
5

SCS Deployment Infrastructure in Use

Currently, an increasing adoption of cloud computing resources as the

base to build IT infrastructures is enabling users to build flexible, scalable,

and low-cost production environments. For example, consumption of CPU pro-

cessing and manipulation of large data sets are easy tasks using computing and

storage services, respectively. Applications like MapReduce fulfill these charac-

teristics because it requires the processing of large storage files as input data.

Also, its distributed architecture allows us to experiment with different de-

ployment configurations. This chapter focuses on the use of SCS Deployment

Infrastructure using cloud infrastructures as the target environment. We de-

ployed a SCS MapReduce application on the cloud where the MasterNode and

each WorkerNode were executed on virtual machine instances. We describe in

section 5.1 the architecture and main concepts of MapReduce programming

model and describe the architecture of a SCS component-based MapReduce

application. Section 5.2 explains the necessary steps to deploy a SCS MapRe-

duce application on cloud infrastructures. Finally, section 5.3 describes some

useful considerations that should be taken into account at the moment when

an application is deployed.

5.1 MapReduce Application

MapReduce is a programming model for distributed and parallel pro-

cessing, and it generates large data sets [Dean04]. MapReduce allows users to

hide technical details of distributed processing, parallelization, fault-tolerance,

data distribution, and load balancing, making it a popular library for pro-

grammers without skills in distributed and parallel programming. MapReduce

defines two main functions map and reduce, both are written by the users.

The map function processes a key/value pair as an input and produces a set

of key/value pairs or intermediate values. The reduce function receives a key

and merges all intermediate values associated with this key, generating a new

list of values. MapReduce implementations are designed to be executed over a

large cluster of physical machines, and should support many terabytes of input

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 66

data.

map :: (key1, value1) → list(key2, value2)

reduce : (key2, list(values2)) → list(value3)

Figure 5.1 shows an architectural overview of MapReduce. First, the

MapReduce framework splits the input files into M pieces of 16MB to 64MB,

and then many copies of the program are made to the cluster. A copy called

Master assigns tasks map or reduce for other copies called Workers. There

are M map tasks and R reduce tasks. All Workers execute the map tasks by

reading their input split assigned and generating intermediate data distributed

into R regions on the local disk. Later, workers reduce over the intermediate

data generating a set of output files.

Figure 5.1: MapReduce Architecture

This work uses a WordCount application, this is an implementation

of MapReduce architecture built using SCS components [Fonseca09]. This

application allows us to count the number of words in an input set. Figure 5.2

displays its architecture, composed of Master, Worker, Scheduler, Reporter,

and Channel components. Master controls all the application executions, it

is connected with the Workers using a receptacle, and implements the facet

Master used to submit jobs. Workers are connected to a channel, and their

consumers are connected to the Master component. Workers use this channel

to notify the final status of a task. Scheduler is responsible to select workers

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 67

from a set of machines, it uses a RoundRobin approach. Reporter component

is used to register debugged messages.

Figure 5.2: A SCS Component-based MapReduce Framework Architecture

5.2 Deploying a SCS-MapReduce on the Cloud

We explained the MapReduce application WordCount, therefore we have

all elements to complete our main objective, that is, to enable the deployment

of distributed component-based applications on cloud infrastructures. Figure

5.3 displays a flow diagram overview showing the components of the Deploy-

ment Infrastructure fulfilling the role of Platform as a Service(PaaS). The cloud

API allows us to consume Infrastructure as a Service(IaaS), and the MapRe-

duce application is intended to test our proposed architecture. The MapRe-

duce application is represented by a Master node, N Worker nodes, and a NFS

shared storage. To deploy the MapReduce application we use the mapreduce-

deployment script. Also, there are some considerations to take into account

before we execute an updated version of the mapreduce-deployment script. We

need to check our architecture configuration, policies, and the cloud computing

environment. An original version of the mapreduce-deployment script support-

ing a local-network as its target environment is displayed in appendix A.2.

