
2

Background Work

This chapter describes the fundamentals of Cloud Computing and re-

lated works, organized as follows: Section 2.1 describes a recent definition and

taxonomy of different concepts and technologies related to Cloud Computing.

Section 2.2 describes related work for the deployment of distributed applica-

tions on grid environments and early adoptions of Cloud Computing.

2.1 Cloud Computing Fundamentals

Cloud Computing delivers computing resources as a service like electrical

grids. Cloud Computing allows users to eliminate infrastructure annoyances,

that is, administrators do not need to be responsible any more for their own

hardware and software because these resources are managed by the cloud

providers. Recently there has been a great deal of interest on standardizing

Cloud Computing definitions, terminology, extensions, related technologies and

so on. In order to combine efforts of cloud providers several organizations

(software companies, governments, etc.) have been working together and as

result they have begun to create initiatives to work on the standardization of

a Cloud Computing taxonomy. In the next subsections we describe the main

aspects of Cloud Computing.

2.1.1 What is Cloud Computing?

At the beginning of the adoption of Cloud Computing, cloud providers

started to offer many types of Cloud Computing models and services. For

example, Amazon Web Services began offering IT infrastructure services to

businesses in the form of web services. From Amazon’s perspective, computing

infrastructure is shared like a utility and paid based on the amount of resources

used, it can be easily upgraded and scaled up or down as needed. Google App

Engine provides a platform to build and deploy web applications. This uses

the reliability, performance, security, privacy, and data protection policies of

Google’s infrastructure. SalesForce started offering software as a service mainly

its CRM (Customer Relationship Management) software solution. Therefore,

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 17

cloud providers proposed their own meanings about Cloud Computing. With

an increasing adoption of Cloud Computing more companies have begun

to offer private deployment models, therefore creating the beginning of a

competitive Cloud Computing market.

Many projects and research groups have been testing available cloud

platforms, but few of them have tried to define what exactly Cloud Com-

puting is. Some papers highlight and discuss the key features and charac-

teristics of Cloud Computing [NIST01], [Wang08], [Armbrust09], [Dong10],

[Grandison10], [Liu10], [Voorsluys11]. However, there is not a standard defini-

tion of Cloud Computing, but one of the most referenced definitions of Cloud

Computing has been proposed by NIST (National Institute of Standards and

Technology):

Cloud Computing is a model for enabling ubiquitous, on-demand network

access to a shared pool of configurable computing resource(e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.

This cloud model is composed of five essentials characteristics, three services,

and four deployment models.

a) Essentials Characteristics

• On-demand self-service: Cloud consumers can provision computing

capabilities such as compute time, storage, and network resources with

minimal efforts.

• Broad network access: Cloud based resources are provisioned over the

network, enabling consumers to access them from any device to fulfill

the standard mechanisms.

• Resource pooling: The computing resources are pooled and shared

across multiple consumers using a multi-tenant model, these resources

are dynamically assigned and reassigned on-demand.

• Rapid elasticity: Provision and realization of computing resources can

be applied quickly and can change dynamically to meet a variable

workload.

• Measured service: Utilization is automatically controlled for metering

and resource billing.

b) Service Models

• Infrastructure as Service(IaaS): Cloud providers offer the provision

of processing, storage, networks, and other fundamental computing

resources where the cloud consumer is able to deploy and run arbitrary

software.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 18

• Platform as a Service(PaaS): Cloud providers deliver a cloud infra-

structure to deploy applications created using programming languages,

libraries, services and tools.

• Software as a Service(SaaS): Cloud providers make applications avail-

able in the cloud and cloud consumers can access them from any client

device.

c) Deployment Models

• Private Cloud: The cloud infrastructure is provisioned only for a single

organization. It can be managed by the organization or a third party,

and also hosted internally or outside of the organization.

• Public Cloud: The cloud infrastructure is provisioned for the general

public by a cloud provider.

• Hybrid Cloud: Composition of two or more clouds (private, public,

community) working together through the use of compatible techno-

logies.

• Community Cloud: The cloud infrastructure is provisioned only for a

community of consumers, who share the same infrastructure.

All cloud infrastructures need to enable the five essential characteristics

of Cloud Computing.

2.1.2 Cloud Taxonomy

In short time Cloud Computing has raised the interest of many types of

users. However, a larger number of potential users did not find any guidance

from cloud providers in terms of security, service level agreement, portabil-

ity, etc. People with expertise in Cloud Computing started to propose the

first taxonomies, classifying it as a series of interconnected layers. These layers

are usually a combination of main cloud topics, such as infrastructure, storage,

network, platform, application, services, providers, and consumers. Subsequen-

tely, several publications started to propose different taxonomies [Hoefer10],

[Prodan09], [RimalChLu09], [RimalCh09], [Teckelmann11], and [Strauch11],

but at the moment there is still not a recognized standard taxonomy.

