
4

SCS Deployment Infrastructure on

Cloud Infrastructures

We defined the deployment process as a set of inter-related activities to

make a piece of software ready to use. To get an overview of what this means in

practice we explain briefly a basic scenario of the deployment of a distributed

component-based application, managed by a deployment infrastructure, on a

cloud infrastructure. Our scenario considers a distributed component-based ap-

plication, an executed deployment infrastructure , and a cloud infrastructure.

The deployment process uses planning and installation activities. A descrip-

tion file describes the computational resources requirements for the application.

Also, the deployment infrastructure is aware within the availability of the cloud

infrastructure. The planning activity loads the description file and send a re-

quest to the cloud infrastructure. The installation activity waits for access to

the cloud infrastructure and deploys the application on it. This example hides

many challenges and research opportunities of both the deployment process

and cloud infrastructures.

This chapter describes how we extended the SCS Deployment Infrastruc-

ture to support the deployment on cloud infrastructures. Section 4.1 describes

the challenges faced in the development of this work. Section 4.2 describes the

elements developed to enable the deployment on cloud infrastructures. Section

4.3 explains the configurations of the SCS Deployment Infrastructure on the

cloud, and our proposed architecture.

4.1 Challenges

As described in subsection 2.2.1, a generic deployment process of distrib-

uted component-based applications can be divided into ten activities. We start

this section within an overview of how deployment activities could be exten-

ded to use cloud infrastructures. Figure 4.1 shows a generic deployment pro-

cess of distributed component-based applications designed to consume cloud

resources. We propose the use of cloud infrastructures for both, the deployment

infrastructure and the target environment. The packaging activity could start

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 42

up or reuse a virtual machine instance to run the packager service. Publishing,

installing, updating, and retiring activities make use of a repository service,

where component installation packages are stored. This component repository

service could execute in its own virtual machine instance. The installing activ-

ity uses a cloud infrastructure as the target environment, and an installation

configuration can range from a high-level description to a very customized and

detailed configuration.

Figure 4.1: A Generic Deployment Process of distributed Component-based
Applications on Cloud Infrastructures

The configuring and activating activities need to access to the target en-

vironment to make the application ready to use. Deactivating and uninstalling

activities make the application unavailable and remove all components from

the target environment, respectively. The retiring activity retires the compon-

ents from the Repository Service.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 43

We use the SCS Deployment Infrastructure to deploy distributed

component-based applications. Thus, our first task is to extend the planning

activity to support the use of cloud infrastructures as a target environment. In

addition to extending planning activity, we could also execute the packaging

and publishing activities in the same infrastructure. This means deploying the

Deployment Infrastructure on a cloud infrastructure, thereby obtaining an ex-

perimental Platform as a Service(PaaS). We describe in the next subsections

the specific challenges to extend our SCS Deployment Infrastructure for dis-

tributed component-based applications on the cloud.

4.1.1 Target Environment Requirements

Deployment actors need to define a target environment to deploy their

applications. Hence, we need to provide a way to specify a custom target

environment that takes advantages of cloud resources. To support several

cloud infrastructure configurations we need to set at least three parameters:

a cloud deployment model, a cloud platform, and a cloud initial state. For

example, if a cloud administrator has a private cloud available then he could

define a minimal configuration as follows: set a deployment model parameter

to private; set a cloud platform parameter to the type of cloud platform

installed or utilized; and set parameters related to the cloud platform such as

instances types, virtual machine images, security, etc. To specify a cloud-based

customized target environment we could reuse previous parameters. Therefore,

we need to organize these parameters and propose a flexible method to write

groups of parameter/value.

4.1.2 Cloud Infrastructure API

Building a flexible and scalable cloud API is currently a challenge because

an official cloud API standard does not yet exist. The development of cloud

APIs has been highly discussed because many organizations and consortiums

are trying to determine a standard cloud API specification. Therefore, we need

to design and develop a cloud API compatible with current cloud platforms

and the SCS Deployment Infrastructure.

4.1.3 User Management

User management is an authentication feature and a critical subject in

software systems. Cloud Computing needs a mature user management model

because features such as SLAs, billing, security, etc., share a complex model

and require an efficient user management. We identify this challenge because

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 44

deployment infrastructure does not consider any rule for managing users.

Therefore, we need to propose a user management model for the deployment

infrastructure, and map it to user management tools for cloud infrastructures.

4.1.4 Setting up a Cloud Computing Environment

Setting up a cloud computing environment could be a challenge, this

depends on the cloud software stack selected and our lefel of skills in technology

related to cloud computing. To install and configure a private cloud we need a

cloud platform. Today we have a list of open-source cloud platforms widely

acceptanced by users. In section 2.1.1 we studied four cloud deployment

models. Private and public clouds are basic forms of deployment models; hybrid

and community clouds are a combination of private and public cloud. With the

intention of building a flexible and scalable cloud platform, we aim to work

with both a private and public clouds. Thus, we need to set up at least an

operative private cloud and configure the access to a public cloud.

