
3

Reference Scenario

The execution infrastructure for SCS components allows deployment act-

ors to manage tasks such as instantiation, configuration, interception, execu-

tion, etc. However, this responsibility involes a high number of management

tasks. Thus, they are susceptible to human errors, even on basic applications.

Distributed scenarios need an advanced deployment process to deal with sev-

eral challenges: heterogeneity, scalability, monitoring, management, etc. There-

fore, to deploy software systems a Deployment Infrastructure is required to

manage the lifecycle of components, and reduce the complexity of typical de-

ployment tasks. This infrastructure allows deployment actors to plan a re-

mote and decentralized deployment of distributed, multi-language, and multi-

platform component-based applications. In this chapter we describe three main

points of SCS, organized as follows: Section 3.1 describes SCS component

model; Section 3.2 shows the execution infrastructure for SCS components;

Section 3.3 details the SCS deployment infrastructure focused on planning

activity.

3.1 SCS Component Model

Software Component System(SCS) is a component-based middleware de-

signed for CORBA architectures. This provides a middleware infrastructure

suitable for distribution, installation, configuration, execution, and deploy-

ment of components [Cerqueira09]. SCS component is the logic unit ready for

composition and reuse, it also encapsulates interaction, configuration and in-

trospection features. SCS was inspired by Microsoft COM(Component Object

Model) and OMG CCM(CORBA Component Model), however SCS compon-

ents avoid COM and CCM complexity. SCS tries to maintain flexibility, sim-

plicity, and usability using a small set of API. SCS components are composed

of facets and receptacles, both are service ports that belong to its interaction

model. Facets are ports for providing services offering a specific interface, thus

available services for each component are accessed by facets. Receptacles are

ports to request services, in other words, they are access points to compon-

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 3. Reference Scenario 37

ent services. Through the use of its interaction model a configuration model

is enabled, this allows component connections to be replaced at the time of

execution. The introspection model defines a set of functions that allows com-

ponents to be inspected in execution time, for example users could check the

available facets. Figure 3.1 shows a SCS component with its facets and recept-

acles ports. Also, it displays three specific facets that support its configura-

tion and introspection model: IComponent, IReceptacles, and IMetaInterface.

IComponent permits identification, activation, and deactivation of compon-

ents. IReceptacles manage inter-connections between remote and local com-

ponents. IMetaInterface provides functions for introspection.

Figure 3.1: SCS Component Model

3.2 Execution Infrastructure

The execution infrastructure for SCS component-based applications al-

lows users to instantiate, configure, suspend, intercept, and execute SCS com-

ponents [Augusto08]. The execution infrastructure could be remotely managed

because all facets are CORBA objects. This infrastructure is displayed in figure

3.2, consisting of a Container, ExecutionNode, and Repository.

• Container: The container is responsible for managing a common

memory space for SCS components. It provides facilities to load, inter-

cept, suspend, resume, and monitor components. The container is flexible

because it permits the loading of different components.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 3. Reference Scenario 38

• Execution Node: The ExecutionNode represents a node, and operates

as a gateway for physical machines. Also, the ExecutionNode manages

the building of containers, and controls their access to physical resources.

• Repository: The Repository stores published components that could

be accessed remotely. The Repository is used by the Container to access

component implementations.

Figure 3.2: SCS Execution Infrastructure

3.3 Deployment Infrastructure

A deployment infrastructure for SCS components was developed

[Junior09] to address the deployment process, and automate the management

tasks of the execution infrastructure. Deployment infrastructure has two main

services: Packager and DeployManager. The Packager service is responsible

for the packaging process and solving static dependencies. DeployManager or-

chestrates the creation of deployment plans. Additionally, a modified version of

ExecutionNode and the Repository components were developed for supporting

both system and component packages, respectively.

Figure 3.3 shows the deployment process for SCS components, composed

of eight activities, detailed as follows: First, the application’s components

are packaged(1) using the packager service, it automates the generation

of packages and assures compliance of the packaging system. Second, the

publishing activity(2) consists of moving the packages and file descriptors into a

previously known repository. Third, the planning activity(3) elaborates a plan

to deploy all components. The DeployManager service involves the execution

infrastructure components that are responsible for deciding a high level plan

configuration. Fourth, the deployment activity(4) executes the previous plan,

that is, components are installed on a target environment based on physical

machines. Fifth, all components are activated(5). Sixth, once the execution has

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 3. Reference Scenario 39

been completed all components are deactivated(6). Seventh, all components are

removed(7). Eighth activity, components are retired(8).

Figure 3.3: Overview of SCS Deployment Infrastructure

3.3.1 Deployment Planning

When deployment actors need to validate architectures and QoS para-

meters of applications, they need deployment plans to test with different con-

figurations of distributed target environments. Therefore, deployment planning

constitutes a critical part within the deployment process. To deal with these

issues, an entity needs to be responsible to build a consistent deployment plan.

DeployManager allows the construction of a deployment plan, creates an ini-

tial configuration, sets an incremental level of details, and makes calls to the

function deploy. DeployManager involves the execution infrastructure provid-

ing several capabilities to deploy SCS components. DeployManager uses virtual

entities to represent user components and the SCS execution infrastructure.

DeployManager was designed combining virtual entities, a plan, and a de-

ployment service. Deployment planning allows users to specify a deployment

plan based on incremental level of details. Users can refer to an automatic or

manual mapping of the execution infrastructure and physical resources. Auto-

matic mapping is the highest level to write a deployment specification. To

deploy a component is necessary to create a plan and a virtual entity. Then we

need to specify the type of component, connections between components, and

call the deploy function. DeployManager implements a round-robin algorithm

for automatic mapping. On the other hand, manual mapping has three in-

cremental levels: grouping user components in the same container, grouping

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 3. Reference Scenario 40

containers in the same execution node, and setting a specific physical machine

for the execution node. A list of physical machines is previously loaded by

DeployManager.

The packaging process is bundled into a packager service, offering facilit-

ies to package components on distributed architectures. This service includes

a solution to solve static dependencies issues, considering the language and

platform supported by SCS components. The packager service has chosen the

package system “LuaRocks” to allow developers to describe metadata, de-

pendencies, compilation, and installation procedures. DeployManager permits

subscriptions to public repositories, which supports being shared by many De-

ployManagers. Therefore, developers need to search a list of public repositories,

and publish their component implementations.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA




