inductor on the right.

Figure 1.3 Different sized capacitors.

In this picture, you can see capacitors with different shapes, materials and capacitances.

Energy Storage Elements
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ple physics principle. When a voltage is applied across its termi-
nals,  a  current  develops.  Positive  and negatively  charged parti-
cles accumulate in the plates due to it. This charges store energy 
in the form of an electric field.

! We use the term “capacitance” to measure the amount of en-
ergy that a capacitor can store. It is measured in farads (symbol: 
F) in honor of the English physicist Michael Faraday.

! There are three factors that influence the capacitance of a ca-
pacitor: the electrical permittivity. The factors that determine this 
attribute of this storage element are not in the scope of this text.

! Lets suppose a voltage v(t) is applied to a generic capacitor 
with capacitance C . Then some positive charge q(t) will be depos-
ited at one “side” of the element and some negative charge −q(t) 
will be deposited at the other side. This charge can be found us-
ing the definition of capacitance, such that:

q(t) = Cv(t)

! If we derive this equation we respect to time and remember 
the definition of current, we get:

iC(t) = C
dvC(t)

dt
! With this important relation in mind, we derive on of the 
most  important  facts  about  capacitors:  the  voltage cannot  vary 
abruptly in its terminals. Mathematically, this means that

lim
t→t−

0

vC(t) = lim
t→t+

0

vC(t).

! The reasoning behind this idea lies on the fact that is this 
limit relations did not hold,

dvC(t)
dt

t=t0

→ ∞

and we would violate the principle of energy conservation.

! If we integrate both sides of the equation that represents the 
current as a function of the voltage, we can find an equation for 
the voltage. Do not forget to add the constant term which, in this 
case, is vC(0).

vC(t) − vC(0) =
1
C ∫

t

0
iC(τ)dτ

! We need the constant term because the integral gives us 
the voltage instead of the final voltage.

Inductors
The inductor is an element widely used in electrical 
and electronics circuits to filter low frequency sig-
nals  and to  suppress  ripple.  It  is  a  passive  ele-
ment  with  two  terminals  that  are  not   distin-
guishable. The terminals are connected through 
a winding that may have as few as fifty turns 
and as many as ten thousand.

! You should remember  from your  electro-
magnetism studies that electric currents generate m a g-
netic fields. An inductor is based on this simple physics principle. 
When a current exists on the winding, a voltage develops across 
the terminals. As the current increases, a magnetic field appears 
in the interior of the winding where energy is stored.

13



! We use the term “inductance” to measure the amount of en-
ergy that a inductor can store. It is measured in henries (symbol: 
H) in honor of the American scientist Joseph Henry.

! Although  this  text  is  not  going  to  discuss  this,  it  can  be 
proved  that  the  voltage  across  the  inductor  and  the  current 

through it can be related by the following expression:

vL(t) = L
diL(t)

dt
where L represent the inductance of 
the element.

! Using the same reasoning used in the 
capacitor part of this section, we can infer that the cur-

rent through the inductor needs to be continuous with 
respect to time. If that was not the case, we would violate 

the principle energy conservation.

! Equation  above  represents  the  voltage  as  a 
function of the current, if  we integrate both 
sides we can find an equation for the current. 
Do  not  forget  to  add  the  constant  term 
which, in this case, is iC(0).

iL(t) − iL(0) =
1
L ∫

t

0
vL(τ)dτ

! In the image, inductors with different sizes, shapes and ma-
terials.

Important Remarks
• The two terminals of a capacitor are not connected with an elec-

tric conductor. Instead, they are connected with an insulator as 
described  earlier.  Thus,  if  a  capacitor  is  connected  to  a  DC 
source and the system is in steady state, there is no current in 
the capacitor. That is, capacitors act as open-circuits when con-
nected to DC sources as we are going to study in the following 
chapters.

• On the other hand, the two terminals of an inductor are con-
nected with a conductive material. Thus, if an inductor is con-
nected directly to a DC source and the system is in steady state, 
there will be an extremely large current in the system. That is, 
inductors act as short-circuits when connected to DC sources as 
we are going to study in the following chapters.

• Capacitor’s  terminals  may or  may not  be  distinguishable.  In 
the case of an electrolytic capacitor, one should pay attention to 
the terminals as they are polarized. That is, the positive termi-
nal cannot sustain negative values of electric potential.

• Inductors  should  not  be  connected  standalone  to  voltage/
current sources. Doing so is the same thing as short circuiting a 
power outlet.  That  is  because they are  simply wires  that  are 
twisted in some fashionable manner in order to generate an use-
ful magnetic field inside them.
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In  this  chapter  we  will  discuss  both  resistive 
circuits  and  circuits  with  storage  elements. 
Although  they  are  sometimes  really  simple, 
understanding them is imperative to learn more 
complicated circuits that are used professionally.

In  the  picture,  a  multimeter  that  is  capable  of 
measuring  DC  voltages  and  currents  in  real 
circuits.

CHAPTER 2

15
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SECTION 1

A circuit  is  considered  to  be  resistive  if,  and 
only if, it has only voltage/current sources and 
resistors. They are usually too dull for most ap-
plications but some of them are used to accom-
plish simple goals.

Voltage Divider
! Now, we will  discuss the voltage divider 
circuit  in order to explore some characteristics 
of the resistive circuits. Other and more compli-
cated examples can be found at the “Examples” 
section of this chapter.

What you will learn...

1. how to analyze your first 
circuit by applying concepts 
learned in the previous 
sections.

2. two important, yet simple, 
circuits: the voltage and the 
current dividers.

Figure 2.1 A voltage divider and a current divider.

In the image, you can see a voltage divider on the left and a current divider on the right. Both circuits are ex-
tremely important and are shown in their simplest form.

Resistive Circuits
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! The simplest voltage divider consists of a DC voltage source 
and two resistors. It operates under the fact described in the resis-
tors section that vR(t) = RiR(t). I. e., when there is current in a resis-
tor, a voltage appears across it and it is proportional to the resis-
tance value (R).

! Lets  start  the  analysis  of  this  circuit  by  calculating  the 
equivalent resistance. As we already know, if the resistors are in 
series (same current through them) the resistances add up. This 
way, the equivalent resistance is Req = R1 + R2.

! Knowing  the  equivalent  resistance  (Req)  and  the  source’s 
voltage (vin) we can easily calculate the current in the circuit:

i =
vin

Req

! Now lets calculate the output voltage indicated in the sche-
matic as vout. We know that the voltage drop across R1 is R1i accord-
ing to Ohm’s Law. Thus,

vout =
R2

R1 + R2
vin

! Note that the output voltage depends on a ratio between the 
resistor where the output is taken and the equivalent resistance. 
This result can be generalized for the case where we have N resis-
tors connected in series. In this expanded case,

v(i)
out =

Ri

∑N
n=1 Rn

vin

Current Divider
Now, we will talk about an analogous circuit. Instead of dividing 
voltage, this one splits current. In this case, we have a DC current 
source (iin) instead of a voltage source. Also, the resistors are ar-
ranged in parallel instead of in series.

! The equivalent resistance is calculated as shown in the sec-
tion regarding resistors and it is

Req =
R3R4

R3 + R4

! The voltage drop across the resistors can be calculated using 
Ohm’s Law and it is simply v = Reqiin. The current in each branch 
is given by Ohm’s Law and it is the quotient between v and the 
corresponding resistance yielding

i(3)
out =

R4

R3 + R4
iin

for the current through R3.

! This result can also be generalized for the case in which we 
have N parallel resistors.

i(i)
out =

∑N
n=1,n≠i Rn

∑N
n=1 Rn

iin
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SECTION 2

This section might feel out-of-place for many of 
the readers. However, consider it as some back-
ground necessary to the studies of electrical cir-
cuits. As soon as we dive in examples in the fol-
lowing  sections,  we  will  refer  to  the  concepts 
presented here and everything will make more 
sense and will be more solidified in your minds.

! We  will  first  talk  about  the  voltage  law 
and, subsequently, about the current law. At the 
end of this section, we will talk briefly about the 
Superposition Principle which is another impor-
tant tool in the study of circuits.

What you will learn...

1. the Kirchhoff’s laws.
2. the superposition principle.

Figure 2.2 Gustav Kirchhoff

Gustav Robert Kirchhoff was a German scientist famous for his contributions in the electrical circuits and black-
body radiation areas.

Kirchhoff’s Laws and the Superposition Principle
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Kirchhoff’s Laws
The Kirchhoff’s  Circuit  Laws were derived from the Maxwell’s 
Equations by Gustav Kirchhoff, a German physicist, in 1845. They 
are imperative to the study of basic electric circuits and, without 
them, analyzing such circuits would be a harsh job.