4.2 Cloud Resource Provisioning

In chapter 3 we explained the Deployment Infrastructure for SCS com-

ponents. We highlighted the DeployManager service, which is responsible for

instantiating and executing the deployment plans, containing references to

the applications, target environment, repository service, and packager service.

Later, these plans are executed on a local network. We added support to enable

the use of cloud resources for the target environment as well as the deploy-

ment infrastructure. To enable the deployment on cloud infrastructures, we

need access to a cloud platform using an appropriate cloud interface.

We have two options to start testing the consumption of cloud resources:

choose a cloud provider (public cloud) and request a cloud account, or set

up our own cloud infrastructure (private cloud). We decided to work with

both public and private clouds, these two options give more flexibility for

deployment actors to deploy applications. Although it implies more work, we

aim to get a combination of flexible and scalable multi-cloud infrastructures

using commodity hardware. Therefore, on the one hand, setting up and using

a private cloud will enable us to build a scalable cloud infrastructure, where

we can add more cloud nodes according the application’s requirements. On

the other hand, a public cloud allows us to experiment with large-scale

infrastructures. We have adopted OpenStack as our main cloud platform to

set up a private cloud, and Amazon Web Services as public cloud.

To consume either public or private clouds we need a cloud interface

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 45

to manage the computational resources. Current available interfaces include

command-line tools, cloud APIs, and web-based management applications. To

complete the integration with our deployment infrastructure it was necessary

to develop a customized cloud API. This cloud API was utilized to extend the

deployment infrastructure services adding support to instantiate or consume

virtual machine instances. To provide a flexible way of specifing the cloud re-

sources required for deployment we propose the use of policies. We also apply

the same policy approach to set other configurations such as cloud infrastruc-

ture, management of users, deployment infrastructure, and applications. Also,

we keep the incremental level of details approach like DeployManager service,

as explained in subsection 3.3.1.

This section is divided into five subsections. Subsection 4.2.1 explains

the main details considered to make our cloud infrastructures available. Sub-

section 4.2.2 describes our proposed cloud API to instantiate cloud resources

from our deployment infrastructure. Subsection 4.2.3 details the API exten-

sions implemented to support the deployment of distributed component-based

applications on cloud infrastructures. Subsection 4.2.4 proposes a model for

management users inspired by AWS and deployment infrastructure users. Sub-

section 4.2.5 describes the use of policies to specify: target environment, users,

deployment infrastructure, and applications.

4.2.1 A Cloud Computing Environment

Setting up a cloud computing environment implies obtaining an operative

cloud infrastructure. A private cloud comprises the installation and configur-

ation of a cloud platform over a virtualization layer. To install and maintain

a private cloud environment demands a good level of system administration

skills to deal with non-trivial configurations. Moreover, someone holding an

account with a public cloud is able to access the management tools, although

they will be expected to pay a bill for the service. We detail a summary of the

cloud platform, libraries, and tools used to set up our private cloud. Also, we

describe the steps required to access to Amazon Web Services.

Setting up a private cloud

We selected OpenStack as our first option for setting up a private cloud.

At the time of designing and testing with OpenStack (July 2011), the lastest

version release was 2011.2 under the code name Cactus. With a previous

background knowledge of Ubuntu, we decided to install Ubuntu Server 11.04

for both host and virtual machine instances and use KVM hypervisor as the

virtualization layer. Thus, to facilitate the installation and configuration of

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 46

Figure 4.2: OpenStack Cloud Platform

OpenStack we use the Ubuntu repositories. Figure 4.2 shows the OpenStack

services configured in two physical machines, with the following hardware

configurations. Pituba server: a Intel Core 2 Quad CPU 2.40 GHz, 2GB

RAM, Disk 1x150GB, and NIC 1x1Gb. Jaku server: a Intel Core 2 Duo

CPU 2.00GHz, 2GB RAM, Disk 1x100GB, and NIC 1x1GbE. Pituba acts

as a server instantiating Nova (compute), Swift (storage), and Glance (image)

services, while jaku is a nova-compute node. To verify the correct functioning

of our OpenStack installation we used euca2ools to manage virtual machine

instances. It meant making tests of runninging, rebooting, and terminating

virtual machine instances. First, we executed this test only into the server

pituba, i.e. without any connection to jaku, and the second test included

both pituba and jaku servers. These scenarios allow us to test a single and

dual node configuration. Single configuration means that only one server runs

all OpenStack services, whereas with dual configuration a second server will

be added to a single configuration [Pepple11]. Our first test was successfully

completed, thus we could access the virtual machine instances. However, in the

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 47

second test we found a problem when we tried to access to the virtual machine

instances located in the jaku host, because according to the documentation,

we should have had for each host two network interfaces [OpenStackDoc11].

Finally, we also made early experiments setting up a private cloud using

Eucalyptus 1.6 and Xen hypervisor 3.3, we rely on both as good options to

build cloud infrastructures, with a great cloud software stack.

Accessing a public cloud

Currently, the most popular public cloud provider is Amazon Web Ser-

vices(AWS). We decided to use AWS to access to a public cloud infrastructure.