To reduce the ambiguous and confused taxonomy of cloud computing,

the NIST Cloud Computing Program published a set of documents [NIST01],

[NIST02] [NIST03], and [NIST04]. These documents offer a mature classific-

ation of cloud computing terminology. For example, the NIST Cloud Com-

puting Reference Architecture proposes a generic high-level conceptual model

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 19

with the basic purpose of discussing the requirements, structures, and oper-

ations of cloud computing. Below we briefly describe this taxonomy and its

main components:

a) The Conceptual Reference Model: The Conceptual Reference Model is

displayed in figure 2.1, it shows a generic high-level architecture to provide

a simple framework to understand the requirements, uses, characteristics

and standards of cloud computing. This is composed of five major actors

divided into entities, which represent a person or an organization, each

is responsible for performing tasks in cloud computing. The entities are

cloud consumers, cloud providers, cloud carriers, cloud auditors, and cloud

brokers.

Figure 2.1: Conceptual Reference Model

The Cloud Consumer is an entity, who uses services obtained from a cloud

services list offered by cloud providers. Once the appropriate services are

chosen, an agreement is signed between the cloud consumer and the cloud

provider. In most cases, to consume the cloud services involves a cost that

is billed according to a pricing policy. The Cloud Provider is an entity, it

acquires and maintains the operation of cloud infrastructure, and manages

software applications. It comprises the management of computing resources,

a cloud software to orchestrate its infrastructure, and creates a plan to make

the cloud services available. The Cloud Auditor is an entity wich has the

capabilities to deal with the independent assessments of cloud services,

with the objective of evaluating the level of QoS, performance, portability,

security, etc. The Cloud Broker is an entity responsible for the management

of cloud services and negotiates relationships between cloud providers and

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 20

cloud consumers, because often the integration of cloud services can be too

complex for cloud consumers. The Cloud Carrier can act as an intermediary

that provides connectivity and a transportation network of cloud services

from cloud providers to cloud consumers.

b) Architectural Components:

• Service Orchestration: Combines software components to support the

management of computing resources. These components are organ-

ized in a three-layered model: Service Layer, Resource Abstraction and

Control Layer, and Physical Resource Layer. In Service Layer, cloud

providers create interfaces for access to cloud services. Resource Ab-

straction and Control Layer comprise a set of software components

to manage the physical computing resources: hypervisors, virtual ma-

chines, virtual data storage, etc. This layer also enables resource pool-

ing, dynamic allocation, and monitoring, therefore allowing the man-

agement of physical resources using software abstractions. Physical

Resource Layer groups together all the physical computing resources.

• Cloud Services Management: Cloud Service Management groups to-

gether all the services offered by cloud providers to enable an ef-

ficient management of cloud services for cloud consumers. The ser-

vices related to cloud services management are classified into three

groups: Business Support, Provisioning and Configuration, and Port-

ability and Interoperability. Business Support involves the provision of

business-related services to cloud consumers, for example, customer

management, account and billing services. Provisioning and Configur-

ation services are middle services that share usability between cloud

consumers and cloud providers. For example, services related with the

SLAs, metering, monitoring, reporting, etc. Portability and Interoper-

ability services are characteristics that cloud consumers seek to achieve

autonomy in the migration process between different cloud providers,

or when they need to combine the communication layer of several cloud

providers.

2.1.3 Cloud Platforms

There are two standpoints of the term platform in cloud computing, it can

be used to refer either a Cloud Platform or the Platform as a Service(PaaS). In

the context of cloud computing we use the first idea of platform. Hence, cloud

platforms allow us to build cloud infrastructures, and permit developers to

host cloud applications using cloud infrastructures as their target environment.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 21

A typical cloud platform includes a cloud application hosting server and a

cloud storage device such as a database. Application developers can run their

software applications on cloud platforms without worrying about higher cost

and the complexity to buy, build, and maintain a hardware infrastructure.

Cloud providers also offer to cloud consumers a set of integrated services such

as embedding frameworks, libraries, applications, etc.