! Also  known  as  KVL,  the  Kirchhoff’s 
Voltage Law states that the algebraic sum of 
voltages  (electric  potential  differences) 
around a closed loop in a circuit  is  always 
equal to zero.

! On  the  other  hand,  the  KCL,  Kirch-
hoff’s Current Law, states that there is “cur-
rent  conservation” in each and every node 
of a circuit. That is, the algebraic sum of all 
the currents going into a node equals the al-
gebraic sum of all the currents going out of 
that same node.

Superposition Principle
You should remember from your basic math classes the concept 
of linear functions. They are functions such as f (x) = a x and have 
some special properties as f (x1) + f (x2) = f (x1 + x2).

! Similarly to these special functions, the first circuits we are 
going to describe in this text as linear. Because of this property, if 
we have a circuit with more than one source of voltage/current 
we do not need to deal with all the sources at once.

! Using the fact that the system is linear we can, and should, 
analyze the circuit with only one source turned at each time. And 
the result will be the combination of individual results as it was 
shown for the function f (x) = a x.

Example
To exemplify both Kirchhoff's Laws and the 
Superposition Principle  in  action,  let  us  ex-
amine a simple case.

!Imagine  that  you  connect  two  voltage 
sources to a single resistor of  value R,  and 
you  want  to  know  the  power  dissipated 
there, PR. Let us also assume that the voltage 
sources  can  be  modeled  by  the  realistic 
model  presented  in  the  previous  chapter  - 
they are therefore characterized by their volt-
ages v1 and v2, and their internal resistances 
R1 and R2. Let us denote the voltage at the in-
tersection of the three resistors by v, and set 

our reference at the intersection of the ideal 
sources and the resistor R .

! First,  let us solve this problem using Kirchhoff's Laws. Ac-
cording to the current law, the algebraic sum of currents in any 
node must be equal to zero. Therefore, examining the intersection 
node, we can write:

i1 =
v1 − v

R1
 

i2 =
v2 − v

R2
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i =
v − 0

R
 

! From Kirchhoff's Law:

i1 + i2 = i 

! Therefore:
v1 − v

R1
+

v2 − v
R2

=
v
R

 

! Solving for v , we get

v =
RR2v1 + RR1v2

R1R2 + RR2 + RR1
 

! Therefore we can find the power dissipated:

PR = vi =
v2

R
= ( R2v1 + R1v2

R1R2 + RR2 + RR1 )
2

 

! Now, we can solve the same problem by applying the Super-
position Principle instead. With this method, we will analyze the 
contribution of each source separately. We can thus write

v = v(1) + v(2) 

where v(1) and v(2) are the contributions from source 1 and 2, re-
spectively.

! Let us examine the contribution from source 1; to do that, 
we must "turn off" source 2, that is, we make v2 = 0. Doing that, 
we have R in parallel with R2 giving us

Req =
RR2

R + R2
 

! With this, we can find v(1) by applying a simple voltage di-
vider:

v(1) =
Reqv1

Req + R1
=

RR2v1

R2R + R1R + R1R2
 

! By the symmetry of the circuit, we can do the exact same cal-
culation for the second source's contribution, giving us

v(2) =
RR1v2

R1R + R2R + R1R2
 

! Therefore

v = v(1) + v(2) =
RR2v1 + RR1v2

R1R2 + RR2 + RR1
 

! And the power dissipated is, as before,

PR = vi =
v2

R
= ( R2v1 + R1v2

R1R2 + RR2 + RR1 )
2
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SECTION 3

In this section, we will study what is commonly 
called a First Order Circuit. The origin of their 
name lies on the fact that applying Kirchhoff’s 
Laws  on  them  yields  a  first  order  differential 
equation.

! Circuits  that  only  have  one  independent 
energy storage element are always first order cir-

cuits. Although we are not going to prove this 
assertion,  we  will  show  enough  evidence  for 
you to believe it in the examples.

! Note that  some circuits  might have more 
than one energy storage element and still  be a 
first order circuit. That happens because, some-

What you will learn...

1. what is a first order circuit.
2. the principle of operation of 

a capacitive circuit.
3. the principle of operation of 

an inductive circuit.
4. how to use Kirchhoff’s Laws 

to solve first order circuits.

Figure 2.3 A RC and a RL circuit.

The image depicts the schematics for a capacitive circuit on the left and an inductive circuit on the right. These 
circuits are going to be described in this section with a square wave as the input voltage.

First Order Circuits
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times, these elements are not independent (for example, two in-
ductors in series).

Some Recap
Before we continue to the analysis of these particular circuits, we 
need to recap some math fundamentals.

! First, the solution (response) of a first order differential equa-
tion is a linear combination of two parcels. The first is called ho-
mogeneous (or natural) response and the second is the particular 
(or forced or steady state) response.

! To  solve  the  differential  equation,  we  find  each  response 
alone and the add them up to find the complete response.

! In the study of basic electrical circuits, most homogenous re-
sponses will be exponential. Also, most forced responses will be 
similar to the independent term of the equation. Check the exam-
ple below.

! Consider the equation 
d x(t)

dt
+ x(t) = C. We know that the so-

lution is of the form x(t) = xh(t) + xp(t). To find the homogeneous 
solution, we make the constant term be zero and solve the equa-
tion by remembering the properties of the exponential function. 
This yields xh(t) = Ke−t.

! To find the particular solution we assume that it  is  of the 
same kind as the independent term. That is, constant. In fact, if 
we make  and substitute this in the equation, we see that it is a so-
lution.

! The final solution is x(t) = Ke−t + C. Note that K can be deter-
mined  using  constrains  particular  to  each  situation  and  C  is 
given.

Capacitive Circuits
The Idea
The first  capacitive circuit  we are going to describe is  often re-
ferred to as the RC circuit. It it composed of a source (v(t)) and a 
resistor-capacitor serial branch. All the initial conditions (i.e., volt-
ages and currents) are zero.
! Lets assume that v(t) is a square wave with period T and am-
plitude A. This means that

v(t) =
A for 0 < t < T

2

0 for  T2 < t < T
 

and it repeats periodically after t = T.

! Without using any math, lets try to reason about what be-
havior will be displayed by this circuit under this conditions. Dur-
ing the first half-period (0 < t < T /2), there will be a positive volt-
age across the RC branch. Thus, some current should develop.

! It was explored in a previous chapter that voltage must be 
continuous across a capacitor. Because of this, at t = 0 the voltage 
at the capacitor will still be zero and all the voltage drop will oc-
cur at the resistor. Thus, the current through the resistor and, con-
sequently,  through  the  capacitor  (remember  that  they  are  con-
nected in series) is i(0) = A /R.
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! We can infer that, as time goes by, this initial current i(0) will 
start  charging the capacitor.  This  charge will  make the voltage 
drop across the resistor smaller and smaller reducing, this way, 
the current in the system. We can think of two different scenarios 
for the system. The capacitor can either get totally charged before 
t = T /2 or not. We will prove later that the capacitor only gets to-
tally charged when T → ∞.

! For  T /2 < t < T  the  analysis  is  analogous.  However,  this 
time, the current will be negative through the resistor discharging 
the capacitor. Similarly, we will show that the capacitor only gets 
totally discharged when T → ∞.

The Math
Now that we have already done some reasoning regarding the be-
havior of  this  simple circuit,  it  is  time to analyze it  mathemati-
cally.  Lets start by applying the KVL (Kirchhoff’s Voltage Law) 
around the only loop this circuit has. KVL states that the sum of 
voltages around a loop must equal zero.

! Starting from the source, we have an increase of v(t) volts. 
Then, we have a voltage drop across the resistor which, according 
to Ohm’s Law, is RiR(t) volts. Finally, the drop across the capacitor 

is  
1
C ∫

t

0
iC(t)dt  volts.  Note  that  iR(t) = iC(t) = i(t)  because  the  ele-

ments are connected in series. The equation for the KVL is, then:

v(t) − Ri(t) −
1
C ∫

t

0
i(τ)dτ = 0 

! Deriving the expressing with regards to t and rearranging it, 
we get:

R
di(t)

dt
+

1
C

i(t) =
dv(t)

dt
 

! It is simpler to solve this equation in two steps. First, consid-
ering v(t) = A which is is value during the first half-period. Then 
considering v(t) = 0 for the second half-period.

R
di(t)

dt
+

1
C

i(t) =
dA
dt

= 0 for 0 < t < T
2

d0
dt

= 0 for  T2 < t < T
 

! One must wonder why do we have to solve if separately if 
in both intervals the equation equals zero. It is true that we can 
spare some time by recycle one solution into another. However, 
we are dealing with equations that may be identical mathemati-
cally speaking but that do not refer to the same intervals of time. 
Thus, one must note that some constants will differ.