In recent years, AWS has increased its locations and services, becoming the

main reference for many cloud standards. To start using AWS, we need an

AWS account and to link it to any credit card. Then, after logging-in with

our AWS account, we can access to the AWS Management Console. This is a

web-based application, which provides a graphical interface to interact with its

services. We use the command-line tools ec2-api-tools and euca2ools for man-

aging virtual machine instances. To start running instances we need to export

our private key and certificate using the variables EC2 PRIVATE KEY and

EC2 CERT, respectively.

4.2.2 Cloud API

We need a cloud API with capabilities to manage at least Amazon

EC2 and OpenStack Compute. However, although the cloud APIs listed in

subsection 2.1.4 currently (2012) have support for them, we do not find any

cloud API close to our cloud API requirements, i.e., offering a flexible way to

define a group of variables like the policies approach and functioning with an

incremental level of details.

Specifically, OpenStack inherited several language-specific API bindings

from its original code contributor, Rackspace. For example, OpenStack Object

Storage has the following bindings: PHP, Python, Java, C#/.NET, and

Ruby. On the other hand, AWS provides Software Development Kit(SDK) for

Android, iOS, Java, .NET, and PHP. We require a Lua-based cloud API due

to our deployment infrastructure, because SCS components were implemented

using a combination of Lua libraries such as OiL, LOOP classes, and LuaRocks.

We designed a two-layer cloud API to meet with the requirements to achieve a

compatible cloud API for our deployment infrastructure. Figure 4.3 shows an

overview of the cloud API designed to provide an API with an incremental level

of details, and supporting a flexible way to specify parameter/value variables

using policies. Our cloud API is composed of EucaEngine and the Cloud

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 48

Deployment Engine(CDE). We focus our effort on the building of EucaEngine

layer as generically as possible, because this layer allow us to map its functions

for CDE, creating a set of wrapper functions. CDE uses policies to specify

values for the target environment, users, deployment infrastructure, and the

applications. In the next subsections we describe each cloud API layer.

Figure 4.3: Cloud API - Architecture

EucaEngine

EucaEngine is a python-based wrapper library inspired in euca2ools,

focused on providing compute services. EucaEngine was built considering three

points: (i) an incremental level of details. EucaEngine users can instantiate

virtual machines passing as parameters from only the number of instances

required to a customized a set of parameters using policies. (ii) to support the

use of default and customized policies. EucaEngine takes advantages of default

policies for accessing cloud infrastructures. (iii) and thanks to the euca2ools

design, it support Eucalyptus, OpenStack, and AWS.

Figure 4.4 displays the main class Instance. Our prototype is focused on

the provisioning of virtual machine instances, other classes implemented are

Image, AvailabilityZone, and Volume. We provide this API with intuitive func-

tion names, for example, run instances, get instances, reboot instances, and

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 49

terminate instances. These functions allow users to launch the different stages

of virtual machines: scheduling, networking, launching, running, terminating,

and shut down.

Figure 4.4: EucaEngine - Instance Class

Cloud Deployment Engine

We built the EucaEngine layer to provide a lightweight wrapper to

support the management of virtual machine instances. However, due to the

DeployManager service being implemented in Lua as a CORBA object, we

need a Lua implementation of EucaEngine. We have developed the Cloud

Infrastructure Service (CIS) to provide a CORBA intermediate wrapper to

map all operations of EucaEngine and then we implemented the CloudEngine

as a Lua client proxy. Thus, Cloud Deployment Engine consist of the Cloud

Infrastructure Service (CIS) and the CloudEngine.

To implement CORBA objects we use omniORBpy, a free CORBA

ORB for C++ and Python. Code 4.1 shows a partial segment of the Cloud

Infrastructure IDL mapping the data related to the instances and its functions.

Line 9 specifies the struct InstanceData, it saves the instance’s metadata.

Line 24 defines the struct InstanceInfo including the instance id and a struct

InstanceData. Line 33 and 38 show the operations get instances num and

get instances policies, respectively. The interfaces specified in OMG IDL are

detailed in appendix A.1.

CloudEngine provides a set of functions to initialize, obtain, and update

a pool of virtual machine instances. This was implemented using a Lua class

and has the following parameters: instances, policies, target environment, and

the cloud deployment model. The cloud deployment model parameter specifies

the type of deployment cloud: public or private. Instance is an OiL/Lua-

based proxy client class designed to map the instance operations from Cloud

Infrastructure Service(CIS). Also, it maintains the incremental level of details,

and supports the use of policies. Figure 4.5 shows the available functions

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 50

Listing 4.1: Instance IDL(partial)
1 #i f n d e f CLOUD INFRASTRUCTURE IDL
2 #d e f i n e CLOUD INFRASTRUCTURE IDL
3

4 #i n c l u d e ” h a s h t a b l e . i d l ”
5

6 module C l o u d I n f r a s t r u c t u r e {
7

8 /∗ I n s t a n c e ∗/
9 s t r u c t I n s t a n c e D a t a {

10 s t r i n g i m a g e i d ;
11 s t r i n g p u b l i c d n s n a m e ;
12 s t r i n g p r i v a t e d n s n a m e ;
13 s t r i n g s t a t e ;
14 s t r i n g key name ;
15 s t r i n g a m i l a u n c h i n d e x ;
16 s t r i n g p r o d u c t c o d e s ;
17 s t r i n g i n s t a n c e t y p e ;
18 s t r i n g l a u n c h t i m e ;
19 s t r i n g p lacement ;
20 s t r i n g k e r n e l ;
21 s t r i n g ramdi sk ;
22 } ;
23