Our first scenario for testing assumes the minimal configuration, as was

explained in subsection 4.3.2. We use all policies studied in section 4.3, thus we

use the cloud infrastructure policy displayed in 4.3, the platform policy spe-

cified in 4.4, the application policy 4.5, and the target environment policy

defined in 4.6. The application policy is necessary to update the deploy-

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 68

Figure 5.3: Deploying a SCS-based MapReduce Application on a Cloud Infra-
structure

ment script parameter with the mapreduce deployment.lua script. To start de-

ploying the SCS MapReduce application, we assume that the Deployment In-

frastructure is running, including the CIS server. We use Amazon Web Services

as the cloud infrastructure for our experiments, but it is nccessary to update

the security parameters located in the application policy. We use an updated

version of mapreduce-deployment script, which loads the policies and defines

the Master and Worker nodes. List 5.1 shows a segment code that operates

the options from ec2 instances policy, i.e., getting or running virtual machine

instances. List 5.2 displays the creation of the workers and their containers.

The complete code of our first test is showed in A.3.

Our second scenario assumes the Multi-Deployment Architectural config-

uration explained in subsection 4.3.2. Two or more deployment actors execute

their own Deployment Infrastructure(PaaS) and Target Environment(IaaS).

However they share the same Cloud Infrastructure Service requiring cloud re-

sources. We use the same policies as our first scenario, except the application

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 69

Listing 5.1: Getting or Running Virtual Machine Instances Metadata
1 . . .
2

3 −− I n s t a n t i a t i n g a c l o u d e n g i n e
4 c l o u d e n g i n e = CloudEng ine {}
5 −− One Master and Two Workers
6 l o c a l num i n s t ance s = 3
7

8 i f p o l i c y == ’ g e t t i n g ’ then

9 −− G e t t i n g VM I n s t a n c e s
10 vmIns tance s = c l o u d e n g i n e .
11 i n s t a n c e s [c l o u d e n g i n e : g e t c l o u d d e p l o y m e n t m o d e l ()] .
12 c l o u d c o n n e c t i o n : g e t i n s t a n c e s (num ins tances , num ins tances , p o l i c i e s)
13

14 e l s e i f p o l i c y == ’ r unn i ng ’ then

15 −− S t a r t i n g VM I n s t a n c e s
16 vmIns tance s = c l o u d e n g i n e .
17 i n s t a n c e s [c l o u d e n g i n e : g e t c l o u d d e p l o y m e n t m o d e l ()] .
18 c l o u d c o n n e c t i o n : r u n i n s t a n c e s (num ins tances , num ins tances , p o l i c i e s)
19 end

20

21 . . .

policy, because the current configuration is intended to be utilized byt two de-

ployment actors. They require deploying their applications on the same cloud

infrastructure. Code 5.3 and 5.4 show the application policies for the Word-

Count application, deployed by user a and user b, respectively. To avoid se-

curity problems each deployment actor needs to check and update the security

parameters from the ec2 creds policy, The cloud API manages the connections

with the cloud infrastructure. Specifically, the EucaEngine allows the deploy-

ment actors to set different access and secret keys. Finally, both deployment

actor A and deployment actor B are ready to execute the same mapreduce-

deployment script as the first scenario.

5.3 Final Considerations

We have a set of metadata from a pool of virtual machine instances as a

consequence of the adoption of cloud infrastructures as target environments.

However, currently we have not fully this metadata. Therefore, we could

take advantages of this metadata in several ways. For example, we could use

this information to obtain customized target environments, to address non-

functional application requirements, etc.

Our tests generate a set of log information, such as logs files from the

cloud infrastructure, cloud API, deployment infrastructure, and applications.

The log files of cloud API usually contain many useless data, especially when

deployment actors are using the cloud resources. Thus, to make the debugging

simple in advanced configurations of our architecture the support of other

monitoring tools is necessary.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 70

Listing 5.2: Creation of Containers and Workers
1 . . .
2

3 −−− Workers
4 workers , c o n t a i n e r s = {} ,{}
5 f o r i =2, num i n s t ance s do

6 c o n t a i n e r s [i] = p lan : c r e a t e c o n t a i n e r (” j a v a ”)
7 c o n t a i n e r s [i] : s e t i n s t a n c e (exNodes [i])
8 c o n t a i n e r s [i] : s e t p r o p e r t y (” c l a s s p a t h ” ,
9 SCS HOME . . ”/ l i b s / j a c o r b /\∗ : ” . . SCS HOME . .