! For the first half-period we have a differential equation and 
its solution is composed by a particular solution and a homogene-
ous  solution.  Gladly,  the  equation  is  already  homogenous  (be-
cause it equals zero) so the particular solution is zero. Recall from 
you differential  equations classes that  the solution to this  equa-
tion will be of the form i1(t) = K1e− t

RC . The solution to the equation 
related to the second half-period is the same but with a different 
constant. That is, i2(t) = K2e− t − T/2

RC .

! Please note that for i2(t),  we have t − T /2 because this solu-
tion refers to the second half-period. This way, we need to  time-
shift it T /2 time units to the right.

! To find the constants K1  and K2  we need to use boundary 
conditions.  We  know  that  at  t = 0  the  current  is  maximum  be-
cause there is no charge (i.e., voltage) in the capacitor. Thus, all 
the  A  volt  drop  occurs  at  the  resistor.  Using  Ohm’s  Law, 
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A = Ri1(0) = K1, we find that K1 = A /R. Similarly, we know that at 
t = T /2 the source’s voltage is zero and, thus, there is a −A drop 
across  the  resistor.  Again,  using  Ohm’s  Law  we  find  that 
K2 = − A /R.

i(t) =
A
R e− t

RC for 0 < t < T
2

− A
R e− t − T/2

RC for  T2 < t < T
 

! With both currents  calculated,  we can easily  calculate  the 
voltage across the resistor simply by multiplying the current by R 
(Ohm’s Law). This yields:

vR(t) =
Ae− t

RC for 0 < t < T
2

−Ae− t − T/2
RC for  T2 < t < T

 

! Also, if we want the voltage across the capacitor we can do 
some reasoning and see that vC(t) = v(t) − vR(t). The voltage across 
the  capacitor  will  be  the  input  voltage  minus  the  voltage  that 
drops  across  the  resistor.  Note  that  if  the  capacitor  is  totally 
charged, the current in the system is zero and, thus, vR(t) = 0 mak-
ing vC(t) = v(t).

vC(t) =
A − vR(t) for 0 < t < T

2

−vR(t) for  T2 < t < T
 

! It  is  a  good exercise  to  substitute  these solutions into the 
original equations to see if our results hold.

Remarks

We have already given expression for all the circuit’s variables, 
currents and voltages. However, it is wise to make some commen-
tary regarding those solutions to achieve fluency in the topic.

! First, lets calculate the voltage across the capacitor for t =
T
2

 

and t = T.

vC ( T
2 ) = A − Ae− T

2RC  

! Note that, when T → ∞, vC (T /2) → A meaning that the maxi-
mum voltage at the capacitor is the source’s voltage which makes 
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In this video, you can see the plot for the voltage across the capacitor as 
we increase the RC product. Note that, the higher the RC, the lower the 
charge acquired by the capacitor in a half period.

Also note that this graph is not showing the steady-state response (after 
all the transients are gone). That is the reason why the curve is not peri-
odic.

Movie 2.1 Voltage across the capacitor as a function of time. Two 
periods shown. In this plot, we considered A=10 V and T=10 s. 
Also, R=10 kΩ and C=100 μF for starting values.



perfect sense. However, it  is not real to assume that the period 
goes to infinity. It is sufficient for basic applications to say that af-
ter 5RC seconds (often referred as the RC circuit’s settling time) 
the capacitor is “fully” charged or discharged. Thus, if T ≥ 10RC 
the  capacitor  will  reach  “full”  charge/discharge  at  every  half-
period. If T = 10RC we have

vC ( T
2 ) = A − 0.01 × A ≈ A 

vC(T ) = − 0.01 × A ≈ 0 

Inductive Circuits
The Idea
The first  inductive  circuit  we  are  going  to  describe  is  often  re-
ferred to as the RL circuit (the analogous for the RC circuit). It it 
composed of a source (v(t)) and a resistor-inductor serial branch. 
All the initial conditions (i.e., voltages and currents) are zero.

! Lets assume that v(t) is a square wave with period T and am-
plitude A. This means that

v(t) =
A for 0 < t < T

2

0 for  T2 < t < T
 

and it repeats itself periodically after t = T.

! Without using any math, lets try to reason about what be-
havior will be displayed by this circuit under this conditions. Dur-
ing the first half-period (0 < t < T /2), there will be a positive volt-
age across the RL branch. Thus, some current should develop.

! It was explored in a previous chapter that current must be 
continuous across an inductor. Because of this, at t = 0 the current 
at the inductor(i.e.,  the current through the circuit)  will  still  be 
zero. Because there is no current in the circuit, there will be no 
voltage drop at the resistor meaning that all the voltage drop will 
occur at the inductor at t = 0. 

! We can infer that,  as time goes by, this initial voltage v(0) 
will start “charging” the inductor with current. This current will 
make the voltage drop across the resistor bigger and bigger. We 
can think of two different scenarios for the system. The inductor 
can either get totally charged before t = T /2 or not. We will prove 
later with math that the inductor only gets totally charged when 
T → ∞.

! For  T /2 < t < T  the  analysis  is  analogous.  However,  this 
time, the voltage will be negative through the inductor discharg-
ing it. Similarly, we will show that the inductor only gets totally 
discharged when T → ∞.

The Math
Now that we have already done some reasoning regarding the be-
havior of  this simple circuit,  it  is  time to analyze is  mathemati-
cally.  Lets start by applying the KVL (Kirchhoff’s Voltage Law) 
around the only loop this circuit has. KVL states the sum of volt-
ages around a loop must equal zero.

! Starting  from  the  source,  we  have  an  increase  v(t)  volts. 
Then, we have a voltage drop across the resistor which, according 

to Ohm’s Law, is RiR(t) volts. Also, across the inductor is L
diL(t)

dt
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volts.  Note  that  iR(t) = iL(t) = i(t)  because  the  elements  are  con-
nected in series. The equation for the KVL is, then:

v(t) − Ri(t) − L
diL(t)

dt
= 0 

! Rearranging it...

L
di(t)

dt
+ Ri(t) = v(t) 

! For the first half-period we have a differential equation and 
its solution is composed by a particular solution and a homogene-
ous solution. Gladly, the second equation is already homogenous 
(because it equals zero) so the particular solution for it is zero. Re-
call from you differential equations classes that the solution to the 
first equation will be of the form

i1(t) = i1p(t) + i1h(t) = K1 + K2e− R
L t 

! The  solution  to  the  equation  related  to  the  second  half-
period is similar but with a different constant and no particular 
solution. That is, i2(t) = K3e− R

L (t−T/2).

! To find the constants K1, K2 and K3 we need to use boundary 
conditions.  We  know  that  at  t = 0  the  current  is  zero  because 
there current is continuous in the inductor. Thus, K1 = − K2 = K.

! To find K lets assume that T → ∞. When t → ∞, i1(t) = K1 = K 
and  we  know  that  in  that  situation  the  inductor  is  totally 
“charged with current” and acts like a short-circuit. This way, all 
the voltage drop occur through the resistor.  Using Ohm’s Law, 
A = Ri1(t) t→∞

= RK, we find that K = A /R.

! Similarly, we know that the circuit’s current needs to be con-
tinuos due to the inductor and, thus, i1(T /2) = i2(T /2). This leads 
to K3 = A /R.

i(t) =
A
R − A

R e− R
L t for 0 < t < T

2
A
R e− R

L (t−T/2) for  T2 < t < T
 

! Please note that in the second equation, we have t − T /2 be-
cause we are time shifting it T /2 time units to the right.

! With both currents  calculated,  we can easily  calculate  the 
voltage across the resistor simply by multiplying the current by R 
(Ohm’s Law). This yields:

vR(t) =
A − Ae− R

L t for 0 < t < T
2

Ae− R
L (t−T/2) for  T2 < t < T

 

! Also, if we want the voltage across the inductor we can do 
some reasoning and see that vL(t) = v(t) − vR(t). The voltage across 
the  inductor  will  be  the  input  voltage  minus  the  voltage  that 
drops across the resistor. Note that if the inductor is totally “dis-
charged”,  the  current  in  the  system is  zero  and,  thus,  vR(t) = 0 
making vL(t) = v(t).

vL(t) =
A − vR(t) for 0 < t < T

2

−vR(t) for  T2 < t < T
 

! It  is  a  good exercise  to  substitute  these solutions into the 
original equations to see if our results hold.
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Remarks
As an exercise, do the same analysis done in the RC circuit’s “Re-
marks” part.