24 s t r u c t I n s t a n c e I n f o {
25 s t r i n g i n s t a n c e i d ;
26 I n s t a n c e D a t a i n s t a n c e d a t a ;
27 } ;
28 typede f sequence<I n s t a n c e I n f o > I n s t a n c e I n f o S e q ;
29

30 i n t e r f a c e I n s t a n c e {
31

32 // Get a num o f i n s t a n c e s
33 I n s t a n c e I n f o S e q g e t i n s t a n c e s n u m (
34 i n uns igned s h o r t m i n i n s t a n c e s ,
35 i n uns igned s h o r t m a x i n s t a n c e s) ;
36

37 // Get a num o f i n s t a c e s a c c o r d i n g p o l i c i e s
38 I n s t a n c e I n f o S e q g e t i n s t a n c e s p o l i c i e s (
39 i n uns igned s h o r t m i n i n s t a n c e s ,
40 i n uns igned s h o r t max in s tance s ,
41 i n HashObjectSeq p o l i c i e s) ;
42

43 // [. . .]
44 }
45 } ;
46 #e n d i f

of CloudEngine in order to extend the SCS Deployment Infrastructure, and

support cloud infrastructures as target environment.

4.2.3 Deployment Infrastructure: API Extension

The deployment infrastructure service, DeployManager is responsible for

managing the planning activity. Unlike the previous version of the deployment

infrastructure, where the target environment is described from a pre-defined

list of physical machines specified using description files, we load a pool of

virtual machine instances from a cloud infrastructure. Thus, we have a pool of

virtual machine instances ready to use. We can also instantiate new instances

creating our own pool of instances.

DeployManager has a new variable named all instances, which saves all

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 51

Figure 4.5: Cloud Engine

metadata retrieved by the function get instances pool from CloudEngine. This

function returns all available metadata from the current pool of instances.

However, these virtual machine instances can be shut down or maybe new vir-

tual machine instances can be started. Thus, we need to update this informa-

tion from time to time. We implement the function scan instances() setting a

time of 20 seconds. Finally, we create the function get updated instances that

updates the data stored in all instances, that is, whether a virtual machine

instance was shut down then we need to put a label “shutdown” on this in-

stance info, and if a new virtual machine instance is started then we need to

add its metadata to the all instances. To maintain the compatibility with tar-

get environments composed by physical machines, we introduce the variable

“machine”, this is either a host (physical machine) or instances (virtual ma-

chine instance). Figure 4.6 shows the new functions added to the deployment

infrastructure.

4.2.4 User Management Model

The user management for cloud computing requires an efficient and

flexible design, regardless of the type of cloud service model, because they

share common cloud services such as billing, security, SLA, etc. Hence, the

user management of cloud infrastructures is a topic that should be carefully

implemented by cloud providers, and that cloud consumers need to adapt to

execute their software systems and manage multiple users. For example, AWS

offers the AWS Identity and Access Management(IAM) [AmazonWSIAM] to

manage users, and enable a secure control access, while OpenStack has the

Identity Service [OpenStackIdentity12]. IAM provides tools to manage users,

roles, permissions, and credentials. IAM allows us to create users with the same

capabilities as AWS accounts, but the billing will be charged to a root AWS

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 52

Figure 4.6: DeployManager Extensions

account.

Group Function

Deployment Actor Users with permission to deploy applications on
available cloud infrastructures.

CloudAdmin Cloud account staff to manage the
policies related to the cloud infrastructure.

CloudUser A restricted cloud account that allows specific
permission policies to manage virtual machines
instances: start, stop, suspend, terminate, etc.

Table 4.1: Type of Users for Deployment Infrastructure on Cloud Infrastruc-
tures

We propose a user management model composed of three groups to

manage the application deployment on cloud infrastructures. The Deployment

Actor groups together all users intended to make application deployments. The

CloudAdmin and CloudUser groups accounts have access to cloud infrastruc-

tures. Additionally, we need to associate a CloudAdmin user with a “cloud

account” because this person will be responsible for paying the bill for the

cloud resources consumed. Table 4.1 shows the functions of each group.

Figure 4.7 displays the use case diagram, it explains the user interactions.

To configure a minimal scenario we need a cloud admin, a cloud user, and a

deployment actor. For example, a deployment actor receives an application

to be deployed, writes the policies, and executes the deployment. Then, he

requires a set of permissions to deploy this application on the cloud. The cloud

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 53

Figure 4.7: User Management

user receives the policies, and uses them to request the cloud-based target

environment. The cloud admin manages a combination of permissions and keys

for the deployment actor to access the virtual machine instances. Also, cloud

admin needs to be associated with a cloud account. Finally, the deployment

actor could deploy the application on the cloud infrastructure.