Today we can find several open-source cloud platforms as well as private

cloud platforms offering a large number of services. Below we describe two

open-source platforms - Eucalyptus and OpenStack. Additionally, we review

Amazon Web Service (AWS), which although it holds a private cloud platform

it offers a full documentation and mature cloud interfaces.

a) Eucalyptus: Eucalyptus is an open-source framework for cloud computing,

which implements the IaaS model and enables the creation of on-premise

IaaS clouds [Nurmi09]. Eucalyptus is compatible with Amazon Web Ser-

vices(AWS) and conforms with EC2, S3, and EBS specifications. Euca-

lyptus accomplishes this with both the syntax and semantic definitions

of Amazon API and tool suites. Internally, Eucalyptus is highly modular

with a hierarchical design and language-agnostic communication mechan-

isms. Eucalyptus allows users to manage virtual machine instances (i.e.

start, stop, reboot, terminate) using REST and SOAP interfaces. Euca-

lyptus is composed of five types of components: Cloud Controller(CLC),

Walrus, Cluster Controller(CC), Storage Controller(SC), and Node Con-

troller(NC). Cloud Controller offers a EC2-compatible SOAP and Query

interfaces, while also performing high-level resource scheduling and system

accounting. Walrus implements a bucket-based storage system available

through S3-compatible and REST interfaces. Both, Cloud Controller and

Walrus are called top-level components, and add resources from multiple

clusters.

b) OpenStack: OpenStack is an open source cloud initiative launched by

NASA and Rackspace in July 2010. OpenStack provides a software platform

to build massively scalable applications [OpenStack11], and is composed

of a collection of open source technologies to build public and private

clouds. It integrates the Nebula platform from NASA and the Cloud

Files platform from Rackspace. OpenStack has three projects: OpenStack

Compute (Nova), OpenStack Storage (Swift), and OpenStack Image Service

(Glance). Nova is a cloud fabric controller used to provide on-demand

virtual machine instances and volume services like EBS. Swift is a system to

store and retrieve objects with scalability, redundancy and failover features.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 22

Glance is a lookup and retrieval system for virtual machine disk images,

and acts as a catalog for disk images.

At the moment of writing this dissertation two new incubating projects

are being added to OpenStack: Dashboard (Horizon) and Identity (Key-

stone). The first, OpenStack Dashboard is a modular web-based interface

for all OpenStack Services. The second, OpenStack Identity provides au-

thentication and authorization for all of its services. OpenStack has APIs

compatible with Amazon EC2 and Amazon S3, and therefore client applic-

ations for Amazon Web Services can be used with OpenStack using min-

imal porting effort. Finally, we found a rapid evolution of OpenStack, thus

a recent list (august-2012) includes the new proposed modules: OpenStack

Networking (Quantum), OpenStack Block Storage(Cinder), and OpenStack

Identity(Keystone).

c) Amazon Web Services: Amazon Web Services(AWS) is the leading cloud

provider offering a highly reliable, scalable, and low-cost infrastructure plat-

form, with datacenters located in five countries: U.S., Ireland, Singapore,

Japan, and Brazil [AmazonWS06]. AWS began offering IT infrastructure

services to businesses in the form of web services, initially focused on com-

puter power and storage, denominated as Elastic Cloud Computing (EC2)

and Simple Storage Service (S3), respectively. AWS organizes its services

into three groups [AmazonWSDoc]: Foundation Services; Application Plat-

form Services; Management and Administration.

Amazon EC2 is a web service offering a resizable compute capacity, that

is, it allows us to launch virtual machine instances from a pre-configured

or customized virtual machine image (Amazon Machine Image) and a type

of instance. The type of instance depends of the computing requirements.

AWS offers command-line tools for the management of virtual machine

instances: ec2-api-tools and ec2-api-tools. Amazon S3 is also a web service,

which enables to storage and retrieval of any kind of objects, from anywhere

at, any time.

2.1.4 Cloud APIs

To access all cloud infrastructures a cloud interface is necessary. Each

cloud provider offers its own cloud API, however it involves restrictions of use

to the cloud provider. Faced with these restrictions, people have started to

implement generic APIs to support several cloud platforms. In this subsection

we describe three generic cloud APIs.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 23

a) JClouds: JClouds is a multi-cloud library, which allows us to write abstract

codes to control cloud resources from many cloud providers [JClouds11].

JClouds features a simple interface, runtime portability, unit testability,

location-aware, and performance. Currently, according to JClouds’ docu-

mentation, it offers two java and closure API implementations: Blobstore

and Compute Service. Blobstore deals with key-value providers such as

Amazon S3, and ComputeService manages virtual machine instances such

as Amazon EC2. JClouds supports the main cloud providers, specifically

JClouds has been testing over 30 cloud providers and cloud platforms, in-

cluding OpenStack, Amazon Web Services, Eucalyptus, GoGrid, and Mi-

crosoft Azure.

b) LibCloud: The Apache LibCloud team has worked on its own multi-cloud

API [LibCloud10]. LibCloud has denominated Cloud Server, Cloud Storage,

Load Balancers as a Service(LBaaS), and DNS as a Service(DNSaaS) to

cloud services focused on managing compute, storage, load balancers, and

DNS resources, respectively. Apache LibCloud is a standard python library

designed to support multiples of cloud providers. It has developed its own

cloud terminology such as Node, NodeSize, NodeImage, NodeLocation,

NodeState, etc. When a virtual machine starts the Cloud Server module

allows users to insert and execute shell scripts inside them, faciliting the

customization of new instances. Cloud Storage has been developed to

manage cloud storages such as Amazon S3, Rackspaces CloudFiles, and

Google Storage.

c) DeltaCloud: DeltaCloud abstracts different cloud providers and plat-

forms [DeltaCloud11]. This API supports Compute and Storage services.