! Note that it is sufficient for basic applications to say that af-
ter 5L /R seconds (often referred as the RL circuit’s settling time) 
the inductor is “fully” charged or discharged. Thus, if T ≥ 10L /R 
the  capacitor  will  reach  “full”  charge/discharge  at  every  half-
period.

Lab Experiment
In this experiment we show the practical behavior of RC circuit.. 

We will be using a 1.2 kΩ resistor and a 5.6 nF capacitor.

! In  the  low  frequency  range,  the  capacitor  charge  (green 
waveform)  almost  reaches  the  input  (yellow  waveform)  maxi-
mum value. However, the higher the frequency, the less time the 
capacitor has to charge/discharge. Therefore, the capacitor is un-
able to reach the input’s maximum value.

! Take note that the horizontal scale has been adjusted during 
the recording to allow better visualization of the waveforms. The 
frequency, however, was increased continuously.
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SECTION 4

In this section, we will study what is commonly 
called  a  Second  Order  Circuit.  The  origin  of 
their name lies on the fact that applying Kirch-
hoff’s Laws on them yields a second order differ-
ential equation.

! Circuits that only have two independents 
energy storage  elements  are  always  second or-

der circuits (except when they are not independ-
ent). Although we are not going to prove this as-
sertion, we will show enough evidence for you 
to believe it in the examples.

! If  you  still  have  not  read  the  section  re-
lated to first order circuits, we really encourage 
you to do so.

What you will learn...

1. what is a second order 
circuit.

2. the principle of operation of 
a RLC series circuit.

3. the principle of operation of 
RLC parallel circuit.

4. how to use Kirchhoff’s Laws 
to solve second order 
circuits.

Figure 2.4 A RLC series and a RLC parallel circuit.

The image depicts the schematics for a RLC series circuit on the left and a RLC parallel circuit on the right. 
These circuits are going to be described in this section with a square wave as the input voltage.

Second Order Circuits
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Some Recap
Before we continue to the analysis of these particular circuits, we 
need to recap some math fundamentals.

! Consider the following differential equation:
d2x(t)

dt2
+ B

d x(t)
dt

+ Cx(t) = y(t) 

! Again,  the  solution  to  this  equation  is  of  the  form 
x(t) = xp(t) + xh(t).  To find the homogeneous part of the solution, 
we need to do something more complicated then we did for a 
first order equation.

! This time, we need to find the characteristic polynomial of 

the homogeneous equation by making 
d
dt

= λ yielding:

λ2 + Bλ + C = 0 

! This polynomial plays an important role in the form of the 
homogeneous solution and this will be discussed in our first ex-
ample, the Series RLC Circuit.

Series RLC Circuit
This first circuit we are going to describe is fairly simple. It is com-
posed of a voltage source (v(t)) and a resistor-inductor-capacitor 
serial  branch.  All  the  initial  conditions  (i.e.,  voltages  and  cur-
rents) are zero.

! Lets assume that v(t) is a square wave with period T and am-
plitude A. This means that

v(t) =
A for 0 < t < T

2

0 for  T2 < t < T
 

and it repeats itself periodically after t = T.

The Idea
Without using any math, lets try to reason about what behavior 
will be displayed by this circuit under these conditions. During 
the first half-period (0 < t < T /2), there will be a positive voltage 
across the RLC branch. Thus, some current should develop.

! Recall that the voltage across the capacitor as well as the cur-
rent  through the inductor  must  be continuous as  a  function of 
time. Therefore, we can infer that at t = 0 there will be no current 
through the inductor  and no voltage across  the capacitor.  Also 
there will be no voltage drop across the resistor because of the ab-
sence of current. This leads to the conclusion that all the voltage 
drop (v(0)) occurs at the inductor at t = 0.

! This voltage drop across the inductor will start to charge it, 
thus, a current will develop. This current will charge the capaci-
tor. Note that theses phenomena occur simultaneously.

! If the period of the input’s square wave is large enough, the 
capacitor will reach “full” charge and, consequently, the current 
in the system will reach zero at t = T /2.

! For T /2 < t < T, an opposite process will occur. At first, the 
current will be zero and the voltage across the capacitor will be 
what it was just before t = T /2 (as long as T /2 is large enough for 
the capacitor to have fully charged). As time goes by, the energy 
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stored in the capacitor will  “feed” the circuit  increasing its  cur-
rent  and reducing the  voltage  across  the  capacitor.  After  some 
time, all the energy stored will be dissipated in the resistor and 
the system will reach the same state it had at t = 0 (again, if T is 
large enough).

The Math
Now that we have already done some reasoning regarding the be-
havior of  this  simple circuit,  it  is  time to analyze it  mathemati-
cally.  Lets start by applying the KVL (Kirchhoff’s Voltage Law) 
around the only loop this circuit has. KVL states that the sum of 
voltages around a loop must equal zero.

! Starting from the source, we have an increase of v(t) volts. 
Then, we have a voltage drop across the resistor which, according 
to  Ohm’s Law,  is  RiR(t)  volts.  Also,  the drop at  the inductor  is 

L
diL(t)

dt
. Finally, the drop across the capacitor is 

1
C ∫

t

0
iC(t)dt volts. 

Note  that  iR(t) = iL(t) = iC(t) = i(t)  because  the  elements  are  con-
nected in series. The equation for the KVL is, then:

v(t) − Ri(t) − L
di(t)

dt
−

1
C ∫

t

0
i(τ)dτ = 0 

! Deriving the expression with regards to t and rearranging it, 
we get:

d2i(t)
dt2

+
R
L

di(t)
dt

+
1

LC
i(t) =

dv(t)
dt

 

! It is simpler to solve this equation in two steps. First, consid-
ering v(t) = A which is is value during the first half-period. Then 
considering v(t) = 0 for the second half-period.

d2i(t)
dt2

+
R
L

di(t)
dt

+
1

LC
i(t) =

dA
dt

= 0 for 0 < t < T
2

d0
dt

= 0 for  T2 < t < T
 

! Recall  from what was discussed in the first order circuit’s 
section that these equations might look identical but they have 
different solutions. That is because they do not describe the sys-
tem in the same intervals of time and different initial conditions 
might apply.

! For 0 < t < T /2, we have a homogeneous equation (because 
it equals zero) and thus, the particular component of the solution 
is zero. The homogeneous solution, however, is not as simple as 
before  because we are  dealing with a  second order  differential 
equation.

! The first step to find the expression for the homogeneous so-
lution is to find the roots of the characteristic polynomial related 
to the equation. The polynomial, in this case, is

λ2 +
R
L

λ +
1

LC
= 0 

and its roots are

λ1 = −
R
2L

+
1
2

R2

L2
−

4
LC

 

λ2 = −
R
2L

−
1
2

R2

L2
−

4
LC
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! Although we have found the general form of the roots, there 
are three cases which we need to explore. That is because each 
case will yield a different form for the solution.

! The first case is when λ1 ≠ λ2 giving us a solution of the form

i(t) = ih(t) = k1eλ1t + k2eλ2t 

where k1 and k2 are constants related to the initial conditions of 
the system (current through the inductor and voltage across the 
capacitor).

! The second case is when λ1 = λ2 = λ which will yield

i(t) = ih(t) = k1eλt + k2teλt 

as the solution. Again, the constants are related to the initial con-
ditions of the circuit.

! Finally, if λ1 = λ2 but are complex conjugates the solution is 
similar to the one and differ only in the fact that the exponentials 

will be complex. Using Euler’s Formula, it simplifies to 

i(t) = ih(t) = eαt [k1cos(ωt) + k2sin(ωt)] 

where α = ℜ(λ) (real part) and ω = ℑ(λ) (imaginary part).

!For  T /2 < t < T  we  have  the  same  solutions  time-
shifted by a half-period (t → t − T /2) and with differ-

ent constants.

! Now, lets  assume that  λ1 ≠ λ2  and they are 
not complex conjugates and continue the 

analysis based on this fact. As of now 
we have that

i(t) =
k1eλ1t + k2eλ2t for 0 < t < T

2

k3e
λ1(t − T

2 ) + k4eλ2(t − T
2 ) for  T2 < t < T

 

! Note that the constants are different in each of the equations 
but the λ’s are not. This lies on the fact that they depend only on 
the topology of the circuit.

! To find k1  and k2  lets  use  the  conditions  of  the  system at 
t = 0.  We know that i(0) = k1 + k2 = 0  as the current through the 
inductor needs to be continuous. Also we know that

vL(t) = L
di(t)

dt
= k1λ1eλ1t + k2λ2eλ2t 

and that vL(0) = A because there is no voltage drop at the resistor (
i(0) = 0)  and  also  no  voltage  drop  at  the  capacitor  (vC(0) = 0). 
Thus k1λ1 + k2λ2 = A and we end up with the following:

{k1 + k2 = 0
k1λ1 + k2λ2 = A

 

! To find the constants k1  and k2  one must solve the system 
above.