4.2.5 Policies

Policy-based management allows users to describe a set of rules to ab-

stract the behaviour of a system from its functionality. A policy represents

a relationship between subjects and targets, where the relationships are ex-

pressed in a series of actions [Marriot96]. In addition to the management of

users, we propose the use of policies to manage the specification of target envir-

onments, the deployment infrastructure, and the applications to deploy. Due

to the deployment infrastructure which represents our platform to support the

deployment of distributed component-based applications, we prefer denomin-

ate it simply as platform. Table 4.2 displays the type of information that each

group of policies stores.

Policy Group Description

Users Stores all user’s information.
Target Environment Defines the default cloud-based target

environment configuration.
Platform Defines the target environment for the

Deployment Infrastructure.
Application Contains the applications to deploy on

a cloud infrastructure specified.

Table 4.2: Policies required to specify the deployment of applications.

We specify policies using Lua tables with the following structure: the

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 54

table’s name represents the name of a new policy, and each key/value pair

represents a parameter/value, which the parameter could reference a previous

defined table. A parameter can also represent a policy.

Code 4.2 shows an example of the default policy used to request virtual

machine instances from Amazon EC2. We can use the get instances(1, 1)

function to get a set of virtual machine instances’ metadata, it uses the default

getting policy because there was not any policy as parameter. In the line

2, ec2 resource policy defines the memory, vcpus, and storage. From these

values the instance type required for the application is calculated. In line

9, ec2 instances policy manages the virtual machine instances. It defines the

getting policy, responsible for specifying the parameters utilized to get the

metadata of the virtual machine instances. This policy is composed of four

parameters: (i) resource defines a reference to ec2 resource policy, (ii) percent

defines a value of percent into the interval [0-1], where “[0]” means get the

instances with the exact type of resources defined in ec2 resource, a value

in the interval “[0.1;0.9]” details the tolerance percentage, and “[1]” means

ignore the filter policy, and then returns all virtual machine instances, (iii)

filter policy means a type of policy to filter the number of virtual machine

instances returned, (iv) choose policy defines the policy to get the number of

virtual machines required.

Listing 4.2: An example of default policy to get instances for Amazon EC2
1 −−− Amazon EC2 − D e f a u l t C o n f i g u r a t i o n P o l i c y
2 e c 2 r e s o u r c e = {
3

4 memory = ’ 0 . 6 ’ , −− RAM(GB)
5 vcpus = ’ 2 ’ , −− EC2 Compute U n i t s
6 s t o r a g e = ’ 8 ’ , −− GiB
7 }
8

9 e c 2 i n s t a n c e s = {
10

11 g e t t i n g = {
12

13 r e s o u r c e = e c 2 r e s o u r c e , −− d e f a u l t r e s o u r c e (t1 . micro)
14 f i l t e r p o l i c y = ’ r a n g e p e r c e n t ’ , −− r a n g e p e r c e n t
15 c h o o s e p o l i c y = ’ random ’ , −− random
16 p e r c e n t = ’ 1 ’ , −− 0 : exact , [0 . 1 ; 0 . 9] : range , 1 : d e f a u l t
17 } ,
18 }

4.3 Configuring SCS Deployment Infrastruc-

ture on the Cloud

In the section 4.2, we developed the elements required to extend the

SCS Deployment Infrastructure to support the deployment of distributed

component-based applications on cloud infrastructures. In this section, we ex-

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 55

plain the integration between the Deployment Infrastructure and the compon-

ents developed: a cloud API, a set of extensions for the DeployManager service,

a user management model, a policy approach, and a cloud computing envir-

onment. To simplify we use Deployment Infrastructure referred to the SCS

Deployment Infrastructure with support of cloud infrastructures from here on.

We have to ensure a suitable cloud infrastructure, this means having

the capabilities to consume cloud resources from a private or a public cloud.

The cloud infrastructure is managed by a cloud admin, and this person is

responsible for checking and updating the default cloud-infrastructure policies.

The deployment actor defines the cloud deployment model specified into the

deployment model policy. We use this policy to start the CIS, enabling the

connection between CloudEngine and EucaEngine. Then, the deployment actor

is ready to start the DeployManager service. It involves the first interaction

with the cloud infrastructure, which loads the starting policy. For example

DeployManager could load or not the metadata of all running virtual machine

instances, saving them for future deployment of applications. Finally, the

deployment actor is ready to initialize the repository, packager, and execute

the deployment scripts to deploy one or more applications, also policies are

used to specify the target environment for both the deployment infrastructure

and the applications.

This section explains how we integrated the cloud infrastructures with

the Deployment Infrastructure. Subsection 4.3.1 describes an overview of the

architecture proposed, and details how the DeployManager service manages the

cloud infrastructures. Subsection 4.3.2 describes two possible configurations

of the Deployment Infrastructure. The resources utilized to set the target

environment are described in subsection 4.3.3. Subsection 4.3.4 discusses the

main aspects considered in the building of our prototype and its limitations.