DeltaCloud API works as a wrapper and uses a particular driver to com-

municate with each cloud provider. DeltaCloud users allow different HTTP

clients to communicate with the server using the DeltaCloud REST API.

DeltaCloud also provides a web application to manage the cloud infrastruc-

ture supporting mobile or tablet devices.

2.1.5 Cloud Software Stack

Today the installation and configuration of cloud infrastructures are

possible, mainly thanks to open-source initiatives. Fortunately, cloud providers

and cloud platform developers are focusing on offering cloud consumers a

more compatible set of libraries, tools and APIs. In this subsection, we review

common aspects of recent cloud platforms, virtualization and libvirt. We will

also describe a popular command-line tool.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 24

a) Virtualization: Virtualization is the creation of a virtual version of com-

puting resources, such as networking, storage devices, operating systems,

or hardware resources, and involves a logical separation of the requests for

these services from the underlying physical resources. David Chisnall com-

pares virtualization with emulation [Chisnall07]. Emulation means that a

system pretends to be another system, whereas in virtualization a system

pretends to be two or more of the same system. William von Hagen gives a

practical definition of virtualization as the ability to run applications, oper-

ating systems, or system services in a logically distinct system environment

independent of a specific physical computer [vonHagen08].

There are many types of virtualization that are found at software or ma-

chine level. We have studied the machine virtualization, also known as

server virtualization, platform virtualization, or simply as virtualization.

With platform virtualization, we can execute many virtual machines into

the same hardware, without sharing the same kernel. Also, platform vir-

tualization is commonly defined as the technology that introduces a soft-

ware abstraction layer between the hardware and the operating system.

This abstraction layer is represented by the virtual machine monitor or

hypervisor and allows instantiation of virtual machines. The host machine

is the actual machine on which the virtualization takes place, and guest

machines are virtual machines running on hosts. There are different plat-

form virtualization approaches to implement the platform virtualization,

main virtualization techniques are full-virtualization, para-virtualization,

and hardware-assisted virtualization.

b) Libvirt: Libvirt is an open-source virtualization API becoming the under-

lying base library on which most of virtualization management software are

being built, and widely used to manage the virtualization layer [Libvirt05].

Libvirt provides a set of language bindings focusing on interoperability. It

is used as the abstract layer to develop cloud platforms because it allows

the user to implement once and gain support from several virtualization

platforms. Libvirt has support from Xen and KVM platform virtualization,

in addition, after many efforts since 2005 libvirt works with VirtualBox,

VMWare, OpenVZ, LXC, and User Mode Linux.

c) Euca2ools: Euca2ools is a python-based package of command-line tools

for the management of Eucalyptus-based cloud infrastructures, inspired

by Amazon command-line tools (api-tools, ami-tools) [Euca2ools08].

Euca2ools allows users to manage instances, images, volumes, snapshots, IP

address, security groups, SSH key pairs, and availability zones. Euca2ools

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 25

uses Boto and M2Crypto libraries, and internally interacts with web ser-

vices that export a REST/Query-based API. Euca2ools is compatible with

Amazon Web Services(EC2 and S3) and OpenStack. Most Linux distri-

butions have added Euca2ools to their repositories making its installation

an easy task. To start using Euca2ools users need to export their security

credentials.

2.2 Related Work

In the last decade, software deployment in large-scale infrastructures such

as grids has raised many challenges and has been focused on several research

areas such as climate modeling, earthquake simulation, protein folding, etc. Re-

cently, another type of large-scale infrastructure has facilitated the provision of

on-demand computing resources, known as Cloud Computing [RimalChLu09].

Several computing paradigms have taken advantageof the adoption of Cloud

Computing, specially the Infrastructure as a Software(IaaS) usage as the main

provider of computing resources. We have found limited related work proposing

new approaches and tools for the deployment of distributed component-based

applications on large-scale computing infrastructures such as Grid Computing

and Cloud Computing. In the following paragraphs we give a short introduc-

tion to the deployment process and related work for the deployment on grid

environments and cloud environments.

2.2.1 Deployment Process

The figure 2.2 depicts a state diagram of a generic deployment process

of distributed component-based applications. It is composed of ten interre-

lated activities linked with black arrows. The ten enumerated activities are

packaging, publishing, planning, installing, configuring, activating, updating,

deactivating, uninstalling, and retiring [Heydarnoori08]. Also, this figure shows

the deployment activities interacting with a packager service, a repository ser-

vice, and a target environment. Solid arrows connect the deployment activities

with the packager and repository services, and the dashed arrows depict the

activities interacting with the target environment.