! To find the constants k3  and k4  the same analysis must be 
made but, this time, considering the state of the circuit at t = T /2. 
We will leave this to reader as an exercise.

Parallel RLC Circuit
The parallel RLC circuit can have many forms. We are going to 
consider the one with a LC parallel branch in series with a resis-

tor.  All  the  initial  conditions  (i.e.,  volt-
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ages and currents) are zero.

! Lets assume that v(t) is a square wave with period T and am-
plitude A. This means that

v(t) =
A for 0 < t < T

2

0 for  T2 < t < T
 

and it repeats itself periodically after t = T.

The Idea
Without using any math, lets try to reason about what behavior 
will be displayed by this circuit under these conditions. During 
the first half-period (0 < t < T /2), there will be a positive voltage 
across the circuit. Thus, some current should develop through the 
resistor.

! Recall that the voltage across the capacitor as well as the cur-
rent  through the inductor  must  be continuous as  a  function of 
time. Therefore, we can infer that at t = 0 there will be no current 
through the  inductor  and no voltage across  the  capacitor.  This 
leads to the conclusion that all the voltage drop (v(0)) occurs at 
the inductor at t = 0 and all the current goes through the resistor 
and and capacitor.

! This  current  through the  capacitor  will  start  to  charge  it, 
thus, a voltage will develop. This voltage will start charge the in-
ductor. Note that theses phenomena occur simultaneously.

! If the period of the input’s square wave is large enough, the 
capacitor and the inductor will reach “full” charge. That is, there 

will  be  no  current  through  the  capacitor  and  no  voltage  drop 
across the inductor.

! For T /2 < t < T, an opposite process will occur. At first, the 
current through the capacitor and the voltage across the inductor 
will be zero (as long as T /2 is large enough for the capacitor to 
have fully  charged).  As  time goes  by,  the  energy stored in  the 
capacitor/inductor will “feed” the circuit. After some time, all the 
energy stored will  be dissipated in the resistor and the system 
will  reach  the  same  state  it  had  at  t = 0  (again,  if  T  is  large 
enough).

The Math
Now that we have already done some reasoning regarding the be-
havior of  this  simple circuit,  it  is  time to analyze it  mathemati-
cally. Lets start by applying the KCL (Kirchhoff’s Current Law) at 
the node right after the resistor. Note that the voltage across the 
capacitor and the inductor are equal, thus, vC(t) = vL(t) = vA(t).

iR(t) = iC(t) + iL(t) 

v(t) − vA(t)
R

= C
dvA(t)

dt
+

1
L ∫

t

0
vA(t)dt 

! If we derive with respect to time the expression above and 
reorganize the terms, we get

d2vA(t)
dt2

+
1

RC
dvA(t)

dt
+

1
LC

vA(t) =
dv(t)

dt
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which is an differential equation that can be easily solved to find 
vA(t). We will leave this solution as an exercise. If in need, refer to 
the previous example.

! With vA(t) in hand, we can find the current through the ca-
pacitor, the current through the inductor and the current through 
the system (the sum of the two).

iC(t) = C
dvA(t)

dt
 

iL(t) =
1
L ∫

t

0
vA(t)dt 
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In this chapter we will introduce concepts related 
to the frequency domain. These tools are helpful 
in  the  analysis  of  complex  systems,  and 
understanding  the  frequency  domain  is  an 
important step in the study of linear circuits.

To the right you can see a picture of Jean-Baptiste 
Joseph  Fourier,  a  French  mathematician  and 
physicist. He is responsible for starting a branch 
of mathematics known as Fourier analysis, which 
is  one  of  the  cornerstones  of  frequency domain 
analysis.

CHAPTER 3
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SECTION 1

Laplace Transform
Overview
The Laplace Transform is a powerful mathemati-
cal  tool  for  solving  differential  equations.  We 
have seen in the previous chapter that linear cir-
cuits can be characterized by a differential equa-

tion for voltage or current, therefore the Laplace 
Transform will come in handy when performing 
linear circuit analysis.

! Basically, the Laplace Transform is a linear 
operator that transforms a real-valued function 
in the time domain into a complex-valued func-
tion in s-domain, given by

What you will learn...

1. what is the Laplace 
Transform and its 
properties.

2. what is the Fourier 
Transform.

3. what is the Fourier Series.

Figure 3.1 Pierre-Simon, marquis de Laplace.

French mathematician and astronomer. He pioneered the Laplace Transform and is often called French Newton. 
He is definitely one of the most important scientists of all time.

Mathematical Tools
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𝔏{ f (t)} = F(s) = ∫
∞

−∞
f (t)e−stdt 

where s is a complex variable given by s = σ + jω. You may find 
the above expression called the “Bilateral Laplace Transform” in 
some books.

Example
! Take the function f (t) = sin(ω0t)u(t)  where u(t)  is  the Heavi-
side step function defined by

u(t) = {1 if t ≥ 0
0 if t < 0

 

! Therefore,  f (t)  is  a sine function of unitary amplitude that 
only exists for values of t such that t > 0 , as shown in the figure 
below.

! The Heaviside step function is an useful tool in circuit the-
ory, because many signals only exist after a certain point in time 
or until a certain point. Manipulating the Heaviside step function 
is a simple way of modeling those signals mathematically.

! Applying the Laplace Transform equation above, we have:

F(s) =
∞

∫
−∞

sin(ω0t)u(t)e−stdt 

! From the definition of the Heaviside step function, we can 
simplify that to:

F(s) =
∞

∫
0

sin(ω0t)e−stdt 

! It can be shown (do it!) that the above integral resolves into
∞

∫
0

sin(ω0t)e−stdt = ( sest sin(ω0t)
s2 + ω2

0
−

ω0est cos(ω0t)
s2 + ω2

0 )
∞

0
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! Evaluating both expressions at infinity leads to zero terms, 
as does the sine term evaluated at t = 0 . The only remaining term 
is, therefore,

F(s) =
ω0est cos(ω0t)

s2 + ω2
0 t=0

=
ω0

s2 + ω2
0

 

! Now that we have wetted our feet on calculating an exam-
ple of Laplace Transform, let us summarize the properties avail-
able to us. Take note that most of these properties follow from the 
definition of  the transform and the properties of  integrals,  and 
they are summarized here for ease of access only.

! Now, let us present a few useful known transforms.

Fourier Transform
The Fourier Transform is another widely used mathematical tool 
to solve differential equations and analyze functions by express-
ing them as a series of modes of vibrations (frequencies), whereas 
the Laplace Transform expresses them as a superposition of mo-
ments, which is more general.

! Mathematically, the Fourier Transform is a restriction of the 
Laplace  Transform  to  the  imaginary  axis,  that  is,  whereas  the 
Laplace  Transform maps a  real-valued function in  the  time do-
main  to  a  complex-valued  function  in  s-domain,  the  Fourier 
Transform maps a real-valued function in the time domain to a 
complex-valued function in the frequency domain, or ω-domain. 
Any result for the Laplace Transform can be carried over to the 
Fourier Transform by making the restriction

s = jω 

Fourier Series
In the case of a periodic function of time, the Fourier Transform 
can be simplified into a series of oscillating functions (usually si-
nusoidal), instead of a continuous function of angular frequency. 
Mathematically, this means that instead of an integral over all fre-
quencies, the time-domain function can be expressed as a summa-
tion over the discrete frequencies of the oscillating functions, that 
is,
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f (t) =
∞

∑
−∞

ake
j2kπ t

T  

where ak are called the Fourier Series Coefficients and are defined 
by 

ak =
1
T ∫T

f (t)e−jkω0tdt =
1
T ∫T

f (t)e
−j2kπ t

T dt 

where ω0 is the fundamental frequency and T is the fundamental 
period associated with that frequency.

! There is an equivalent, more intuitive form of the Fourier se-
ries expansion. It is

f (t) = c0 +
∞

∑
n=1

[an cos(nωt)] +
∞

∑
n=1

[bn sin(nωt)] 

where

c0 =
1
T ∫

T

0
f (t)dt 

an =
2
T ∫

T

0
f (t)cos(nωt)dt 

bn =
2
T ∫

T

0
f (t)sin(nωt)dt 

or, equivalently,

f (t) = c0 +
∞

∑
n=1

[cn cos(nωt − ϕn)] 

where cn = a2
n + b2

n  and ϕn = arctan(bn /an).