4.3.1 Architectural Overview

Figure 4.8 displays an overview of our architecture proposed, it is

composed of two clouds, one cloud hosts the Deployment Infrastructure

and the other will host the applications. Although it seems like the model

requires two different clouds, we propose working with the same cloud to

facilitate the implementation. The figure summarizes the use of policies by the

DeployManager extended to request cloud resources. Therefore, a basic scenario

for the deployment of a distributed component-based application begins with

the definition of one cloud admin for managing the cloud infrastructure and one

deployment actor for managing the deployment. The cloud admin assesses the

cloud infrastructure making it available for the deployment actor to specify the

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 56

application and its target environment. Then, the deployment actor initializes

the deployment infrastructure services according to their defined policies,

and finally executes the deployment of the application. Hence, we describe

the deployment of distributed component-based applications in three main

steps as follows: obtaining access to a cloud infrastructure; deployment of the

deployment infrastructure like PaaS; defining the application and its target

environment using IaaS.

Figure 4.8: Deployment Infrastructure Architectural Overview

In the first step, we need to choose a cloud infrastructure either a private

or public cloud, and update their default policies. We require at least one

cloud admin account and one deployment actor registered. The cloud admin

activates the permissions in order to allow the deployment actor to consume

cloud resources, it implies giving capabilities to the deployment actor as a

cloud user. Then, the deployment actor is ready to start the deployment

infrastructure services.

The second step executes the deployment infrastructure services, the first

service initialized is the DeployManager. Code 4.3 shows an example of the

policy used to initialize the cloud infrastructure. Line 3 specifies the cloud

platform policy, it lists the cloud platforms supported. OpenStack and AWS are

our private and public clouds, respectively. Line 9 defines the deployment model

policy. Line 15 defines the starting policy, which specifies four parameters. The

first two parameters are the cloud private policies and cloud public policies,

both reference to private and public default policies. The other two parameters

are load cloud private and load cloud public, they specify the adopted policy

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 57

just at the time when the DeployManager service has started. The getting

parameter means the possibility to reuse current virtual machine instances, and

starting means that it will only support the creation of new virtual machine

instances.

Listing 4.3: Cloud Infrastructure Policy
1 c l o u d i n f r a s t r u c t u r e = {
2

3 c l o u d p l a t f o r m = {
4

5 c l o u d p r i v a t e = ’ opens tack ’ , −− opens tack
6 c l o u d p u b l i c = ’ ec2 ’ , −− ec2
7 } ,
8

9 dep loyment mode l = {
10

11 p o l i c y = ’ p r i v a t e ’ , −− p r i v a t e , p u b l i c
12 } ,
13

14 −− I n i t i a l i z a t i o n
15 s t a r t i n g = {
16

17 c l o u d p r i v a t e p o l i c i e s = ’ o p e n s t a c k i n s t a n c e s ’ ,
18 c l o u d p u b l i c p o l i c i e s = ’ e c 2 i n s t a n c e s ’ ,
19 l o a d c l o u d p r i v a t e = ’ g e t t i n g ’ ,
20 l o a d c l o u d p u b l i c = ’ g e t t i n g ’ ,
21 } ,
22 }
23

24 t a r g e t e n v i r o n m e n t = {
25

26 p o l i c y = ’ c l o u d i n f r a s t r u c t u r e ’ , −− l o c a l−network
27 }

The code 4.4 describes the policies related to the deployment infrastruc-

ture services. It builds the deployment infrastructure as a Platform as a Ser-

vice, thus each deployment infrastructure service contains the hosting and

policy parameters. Hosting means the type of host where the service will be

executed, e.g. virtual machine instance or physical machine. The policy defines

if the machine is reused or needs to be instantiated.

The third step comprises the specification of the applications ready to

deploy. To define one application to deploy, it needs to have three policies as

parameters related to the application, deployment actor, and its target environ-

ment. Code 4.5 displays an example of the applications to deploy policy. Line

2 describes the hello world app policy, it contains the application’s metadata

such as name, version, and author. Line 10 defines the deployment actor policy

describing the user data of the deployment actor and his access keys for the

cloud infrastructure. Line 34 specifies the target environment cloud policy util-

ized for the deployment. Line 40 applications to deploy defines one or more

applications to deploy. The target environment policy is explained in section

4.3.3.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 58

Listing 4.4: Deployment Infrastructure - Platform Policy
1 p l a t f o r m = {
2

3 dep loy manager = {
4 h o s t i n g = ’ i n s t a n c e ’ ,
5 p o l i c y = ’ g e t t i n g ’ ,
6 } ,
7

8 r e p o s i t o r y = {
9 h o s t i n g = ’ i n s t a n c e ’ ,

10 p o l i c y = ’ r unn i ng ’ ,
11 } ,
12

13 packag ing = {
14 h o s t i n g = ’ i n s t a n c e ’ ,
15 p o l i c y = ’ r unn i ng ’ ,
16 } ,
17

18 deployment = {
19 h o s t i n g = ’ i n s t a n c e ’ ,
20 p o l i c y = ’ g e t t i n g ’ ,
21 } ,
22 }

The cloud admin is responsible for specifying the default cloud infra-

structures policies. The deployment actors customize policies, also they need

to be registered into the cloud user group.