We explain this generic deployment process as follows. First, the pack-

aging activity is responsible for storing the components in their respective pack-

ages, it is supported by a packager service(a). The packager service deals with

multi-platform, multi-language, and versioning challenges, as well as resolv-

ing static dependencies. Hence, we obtain the application release as a set of

packaged components. Second, the publishing activity brings these packaged

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 26

components to a repository. This step is performed by the repository service(b),

its main function is to keep a list of components published. Third, the planning

activity builds a high level plan, it is responsible for managing all necessary

settings before installing the components in a pre-defined target environment.

Fourth, the installing activity executes the installation according to the previ-

ous plan. It describes which components will be obtained from the repository(c)

and carried out to the target environment(d). Fifth, the configuring activity

allows changes to be made to default configuration creating a customized con-

figuration(e). Sixth, the activating activity makes the application available and

finally it is ready to use(f). Seventh, the updating activity permits performing

changes to a current configuration, it can involve another request to repos-

itory(g) and updates the components located in the target environment(h).

Eighth, the deactivating activity stops the application(i). Ninth, uninstalling

means removing the application’s components(j). Finally, the tenth activity

is called retiring, it deletes components from the repository(k). All these de-

ployment activities are managed by an orchestrator, thus the application’s

components are installed into its target environment previously specified.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 27

Figure 2.2: A Generic Deployment Process of distributed Component-based
Applications

2.2.2 Deployment on Grid Environments

In this subsection we describe three works focusing on the deployment

of applications on grid environments. They have different features and were

built to run in a specific target environment, however we review aspects of the

specification of their target environments.

Fractal and DeployWare

Fractal is a hierarchical and reflective component model, designed to

implement, deploy, and manage complex software systems, e.g. middlewares

[Bruneton06]. Fractal supports composite components, shared components,

introspection, and re-configurable capabilities. A fractal component is an

execution entity, which has two parts: controller(membrane) and content.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 28

The controller groups together functional and control interfaces. Functional

interfaces are the server interfaces, providing methods to other components

like facets and client interfaces like receptacles used to invoke methods. Control

interfaces manage non-functional aspects, it is the content that implements the

business functionality.

Fractal components can be deployed by the DeployWare Framework

[Flissi08]. DeployWare was built using fractal components and allows the de-

ployment of distributed and heterogeneous software applications on large scale

infrastructures such as grids. It was created to deal with complexity, heterogen-

eity, validation, and scalability challenges. DeployWare provides (i) a Domain

Specific Modeling Language(DSML) based on a metamodel representing dis-

tributed deployment concepts and masks software heterogeneity from the user’s

point of view, (ii) a virtual machine(FDF) executes the deployment process, it

contains a library that disguises the heterogeneity of physical machines, and

(iii) a graphical console for monitoring and management. Deployment process

with DeployWare involves three actors: a system administrator describes the

nodes, network options, protocols, etc., a software expert details the deploy-

ment activities, and end users declare both the software used to deploy and

its target environment.

The Fractal Deployment Framework (FDF) is a component-based frame-

work, which automates the deployment of distributed applications. Deploy-

ments are described using a high-level FDF deployment description language

or simply FDF language. It is based on a subset of Fractal ADL (Architecture

Description Language) and allows end-users to describe deployment configura-

tions. FDF language is also utilized to define a library of deployment compon-

ents. Additionally, FDF provides a graphical user interface allowing end-users

to load, execute, and manage their deployment configurations

DeployWare groups all hosts to define a network description, where

each host is declared using INTERNET.NETWORK variable, with the fol-

lowing elements: hostname, user, transfer protocol, access protocol, shell,

and compute(optional). The hostname parameter supports static and

dynamic options: INTERNET.HOSTNAME(NameOfHost) and INTER-

NET.DYNAMICHOSTNAME. The first option is only necessary to set a

hostname or an IP. The second option allows users to define the host in

runtime. Code 2.1 shows an example of a static definition of one host where its

hostname is defined statically. Code 2.2 declares a dynamic definition of a host

on Grid5000 network. The name is computed at runtime after a reservation

on the grid called Grid5000 [Grid5000Fr].