! All representations are equivalent. One should use the one 
that one fells most comfortable with, either the complex exponen-
tials or the cosines.

Example
As  an  example,  let  us  calculate  the  Fourier  Series  of  a  square 
wave with period T and amplitude A. That is, 

f (t) =
A for 0 < t < T

2

0 for  T2 < t < T
 

In this animation, we have the series varying from 0 to 15 components of 
frequency. Note that, in this case, the summation is going up to 30 be-
cause all the even components are zero. This happens because the square 
wave itself is an odd function.

Movie 3.1 A square wave’s Fourier Series plot.
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! To specify this function Fourier Series, we need to find all its 
coefficients, i.e., an, bn and c0.

c0 =
1
T ∫

T
2

0
Adt =

A
2

 

an =
2
T ∫

T
2

0
A cos(nωt)dt =

2A
nωT

sin ( nωT
2 ) 

bn =
2
T ∫

T
2

0
A sin(nωt) =

2A
nωT (1 − cos ( nωT

2 )) 

! It is interesting to note that ωT = 2π, thus

an =
A
nπ

sin(nπ) = 0 

bn =
A
nπ [1 − cos(nπ)] 

! Consequently,

f (t) =
A
2

+
A
π

∞

∑
n=1

[(1 − cos(nπ)) sin nωt] 

which is the final form for the square wave’s Fourier Series.

A Practical Problem: Gibbs Phenomenon
Discovered independently at the end of the 19th Century by Eng-
lish  mathematician Henry Wilbraham and American scientist  Jo-
siah Williard Gibbs, the Gibbs phenomenon is a peculiar problem 
that arises in practical implementations of Fourier series of piece-
wise continuous functions - that is, functions that show discontinui-
ties in a given number of points, like the square wave studied in 
the previous example. 

! The phenomenon consists of an overshoot in the elements of 
the  series  around discontinuities,  which does  not  die  out  as  fre-
quency  increases,  instead  staying  constant  and  approximately 
equal to 0.09% of the function's amplitude. 

! Recall, from your studies in Calculus, that a finite sum of con-
tinuous functions yields a continuous function. This does not hold 
with an infinite sum, so that the full Fourier series, taking infinite 
terms into consideration, can reproduce the square wave perfectly. 
When taking only a finite partial sum, however, the result must 
still be continuous, and so the function develops an overshoot at 
both sides of the point where there should be a discontinuity, while 
converging to the midpoint of the jump in the discontinuity itself, 
regardless of what the actual value of the original function is. 

! In  signal  processing  theory,  the  Gibbs  phenomenon oscilla-
tions are explained as ringing or ringing artifacts. It is important 
for both signal processing and practical applications of circuit the-
ory, as there is no such thing as taking infinite terms in the real 
world.

! The full mathematical description of the Gibbs phenomenon 
is not a part of the scope of this book, and thus we leave this short 
entry as an informative section on the subject, not a full-fledged ex-
planation. 
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Gibbs Phenomenon

Interactive 3.1 In this interactive, you can see a square wave approximated using 1000 sinusoidal components.
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SECTION 2

We have studied linear circuits in the previous 
chapter. Recall that resistive circuits are easier to 
work with than circuits  with inductors and ca-
pacitors,  for  they are  characterized by an alge-
braic  equation  rather  than  a  differential  equa-
tion. As is usual in Mathematics,  then, we ask 
the  question:  is  there  a  way  to  generalize  the 

treatment given to resistive circuits to all linear 
circuits?

! The answer is yes, through the concept of 
impedance.  While  resistance  is  a  real-valued 
property of some physical elements, impedance 
is  the  complex-valued  generalization  of  resis-
tance that exists for all  linear elements,  includ-

What you will learn...

1. the mathematical definition 
of impedance.

2. the impedance of previously 
studied linear elements.

Figure 3.2 A second order circuit consisting of three impedances.

In the schematic above, you can see a RLC series circuit. The elements, however, are not being identified with 
their conventional metrics. Here, we are using their impedances.

Impedance
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ing capacitors and inductors. By using impedances, we transform 
a linear  circuit's  differential  equations into algebraic  equations, 
with the trade-off that now we must make use of complex analy-
sis instead of dealing only with real numbers.

! The mathematical definition of impedance (symbol: Z) is the 
same as that of resistance, that is, an element's impedance is the 
ratio  of  the voltage across  it  to  the current  flowing through it. 
However, recall that we want impedance to be a complex-valued 
number, and that we want it to have the ability to turn differen-
tial  equations into algebraic  equations.  We have learned in the 
previous section about the Laplace and Fourier transforms - and 
luckily, they both have these two properties.

! Therefore, we define impedance as the ratio of the Laplace 
transform of the voltage across an element to the Laplace trans-
form of the current flowing through it, or

Z =
𝔏{v}
𝔏{i}

 

Examples
First, let us calculate the impedance for the simple linear elements 
we are interested in: the resistor, the capacitor and the inductor.

! Let us start with the resistor, as its impedance is a direct re-
sult. Since an ideal resistor's resistance is invariant with time, it fol-
lows from the definition of the Laplace Transform that

ZR =
V(s)
I(s)

= R 

! For the capacitor, recall that the current through its terminals 
was found to follow the equation

iC(t) = C
dvC(t)

dt
 

! By applying the Laplace Transform to both sides of the equa-
tion and using the transform's properties, we find:

IC(s) = sCVC(s) 

! Therefore, we have that the impedance of the capacitor is 
given by:

ZC =
VC(s)
IC(s)

=
1

sC
 

! For the inductor, recall that we have

vL(t) = L
diL(t)

dt
 

! Likewise, by applying the Laplace Transform we obtain

VL(s) = sLIL(s) 

and thus

ZL =
VL(s)
IL(s)

= sL 
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SECTION 3

Overview
Linear systems have the interesting property that 
their response to stimuli is given by the convolu-
tion  of  the  stimulus  itself  and  the  system's  re-
sponse to an unitary impulse.

! That is, if h(t) is the response of the system 
to an input signal given by the impulse function 
δ(t), then the generic response y(t) to a generic in-
put u(t) is given by

y(t) = ∫
t

0
u(τ)h(t − τ)dτ 

What you will learn...

1. the mathematical definition 
of transfer function.

Figure 3.3 Transfer function block diagram.

In the image above, you can see the usual representation for a transfer function in a schematic.

Transfer Function
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! While this is an interesting property, calculating the convolu-
tion integral can be hard, so it isn't a particularly useful property.

! Thankfully,  however,  we  can  also  take  advantage  of  the 
Laplace and Fourier Transforms that we learned about earlier in 
this  chapter,  and  their  property  that  convolutions  in  the  time-
domain become products in the transform's domain, which are sim-
ple to calculate. Using the Laplace Transform, for example, we thus 
have

Y(s) = H(s)U(s) 

where Y(s)  is the transform of the system's output (that we may 
want to convert back to the time domain for analysis, with the help 
of transform tables for example), U(s) is the transform of the sys-
tem's input, whatever it may be, and H(s) is the transform of the im-
pulse response of the system.

! The transform of the impulse response is called the transfer 
function of the system, because it is what “transfers” the informa-
tion from the input to the output in the previous equation.

Example
As an example, let us take the simple RC circuit we studied in pre-
vious chapters.  Let  us  say that  we are  interested in the voltage 
across the capacitor, and therefore we want to discover the transfer 
function that relates that particular output with the voltage input 
given by a generic voltage source, given by v0(t).

! Therefore, for this example, our input signal U(s) is given by 
V0(s), and our output signal Y(s) is given by the voltage drop across 
the capacitor, VC(s).

! To find the transfer function of the system, we must find a re-
lation between VC(s)  and V0(s).  Remember that,  by using imped-
ances, we can treat linear circuits as if they were resistive. Notice, 
then, that our RC circuit can be thought of as a voltage divisor. 
Therefore, we can write

VC(s) =
ZC

ZC + ZR
V0(s) 

! We thus have

H(s) =
Y(s)
U(s)

=
VC(s)
V0(s)

=
ZC

ZC + ZR
 

! Remembering the results for the impedances of both the ca-
pacitor and the resistor, we can substitute to find

H(s) =
1

sC
1

sC + R
=

1
1 + sRC

 

! Equivalently, but using Fourier instead of Laplace Transform,

H(ω) =
1

jωC
1

jωC + R
=

1
1 + jωRC
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SECTION 4

Overview
You  should  recall  from  your  Linear  Algebra 
studies the concept of eigenvectors and eigenval-
ues. As a quick recap, if you have an operator A 
in  a  vector  space,  eigenvectors  are  those  ele-
ments  of  the  given  vector  space  which  suffer 

only a contraction or expansion when operated 
by A , that is, there is only a change in the ampli-
tude of vector, and not in its direction. In mathe-
matical terms, this is expressed as

A v = λ v  

What you will learn...