The proposed architecture describes the main aspects considered to ob-

tain a simple and flexible support for the deployment of distributed component-

based applications. However, this architecture should consider that many de-

ployment actors could deploy many distributed applications, instantiating their

own Deployment Infrastructure services, but requesting cloud resources to the

same cloud infrastructure. This means the CIS server needs to deal with multi-

deployment actors. In the next section, we detail two possible configurations.

4.3.2 Deployment Infrastructure: PaaS

The subsection 4.3.1 describes an overview of our proposed architecture,

we also highlight the necessary steps to deploy one application following a ba-

sic configuration. However, more realistic scenarios e.g. test environments or

even production environments imply more advanced configurations. In addi-

tion to these configurations, due to its multi-tenant feature the deployment

infrastructure needs to support simultaneously the deployment of many dis-

tributed component-based applications by many deployment actors. We discuss

two possible options of deployment, a minimum supported configuration and

a multi-deployment configuration.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 59

Minimum Supported Configuration

Figure 4.9 shows the minimal configuration of the Deployment Infra-

structure managed by one deployment actor, and composed of one instance of

DeployManager, Repository, and Packager. DeployManager service is deployed

into a virtual machine instance, and needs to be continually running for sav-

ing and updating the cloud infrastructure metadata, then we can obtain the

current state of the virtual machine instances, e.g. a list of virtual machines

currently running. The repository and packager services were designed with

dashed boxes because they can be instantiated on-demand, or simply they can

reuse any virtual machines previously instantiated. These services constitute

the first effort in obtaining our Deployment Infrastructure as Platform as a

Service. On the other hand, to access cloud infrastructure metadata deploy-

ment actors require a service to act as the entrance to the cloud. This service is

the CIS server, responsible for the connection between the PaaS and the target

environment. Therefore, the minimal configuration comprises the coordination

of one deployment actor, one deployment infrastructure, and one CIS server

to enable the provision of cloud resources.

Figure 4.9: Deployment Infrastructure on Cloud Infrastructures: Minimal
Architecture

A Multi-Deployment Configuration

A Multi-Deployment Configuration means that many deployment actors

working with their own deployment infrastructures are sharing the same CIS

server to enable the provision of cloud resources. Figure 4.10 displays a

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 60

Multi-Deployment configuration, composed of two DeployManager services,

two repositories, one packager, and one CIS server. In this configuration,

each DeployManager service corresponds to one deployment actor, and all

DeployManagers share the same CIS server and policies. Ideally, two or more

deployment actors use their own deployment infrastructure, but share the same

cloud infrastructure; therefore they need to connect to the same CIS server.

We increased the vision of the SCS Deployment Infrastructure because many

deployment actors are able to deploy a number of applications using the same

target environment.

Figure 4.10: A Multi-Deployment Architectural Configuration

4.3.3 Deployment Infrastructure: IaaS

Once the deployment infrastructure services are executed, we can begin

executing the scripts to deploy our applications. There are usually two scripts,

the first script packages and publishes the components into a repository,

and the second script completes the deployment of the application. These

scripts load the target environment policy to decide the type of policy that

will be used to install the application’s components. Code 4.6 displays an

example of the target environment policy. Line 4 specifies the getting policy,

line 13 shows the running policy, both are mapped to get instances and

run instances functions, respectively. Thus, they obtain access to virtual

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 61

machine instances by either reusing or instantiating new virtual machines.

The parameters of the getting policy are the same as those we reviewed

in subsection 4.2.5. The running policy groups six parameters utilized to

instantiate new virtual machine instances. The resource parameter defines

a resource specification(vcpu,ram,disk) as the requirements to execute new

instances, instance type parameter is the default type of instance, if this

parameter is defined then the previous resource policy will be invalidated

because the type of instance implies a pre-defined resource specification

managed by the cloud platform. But if instance type is not defined, then the

policy and percent parameters are utilized to find a compatible instance type.

The image parameter is the image id utilized as the base image to start virtual

machine instances, and the languages parameter defines a list of pre-installed

programming languages and development kits required for the base image. We

highlight the use of policies to specify the target environment, it allow us to

define a set of options to specify a customized cloud-based target environment.

Also, we found advantages in using getting policies because we could reduce

the billing by deploying test applications.

4.3.4 Prototype and Limitations

The prototype was built over the Deployment Infrastructure detailed in

chapter 3. First, we rely on a cloud infrastructure built with Eucalyptus and

Xen hypervisor obtaining a good performance, but we also experiment using

OpenStack as our cloud platform. We found greater capabilities working with

OpenStack because it supports a single node installation, thus we decided

to use OpenStack and KVM as our virtualization layer. Second, the imple-

mentation of the cloud API involved extra work because we do not find any

implementation of cloud API based on Lua programming language. Hence, we

need to implement our own Cloud API to support a Lua interface. Third, we

use this cloud API to develop a series of extensions for the DeployManager

service. Fourth, we propose a simple model for user management, we test it

with the Identify and Access Management(IAM) module from Amazon Web

Services. Finally, we utilized Lua tables to write policies taking advantage of

Lua’s ease of definition and reuse.