DeployWare also deals with large deployments, for example Code 2.3

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 29

Listing 2.1: Declaration a Static Node
1 GRID5000 . STATICNODE = INTERNET .HOST {
2 hostname = INTERNET .HOSTNAME(NameOfTheHost) ;
3 u s e r = INTERNET . USER(doe , password , / home/ doe / . s sh / i d r s a) ;
4 t r a n s f e r = TRANSFER. SCP ;
5 p r o t o c o l = PROTOCOL. OpenSSH ;
6 s h e l l = SHELL . SH ;
7 }

Listing 2.2: Defining dynamic Grid5000 hosts
1 GRID5000 .DYNAMICNODE = INTERNET .HOST,
2 org . ob j ec tweb . f d f . a d l . B ind ing (hostname . ch , compute . ch)
3 {
4 compute = INTERNET .COMPUTEHOSTNAME(UNDEFINED) ;
5 hostname = INTERNET .DYNAMICHOSTNAME;
6 u s e r = GRID5000 .OARUSER(OUTPUT FILE) ;
7 t r a n s f e r = TRANSFER.OARCP;
8 p r o t o c o l = PROTOCOL. OarSH ;
9 s h e l l = SHELL . SH ;

10 }

declares 50 nodes on a Grid5000 using an ADL element called apply [Dubus08].

OAR, the resource manager of Grid5000, launches a reservation request of 50

nodes and stores the hosts into the list /tmp/nodes. The compute element

returns a hostname from a previous generated list of nodes. Hosts are specified

using the iteration apply Fractal ADL, which allows system administrators

to set an available host from nodes reserved and not previously assigned to

another DynamicHost.

Listing 2.3: Extract of DeployWare definition which declares 50 nodes
1 GRID . TEST {
2 oar = GRID5000 . OARGRID(o a r a r g s n=50, /tmp/ nodes) ;
3 compute = INTERNET .COMPUTEHOSTNAME(/ tmp/ nodes) ;
4

5 /∗ The d e c l a r a t i o n o f nodes ∗/
6 Hosts = GRID5000 .G5K NETWORK {
7

8 g5k−nodes {
9 app l y Fo rEach In In t ege rRange (i , 1 , 5 0) {

10 node−%{ i } = GRID5000 .DYNAMICNODE {
11 u s e r = INTERNET . USER(jdubus , , ˜ / . s sh / i d r s a) ;
12 compute = / ;
13 }
14 }
15 }
16 }
17 }

ADAGE and CoRDAGe

A Generic Application Description(GADe) model was proposed by

Lacour et al. [LacourPePri05] to represent specific application descriptions.

The GADe consists of three interconnected computing entities: system entit-

ies, processes, and codes to load. A system entity includes one or more process,

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 30

a process is made up of a running instance of a program and the codes to load

it, sharing a common space in memory. Also, there are connections between

the system entities. A system entity is deployed on distributed hosts, and all

processes of the same entity run on the same host. GADe supports the specific-

ation of a list of operating system and/or computer architecture as its target

environment. Based on this model ADAGe was built, a tool for automatic de-

ployment of distributed and parallel applications. Deployment planning has

been developed to accept a generic application description, this was possible

because the application context assumes the execution of threads and processes

of parallel and distributed paradigms. Deployment planning layer selects com-

pute nodes and installs the components automatically. A translator makes

the conversion from a specific application description to a generic description

format. Finally, the plan is executed making the necessary configurations.

CoRDAGe is a third-party tool based on ADAGe, for grid applications

focusing on re-deployment and co-deployment of components, enabling a dy-

namic management of different application types [CudennecAnBo08]. Expan-

sion and retraction approaches enable the re-deployment feature, that is, new

entities could be added or removed from a previously deployed application, re-

spectively. Co-deployment allows users to deploy several applications, grouping

sub-applications within their own constraints. CoRDAGe defines an applica-

tion as a set of types of entities, where each entity represents a program to

be executed on a physical resource, therefore the entity is the CoRDAGe unit

element designed to be deployed in a single host. These entities are managed

by building logical groups, posteriorly generalized into logical trees. They in-

troduce the notion of the virtual node which is located at the root of the tree,

then logical trees are mapped for physical resources. Also, physical resources

are grouped in hierarchical physical groups in a tree format. The building of

CoRDAGe was possible due to the high-level model proposed to describe both

the applications and physical resources. Figure. 2.3 displays these representa-

tions.

The CoRDAGe model designed its target environment based on grid

scenarios. To join the re-deployment of components and the reservation of

nodes CorDAGe does not work migrating deployed entities to other hosts,

instead it aims to deploy new entities (expand) or remove deployed entities

(retract).

DAnCE

DAnCE(Deployment and Configuration Engine) [Deng05] is a QoS-

enabled middleware framework, it aims to deploy Distributed Real-time and

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 31

Figure 2.3: Representing physical resources using a physical tree

Embedded(DRE) systems dealing with collocation, memory constraints, and

processor loading challenges. DAnCE proposes a combination of a standard

runtime environment and metadata to address challenges of DRE systems.