1. what is sinusoidal steady 
state.

2. how can it help us solve 
circuits with complex inputs 
easily.

Figure 3.4 Sinusoidal waves.

In the image above, you can see four sinusoidal waves of different frequencies. They represent the first four har-
monics of the Fourier Series of the square wave.

Sinusoidal Steady State
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where v  is the eigenvector, and λ is the eigenvalue associated to 
it.

! This concept can be extended to linear systems as a whole, 
though instead of a vector space, we are now working on a func-
tion space. By making an analysis of linear systems, we discover 
that their eigenfunctions are complex exponentials, that is, sinu-
soidal functions. This means that, if the input of a linear system is 
a sinusoidal  function,  it's  output will  also be a sinusoidal  func-
tion, properly multiplied by its related eigenvalue.

! We have learned about transfer functions in the previous sec-
tion. Interestingly enough, it can be shown that, if the input of a 
linear system is a complex exponential of angular frequency ω0, 
then the eigenvalue associated with it is simply the transfer func-
tion of the system evaluated at the point ω = ω0.

Analysis of Generic Signals
As we have seen in this section, linear systems that have sinusoi-
dal inputs behave in a very predictable manner. Their outputs are 
also sinusoidal with the same frequency varying only with ampli-
tude and phase.

! We  have  also  discussed  what  is  called  Sinusoidal  Steady 
State that occurs when the input is sinusoidal and the transients 
are  no  longer  relevant.  The  question is:  can  we also  achieve  a 
state like that in a circuit with a non-sinusoidal input?

! Gladly,  we can.  Remember that  most  signals  that  are  rele-
vant  to  us  can  be  written  as  an  infinite  sum of  sines/cosines. 
Thus, based on the superposition principle, the output will also 

be a infinite sum of sines/cosines modulated in amplitude and in 
frequency due to the presence of an impedance.

! Lets deal with this new technique by applying it to a simple 
example: the RL circuit with a square wave with amplitude V0, pe-
riod T and duty factor 𝒟 as the input voltage. Please refer to the 
glossary if you do not know the concept of duty factor. Also, re-
member that we are considering steady state and, thus, all tran-
sients have already passed.

! We know, from our studies of Fourier Series that 

v(t) = c0 +
∞

∑
n=1

[cn cos(nωt − ϕn)] 

where cn = a2 + b2 and ϕn = arctan(bn /an). Remember that

an =
2
T ∫

T

0
f (t)cos(nωt)dt 

bn =
2
T ∫

T

0
f (t)sin(nωt)dt 

c0 =
1
T ∫

T

0
f (t)dt 

! The plan is to write in the Fourier Series form and interpret 
the result based on it. You shall see that the analysis is much sim-
pler  depending  on  the  goal  of  it.  In  our  case,  where  v(t)  is  a 
square wave, we have:

an =
2V0

T ( sin(nωt)
nω )

𝒟T

0

=
2V0

nωT
sin(nω𝒟T ) =

V0

πn
sin(nωt0) 

where t0 is the instant when the square wave goes from V0 to zero. 
Similarly,
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bn =
2V0

T (−
cos(nωt)

nω )
𝒟T

0

=
V0

πn (1 − cos(nωt0)) 

c0 =
1
T ∫

𝒟T

0
V0dt = 𝒟V0 

! Finally, we need to find cn and ϕn in order to get an expres-
sion of the desired form.

cn = a2
n + b2

n =
2V0

πn
sin ( nωt0

2 )  

ϕn = arctan ( bn

an ) =
1 − cos(nωt0)

sin(nωt0)
 

! Now that we have written the voltage in the Fourier Series 
manner, we can easily find the current through the system or any 
other thing.

! To  find  the  current,  we  use  Ohm’s  Law  that  is  given  by 
I = V/Z where Z is the equivalent impedance of the circuit. In this 
case Z = R + jωL  because the inductor and the resistor are in se-
ries. Remember that we are dealing with a RL circuit.

v(t) = c0 +
∞

∑
n=1

[cn cos(nωt − ϕn)] 

v(t) = 𝒟V0 +
2V0

π

∞

∑
n=0

1
n

sin ( nωt0
2 ) cos (nωt −

1 − cos(nωt0)
sin(nωt0) )  

! In order to find the current, remember that a complex num-
ber can be interpreted as a modulus and a phase. For example, if 
Z = a + jb, |Z | = a2 + b2 and ϕZ = arctan(b /a).

! We need to divide the voltage by the impedance. And that 
implies that we need to divide the modulus of the voltage by the 
modulus of the impedance. Also, we need to phase-shift the the 
oscillating parts  of  the voltage by the phase of  the impedance. 
This yields:

i(t) =
𝒟V0

R
+

2V0

π

∞

∑
n=0

sin ( nωt
2 )

n R2 + n2ω2L2
cos (nωt −

1 − cos(nωt0)
sin(nωt0)

− arctan ( nωL
R ))  

If ωL ≫ R, then R2 + n2ω2L2 → nωL making the current 

i(t) =
𝒟V0

R
+

2V0

πωL

∞

∑
n=0

sin ( nωt
2 )

n2
cos (nωt −

1 − cos(nωt0)
sin(nωt0)

− arctan ( nωL
R ))

! This result is filled with relevant information about our an-
swer. From it we know that the current has a DC component and 
infinite oscillating components. We know that the higher the com-
ponent’s frequency, the smaller its amplitude.

! If we want a purely DC current, we can either increase the 
frequency of the input’s square wave or we can increase the in-
ductance of the inductor.
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In the previous chapter, you learned fundamental concepts related to frequency such as impedance and Fourier Series. 
In this chapter, we will put them to use in order to efficiently analyze we are called filters. Filters are devices (in our 
case,  circuits)  that  remove unwanted components from our signals.  For example,  imagine that  we use a circuit  to 
remove noise from a voltage signal. This circuit would be called a noise-filter.
In the image, a time-frequency representation of a signal. It is called a spectrogram.

CHAPTER 4
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SECTION 1

Overview
In the previous chapter, you learned fundamen-
tal concepts related to frequency such as imped-
ance and Fourier Series. In this chapter, we will 
put them to use in order to efficiently analyze 
what are called filters.

! Filters  are  devices  (in  our  case,  circuits) 
that remove unwanted components from our cir-
cuits. For example, imagine that we use a circuit 
to remove noise from a voltage signal. This cir-
cuit would be called a noise-filter.

! This text will  be limited to linear circuits 
that use energy storage elements such as capaci-

What you will learn...

1. what is a first order filter.
2. a RC arrangement for a low 

pass filter.
3. a RC arrangement for a high 

pass filter.

Figure 4.1 A low-pass filter and a high-pass filter.

In the image you can see a low-pass filter on the left and a high-pass filter on the right. Note that by simply rear-
ranging the components, we can completely change the functionality of a circuit.

First Order Filters
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tors and inductors to perform the filtering. In this section we will 
also limit our study to circuits that have only one independent 
storage element. They are called First Order Filters.

Capacitive First Order Filter
The Idea
This first filter that we are going to describe is an old familiar: the 
RC circuit. The capacitor, here, will play an important role in re-
moving unwanted high-frequency components of our signals.

! Its principle of operation is based on the fact that the capaci-
tor does not charge nor discharges instantly. The higher the 
time it takes to charge/discharge the lower the frequency 
components it allows to “pass” as we will discuss soon.

! Imagine that we have an input signal that varies really 
slowly in time when compared to to the time the ca-

pacitor takes to charge. We can intuitively imagine 
that  the charge in the capacitor will  follow the 

changes in the input signal and, thus, the out-
put will display approximately the input 

signal.

! Now, imagine that the 
signal  varies  at 

high  frequency.  In  this  case,  the  capacitor  will  not  be  able  to 
charge/discharge  to  perfectly  follow  the  changes  in  the  input 
and, thus, nothing will be reflected at the output node.

! Based on these two intuitive analysis, we can argue that the 
RC circuit acts by allowing low frequency signals to be transmit-
ted to the output while blocking high frequency signals. That is, 
the capacitor acts as an open circuit for low frequencies and as a 
short circuit for high frequencies. Thus it operates as a Low-Pass 
Filter (LPF).

The Math
Now that we have gotten the gist of the circuit’s operation, lets 
do some math. Our goal is to find the output as a function of the 
input.  Note that,  as we are studying a filter,  the time response 
does not interest us anymore. Now, we will find the frequency re-
sponse.