Despite all our efforts to build a low coupling components developed

in 4.2, our prototype has some limitations. Our cloud API was focused on

providing compute resources, which could be interesting for adding some

storage services to the deployment infrastructure or as part of the target

environment. Currently, our policy syntax only supports Lua tables and does

not provide any form to define actions. Therefore, to support new actions it is

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 62

necessary to be hard-coded. For example, when deployment actors require the

writing if new actions from a combination of policies, these actions need to be

programmed and tested. A solution could be to write Lua functions specifying

these actions, while a policy approach should offer a simple method of defining

actions.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 63

Listing 4.5: Application Policy
1 −−− Demo A p p l i c a t i o n
2 h e l l o w o r l d a p p = {
3

4 name = ” He l l oWor ld ” , v e r s i o n = ” 0 .1 ” , au tho r = u s e r d a t a . u s e r a ,
5 d e p l o y m e n t s c r i p t = ”/home/ u s e r a / p r o j e c t s / scs−dep l oy sy s t em / s r c / l u a ” . .
6 ”/ s c s /demos/ d e p l o y e r / h e l l o w o r l d−deployment . l u a ”
7 }
8

9 −− Deployment Actor
10 d e p l o y m e n t a c t o r = {
11

12 −− User Data
13 u s e r d a t a = u s e r a ,
14

15 −−− AWS C r e d e n t i a l s
16 e c 2 c r e d s = {
17

18 EC2 HOME = update ,
19 EC2 PRIVATE KEY = update ,
20 EC2 CERT = update ,
21 EC2 ACCESS KEY = update ,
22 EC2 SECRET KEY = update ,
23 EC2 URL = update ,
24 AWS ACCESS KEY ID = o p t i o n a l ,
25 AWS SECRET ACCESS KEY = o p t i o n a l ,
26 k e y p a i r = root ,
27 } ,
28

29 −−− OpenStack C r e d e n t i a l s
30 o p e n s t a c k c r e d s = {} ,
31 }
32

33 −−− Target Env i ronments
34 t a r g e t e n v i r o n m e n t = {
35

36 p o l i c y = ’ c l o u d i n f r a s t r u c t u r e ’ ,
37 }
38

39 −−− A p p l i c a t i o n s to Deploy
40 a p p l i c a t i o n s t o d e p l o y = {
41

42 −−− A p p l i c a t i o n 1
43 a p p l i c a t i o n 1 = {
44

45 a p p l i c a t i o n = h e l l o w o r l d a p p ,
46 d e p l o y m e n t a c t o r = dep loyment ac to r ,
47 t a r g e t e n v i r o n m e n t = t a r g e t e n v i r o n m e n t ,
48 } ,
49 }

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 4. SCS Deployment Infrastructure on Cloud Infrastructures 64

Listing 4.6: Target Environment Policy
1 −−− Amazon EC2 − D e f a u l t C o n f i g u r a t i o n P o l i c y
2

3 −− d e f a u l t r e s o u r c e v a l u e s (t y p e i n s t a n c e : t1 . micro)
4 e c 2 r e s o u r c e = {
5

6 memory = ’ 0 . 6 ’ , −− RAM(GB)
7 vcpus = ’ 2 ’ , −− EC2 Compute U n i t s
8 s t o r a g e = ’ 0 ’ , −−

9 }
10

11 −− d e f a u l t image v a l u e (ubuntu s e r v e r 11 .04 , x86 64)
12 ec2 image = {
13

14 d e f a u l t a m i = ’ ami−1b814f72 ’ ,
15 }
16

17 −− d e f a u l t programming l a n g u a g e s
18 d e f a u l t l a n g u a g e s = {
19

20 l u a = ’ 5 . 1 ’ ,
21 j a v a = ’ 1 . 6 ’ ,
22 o i l = ’ 0 . 4 ’ ,
23 }
24

25 −− Amazon EC2
26 e c 2 i n s t a n c e s = {
27

28 g e t t i n g = {
29

30 r e s o u r c e = e c 2 r e s o u r c e , −− d e f a u l t r e s o u r c e (t1 . micro)
31 −−

32 f i l t e r p o l i c y = ’ r a n g e p e r c e n t ’ , −− r a n g e p e r c e n t
33 c h o o s e p o l i c y = ’ random ’ , −− random
34 p e r c e n t = ’ 1 ’ , −− 0 : exact , [0 . 1 ; 0 . 9] : range , 1 : d e f a u l t
35 } ,
36

37 r unn i ng = {
38

39 r e s o u r c e = e c 2 r e s o u r c e , −− d e f a u l t r e s o u r c e
40 −−

41 i n s t a n c e t y p e = ’ t1 . micro ’ , −− i n v a l i d a t e r e s o u r c e p o l i c y
42 p o l i c y = ’ r a n g e p e r c e n t ’ , −− r a n g e p e r c e n t
43 p e r c e n t = ’ 1 ’ , −− 0 : exact , [0 . 1 ; 0 . 9] : range , 1 : d e f a u l t
44 image = ec2 image , −− d e f a u l t image
45 l a n g u a g e s = d e f a u l t l a n g u a g e s , −− d e f a u l t l a n g u a g e s
46 } ,
47 }

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