10 ”/ l i b s /\∗ : ” . . SCS HOME . . ”/ l i b s / l u a j /\∗”)
11 worke r s [i] = p l an : c r ea te component ()
12 worke r s [i] : s e t i d (w o r k e r I d)
13 worke r s [i] : s e t c o n t a i n e r (c o n t a i n e r s [i])
14 worke r s [i] : s e t a r g s ({SCS HOME . .
15 ”/ s c r i p t s / e x e c u t e /mapReduce . p r o p e r t i e s ” ,
16 exNodes [i] : g e t h o s t () . i p })
17 worke r s [i] : a d d c o n n e c t i o n (” Channel ” , channe l , ” EventChanne l ”)
18 worke r s [i] : a d d c o n n e c t i o n (” R e p o r t e r ” , r e p o r t e r , ” R e p o r t e r ”)
19 master : a d d c o n n e c t i o n (” WorkerServant ” , wo rke r s [i] , ” WorkerServant ”)
20 end

21

22 . . .

Listing 5.3: Application Policy to deploy WordCount by Deployment Actor A
1 −−− MapReduce A p p l i c a t i o n
2 mapreduce app = {
3

4 name = ”WordCount” , v e r s i o n = ” 1 .0 ” , au tho r = u s e r d a t a . u s e r a ,
5 d e p l o y m e n t s c r i p t = ”/home/ u s e r a / p r o j e c t s / scs−dep l oy sy s t em / s r c / l u a ” . .
6 ”/ s c s /demos/ d e p l o y e r / mapreduce−deployment . l u a ”
7 }
8

9 −− Deployment Actor A
10 d e p l o y m e n t a c t o r = {
11

12 −− User Data
13 u s e r d a t a = u s e r a ,
14

15 −−− AWS C r e d e n t i a l s f o r User A
16 e c 2 c r e d s = { . . . } ,
17

18 }
19

20 −−− Target Env i ronments
21 t a r g e t e n v i r o n m e n t = {
22

23 p o l i c y = ’ c l o u d i n f r a s t r u c t u r e ’ ,
24 }
25

26 −−− A p p l i c a t i o n s to Deploy
27 a p p l i c a t i o n s t o d e p l o y = {
28

29 −−− A p p l i c a t i o n 1
30 a p p l i c a t i o n 1 = {
31

32 a p p l i c a t i o n = mapreduce app ,
33 d e p l o y m e n t a c t o r = dep loyment ac to r ,
34 t a r g e t e n v i r o n m e n t = t a r g e t e n v i r o n m e n t ,
35 } ,
36 }

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 5. SCS Deployment Infrastructure in Use 71

Listing 5.4: Application Policy to deploy WordCount by Deployment Actor B
1 −−− MapReduce A p p l i c a t i o n
2 mapreduce app = {
3

4 name = ”WordCount” , v e r s i o n = ” 1 .0 ” , au tho r = u s e r d a t a . u s e r a ,
5 d e p l o y m e n t s c r i p t = ”/home/ u s e r b / p r o j e c t s / scs−dep l oy sy s t em / s r c / l u a ” . .
6 ”/ s c s /demos/ d e p l o y e r / mapreduce−deployment . l u a ”
7 }
8

9 −− Deployment Actor B
10 d e p l o y m e n t a c t o r = {
11

12 −− User Data
13 u s e r d a t a = use r b ,
14

15 −−− AWS C r e d e n t i a l s f o r User B
16 e c 2 c r e d s = { . . . } ,
17

18 }
19

20 −−− Target Env i ronments
21 t a r g e t e n v i r o n m e n t = {
22

23 p o l i c y = ’ c l o u d i n f r a s t r u c t u r e ’ ,
24 }
25

26 −−− A p p l i c a t i o n s to Deploy
27 a p p l i c a t i o n s t o d e p l o y = {
28

29 −−− A p p l i c a t i o n 1
30 a p p l i c a t i o n 1 = {
31

32 a p p l i c a t i o n = mapreduce app ,
33 d e p l o y m e n t a c t o r = dep loyment ac to r ,
34 t a r g e t e n v i r o n m e n t = t a r g e t e n v i r o n m e n t ,
35 } ,
36 }

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