! Except from the presence of the capacitor, this circuit looks 
like the voltage divider we talked about in the second chapter. 
We can, and will, treat this system as a voltage divider but using 
impedances.

! Thus, the voltage at the output is given by

Vo(ω) =
1

jωC
1

jωC + R
Vi(ω) ⟶ H(ω) =

Vo(ω)
Vi(ω)

=
1

1 + jωRC
 

!Note  that  we  can  verify  what  was 
previously  thought  regarding  the  fre-
quency of the inputs.
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lim
ω→0

H(ω) = 1 

lim
ω→∞

H(ω) = 0 

! Also, if we increase the value of the product RC we can see 
that H(ω) decreases faster with the increase of frequency.

! Again, inputs with frequencies close to zero appear at the 
output. On the other hand, inputs with high frequencies are cut. 
This behavior can be better grasped by checking the transfer func-
tion graph. Note that the graph depicts the absolute value of the 
transfer function (also called gain) given by

|H(ω) | =
1

1 + ω2R2C2
 

! In  some applications,  one  might  also  be  interested  in  the 
phase-shift applied by the filter. It it given by:

ϕH(ω) = − arctan (ωRC ) 

! A practical characteristic of filters is the cutoff frequency. It 
is defined as the frequency in which the power of the output de-
creases to half the power of the input.

! Since power is related to the square of the voltage, at the cut-
off frequency the voltage of the output will  have fallen by 2. 
Therefore, we can use the expression for the absolute value of the 
transfer function to find the cutoff frequency.

1

1 + ω2
c R2C2

=
1

2
⟶ ωc =

1
RC

 

Another Arrangement
Now suppose that we switch the position of the resistor and the 
capacitor.  If  that  is  the case,  the expression for  the output will 
change a little and will completely change the behavior of this fil-
ter of ours.

! The voltage at the output will be given by

Vo(ω) =
R

1
jωC + R

Vi(ω) ⟶ H(ω) =
Vo(ω)
Vi(ω)

=
jωRC

1 + jωRC
 

! Note that the limits are interchanged when compared to the 
previous arrangement.

lim
ω→0

H(ω) = 0 

lim
ω→∞

H(ω) = 1 

! Due to this different behavior the filter operates as a High-
Pass  Filter  (HPF).  That  is,  the  signal’s  components  at  high  fre-
quencies are attenuated while low frequency components are not.

! The expression for gain and phase-shift are given by:

|H(ω) | =
ωRC

1 + ω2R2C2
 

ϕH(ω) =
π
2

− arctan (ωRC ) 

Lab Experiment
In this experiment we see the practical behavior of a low pass fil-
ter and a high pass filter. We will be using a 1.2 kΩ resistor and a 
5.6 nF capacitor.
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!

! With this setup, we have a cutoff frequency of 

fc =
1

2πRC
≈ 23 kHz 

! In the low frequency range for Movie 4.1, the output (green 
waveform) is really similar to the input (yellow waveform). How-
ever, the higher the frequency, the farther apart they are with re-
gards to amplitude and phase.

! In Movie 4.2, we have the opposite behavior. We start at a 
high frequency value, where both waveforms practically coincide 
and,  and  begin  to  decrease  the  frequency.  The  lower  the  fre-
quency, the farther apart they are with regards to amplitude and 
phase.

! Take note that the horizontal scale has been adjusted during  
both recordings to allow better visualization of the waveforms. 
The frequency, however, was increased continuously.

Movie 4.1 Oscilloscope measurement for LPF input and output.
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SECTION 2

Overview
In the previous section we discussed first order 
filters and studied some examples. As of now, the 
focus will be second order filters. As you might 
be  expecting,  those  are  filters  that  are  imple-
mented using two independent storage elements.

! They are needed for many applications be-
cause  of  their  versatility.  Using  them  makes  it 
possible to implement filters with more complex 
transfer functions. Such goal would not be accom-
plishable with the use of only one capacitor or in-
ductor.

What you will learn...

1. what is a second order filter.
2. a RLC arrangement for a 

band pass filter.
3. a RLC arrangement for a 

band stop filter.

Figure 4.2 A band-pass and a band-stop filter.

In the image you can see a band-pass filter on the left and a band-stop filter on the right. Note that by simply rear-
ranging the components, we can completely change the functionality of a circuit.

Second Order Filters
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! In this section, we are going to discuss two common types of 
filters.  First the band-pass filter (BPF).  After,  the band-stop filter 
(BSF).

Band-Pass Filter
The Idea
This first filter that we are going to describe is an old familiar: the 
RLC series circuit. Both the capacitor and the inductor, here, will 
play  an  important  role  in  removing  unwanted  low  and  high-

frequency components of our signals.

!It  is  based  on  the  fact  the  the 
capacitor  filters  out  the  high-
frequency components of  our sig-
nals while the inductor filters the 

low-frequency  ones.  However, 
to achieve this behavior we need 
to use the voltage across the re-

sistor as the output. If we use 
another  voltage,  we  will 

have a filter with a differ-
ent behavior.

The Math
Our goal is to find the output as a function of the input. Note that, 
as we are studying a filter, the time response does not interest us 
anymore. Now, we will find the frequency response.

! Except from the presence of the capacitor and the inductor, 
this circuit looks like the voltage divider we talked about in the sec-
ond chapter. We can, and will, treat this system as a voltage divider 
but using impedances.

! Thus, the voltage at the output is given by

Vo(ω) =
R

R + 1
jωC + jωL

Vi(ω) 

which gives us

H(ω) =
Vo(ω)
Vi(ω)

=
jω

jω + 1
RC − L

R ω2
 

! Note  that  we  can  verify  what  was  previ-
ously thought  regarding the frequency of  the 
inputs.

lim
ω→0

H(ω) = 0 

lim
ω→∞

H(ω) = 0 

! It  is  harder  to  do  an  intui-
tive  parameter  analysis  in 
this case because we are not 
dealing  with  first  order  ex-
pressions  anymore.  To  give 
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you a better perspective on what happens if we change the differ-
ent components for this filter, check the transfer function graph.

! Note that the graph depicts the absolute value of the trans-
fer function (also called gain) given by

|H(ω) | =
ω

ω2 + ( 1
RC − L

R ω2)
2

 

! In  some applications,  one  might  also  be  interested  in  the 
phase-shift applied by the filter. It it given by:

ϕH(ω) =
π
2

− arctan
ω

1
RC − L

R ω2
 

! As we did for the first order filters, let us calculate the cutoff 
frequency which is the frequency in which power drops by half.

ωc

ω2
c + ( 1

RC − L
R ω2

c )
2

=
1

2
 

ωc =
C R2C + 4L ± RC

2LC
 

! Note  that  we have  two different  values  for  the  cutoff  fre-
quency as we are dealing with a second order BPF.

Band-Stop Filter
The Idea
This second filter that we are going to describe also is an old fa-
miliar: the RLC series circuit. However, the key player here is the 
resistor.

! You can recall that in the previous filter, we took the output 
from the resistor and got the band-pass effect we wanted. Now, 
the opposite is wanted. Thus, we take the output from both the 
capacitor and the inductor.

The Math
Our goal is to find the output as a function of the input. Again, we 
are studying a filter, thus the time response does not interest us 
anymore. We should find the frequency response.

! Except from the presence of the capacitor and the inductor, 
this circuit looks like the voltage divisor we talked about in the sec-
ond chapter. We can, and will, treat this system as a voltage divider 
but using impedances.

! Thus, the voltage at the output is given by

Vo(ω) =
1

jωC + jωL

R + 1
jωC + jωL

Vi(ω) 

which gives us
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H(ω) =
Vo(ω)
Vi(ω)

=
1

LC − ω2

1
LC − ω2 + j R

L ω
 

! Note  that  we  can  verify  what  was  previously  thought  re-
garding the frequency of the inputs. We surely cannot know for 
sure what happens in between those limits.  But at least we are 
right regarding the limits.

lim
ω→0

H(ω) = 1 

lim
ω→∞

H(ω) = 1 

! It  is  harder  to  do  an 
intuitive  parameter  analy-
sis in this case because we 

are not dealing with first or-
der expressions anymore. To give you a better per-

spective on what happens if we change the different compo-
nents for this filter, check the transfer function graph.

! Note that the graph depicts the absolute value of the trans-
fer function (also called gain) given by

|H(ω) | =

1
LC − ω2

( 1
LC − ω2)

2
+ ( R

L ω)
2

 

! In  some applications,  one  might  also  be  interested  in  the 
phase-shift applied by the filter. It it given by:

ϕH(ω) = − arctan
R
L ω

1
LC − ω2
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