DAnCE maps known variations in the application requirements space to known

variations in the software solution space. Deng et al. have developed an In-

ventory Tracking System (ITS) as study case for DAnCE. ITS faces major

challenges of efficient storage and retrieval components (multi-platform) from

a repository, management and configuration of component’s life-cycle, and in-

tegration with common middleware services. DAnCE implements the OMG

Deployment and Configuration Specification(OMG D&C) [OMGDC06]. OMG

D&C standardizes the deployment process and configuration focusing on fea-

tures such as component configuration, component assembly, component pack-

aging, package configuration, package deployment, and target domains. OMG

D&C defines domain as the target environment composed of nodes, inter-

connections, and bridges. DAnCE uses a Data Model and Runtime Model to

represent a sequence of steps that components need to operate. In turn the

data model uses XML schemas to store metadata for managing the deploy-

ment of component assemblies. Meanwhile, the runtime model specifies a set

of managers to process the previous metadata. Figure 2.4 shows the design of

DAnCE, its architecture is managed by ExecutionManager, DomainApplica-

tionManager, NodeManager, NodeApplicationManager, NodeApplication, and

RepositoyManager. We have paid attention to ExecutionManager and Node-

Manager, because they work directly with the deployment plan and its target

domain. ExecutionManager is responsible for overseeing the deployment pro-

cedure for one or more domains, it uses the factory and finder design patterns

to manage DomainApplicationManagers. This then in turn carries out the de-

ployment over one or more domains. NodeManager allows each node to manage

the deployment of itself. RepositoryManager uses a zip compression to package

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 32

the components.

Figure 2.4: Internal Architecture and Deployment Stages of DAnCE

Therefore, we can consider that ExecutionManager, RepositoryManager,

and NodeManager services will be run on separated physical machines. Ad-

ditionally, RepositoryManager needs to be instantiated for each platform i.e.

Windows, Linux, etc. DAnCE was tested over an ITS software, which includes

200 components deployed on 26 physical nodes in a warehouse, thus the target

environment is previously known. DAnCE describes the QoS requirements and

target environment using XML descriptor files.

2.2.3 Deployment on Cloud Infrastructures

We review two new approaches, FraSCAti and OSGi, which aim to solve

recent cloud computing challenges and support the development of PaaS.

FraSCAti

FraSCAti is an open-source implementation of Service Component Ar-

chitecture (SCA) standard, which enables the development and deployment of

distributed SCA-based applications. A recent publication [Merle11] suggests

the SCA standard as a framework for designing and developing cloud soft-

ware. Merle et al. have worked trying to address three main developer ques-

tions: (i) How to deploy applications for several cloud providers? (ii) How to

migrate applications between different cloud providers? and (iii) How to man-

age applications deployed on multiple cloud providers?. These questions have

emerged as a consequence of an increasing concurrence of cloud providers.

Challenges such as migration, interoperability, brokering, and geo-diversity

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 33

need to be tackled. The proposal was to develop a reflective middleware-based

solution with two objectives: adapting applications to different cloud providers

and managing applications deployed on different cloud providers (multi-Cloud

systems). This middleware is denominated FraSCAti platform [Seinturier09].

FraSCAti was built using a specialization of the Fractal component model,

therefore it supports introspection and reconfiguration capabilities. They de-

ployed the FraSCAti platform and six SCA-based applications over eleven

IaaS/PaaS providers. The experiments show that FraSCAti and SCA-based

applications can address static migration, inter-operability, and geo-diversity.

Merle et al. have contributed enumerable lessons learnt from the experiments.

We consider their major contribution to be related to the use of FraSCAti as

an extension layer between applications and PaaS/IaaS, because it permits the

combination of SCA heterogeneity and FraSCAti fine-grained reflectivity with

Cloud Computing scalability, and allows building of large-scale heterogeneous

multi-Cloud systems. Additionally, they argue that middlewares and applica-

tions need to be more flexible and propose the use of use adaptability in design

and runtime levels. The adaptability of design time is accomplished with the

use of plugin-like SCA-based architecture and features diagrams. FraSCAti

has a plugin-based architecture and allows applications to be adapted in dif-

ferent environments. Feature diagrams are proposed to get a Software Product

Line(SPL) to control the complex forms of plugin combinations. For the adapt-

ability of execution time FraSCAti offers two features: reflection and dynamic

deployment of reconfiguration scripts.

Paraiso et al. in [Paraiso12] complements the previous work detailing

their federated PaaS infrastructure for multi-cloud applications. Federated

Clouds mean the union of internal and external clouds, also called interclouds.

This infrastructure was built based on (i) an open service model; (ii) a config-

urable architecture; and (iii) infrastructure services. The open service model

is defined by the FraSCAti platform. It allows the handling of portability, in-

teroperability, and heterogeneity challenges. The federated multi-cloud PaaS

infrastructure has been built over a generic configurable kernel, inspired by the

FraSCAti platform and the design of a Software Product Line (SPL). Hence,

the SPL is used to develop both common characteristics and the points of

variability, between cloud providers (plugins) using the FraSCAti platform to

build this SPL. Finally, four common services were build to support the use of

the multi-cloud infrastructure: (i) Cloud Node Provisioning enables the alloc-

ation of resources before the deployment phase; (ii) PaaS Deployment Service

supports the deployment of the configurable kernel together with a SaaS; (iii)

SaaS Deployment Service to deploy/undeploy the SaaS applications; (iv) Fed-

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 34

eration Management Service is responsible for supervision and reconfiguration

of both PaaS and SaaS. In addition to a P2P(per-to-per) monitoring network

application, they developed another two applications: a Distributed Complex

Event Processing (DiCEPE) SaaS, this application integrates different complex

event engines, also interacts with several remote communication protocols, and

AntDroid that delivers it to scientists for sensing the activities of mobile users.

Finally, these applications were deployed on thirteen cloud environments, val-

idating both the service model and the generic kernel infrastructure.

OSGi

The Open Services Gateway initiative(OSGi) framework is a dynamic

module system and service platform for java, defined by OSGi Alliance. OSGi

components are called bundles containing java classes and configuration files.

They can be dynamically installed, started, stopped, updated, and uninstalled

on runtime.

Due to a dynamic and seamless deployment of OSGi applications, recent

works [HangCan10], [Schmid09] have proposed the use of OSGi as the platform

to build complex java applications for cloud infrastructures. In addition,

OSGi Cloud Working Group has been studying ways to extend current

OSGi standards to provide support for cloud computing. These efforts have

been formalized in a new requirement document called RFP (Request for

Proposal) 133 [Kriens11]. This document summarizes an introduction to cloud

computing, relevance of OSGI to cloud, a problem description, and some usage

cases. The OSGi key that supports cloud software is its modularity, because

it contributes with its compositional approach based on modular software.

Therefore, OSGi allows users to build elastic, scalable, and dependable software

applications. RFP 133 details generic properties of software modules, such

as its composable feature and its localized behaviour by separating both

tightly-coupled and loosely-coupled interaction between modules into package

dependencies and services concepts. RFP 133 describes as challenges the

properties related to the benefits of components OSGi instead of virtual

machine images. For example, re-deployment and upgrading of running systems

are faster than application upgrades using virtual machines. Finally, RFP 133

details a series of problems to be addressed in future discussions, some of

these relevant challenges are service discovery, monitoring, logging, security,

accessibility, provisioning, discovery, and provision of resources.

OSGi and cloud computing have been discussed since 2010 on OSGi con-

ferences. A particular point discussed was the replication of nodes containing

services. When nodes are replicated, they need to have facilities to specify mul-

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

Chapter 2. Background Work 35

tiple destination hosts, then as to avoid all replicas being deployed. Therefore,

there are many opportunities proposing OSGi as key technology to address

current cloud challenges.

2.3 Final Remarks

In the first part of this chapter we reviewed the fundamentals of cloud

computing. We studied its definition, taxonomy, platforms, APIs, and a

partial software stack used in cloud computing. To create a cloud-based

target environment we consider the following issues. (1) We use the IaaS to

create cloud-based target environments because we require the provisioning

of computational resources such as processing, storage, and networks. (2) To

deploy the applications it is necessary to choose a cloud deployment model.

The open-source cloud platforms allow us to set up our own private cloud,

and then we can have full control over the cloud infrastructure. Public clouds

usually have their own cloud platform and are ready to provide cloud resources,

but we have limited access to the private cloud platform. Thus, we use

both a private cloud and a public cloud. (3) In order to access the cloud

infrastructure, we need a cloud API, libraries, and tools. We reviewed three

generic cloud APIs(see sub-subsection 2.1.4), however we did not find a cloud

API that fits our needs. We decided to develop our own cloud API to be

integrated with our deployment infrastructure for two reasons. The first, we

did not find a ready Lua-based cloud API implementation that supports an

easy integration with our deployment infrastructure prototype. The second,

although the APIs studied support the use of several cloud platforms, they

do not allow specification of the resource requirements such as user-defined

requirements and software installed on the virtual machine instanced. (4) The

installation and configuration of a cloud platform is not an easy task, because

it comprises a set of software layers. To support this set up we installed and

configured our own private cloud.

In the second part, we studied a generic deployment process to describe

deployment activities and their interactions with the deployment services.

Also, we studied the deployment of applications on grid environments. We

highlighted the FDF language of DeployWare because it allows users to define

dynamic hosts.

Finally, we found a limited number of documents combining the deploy-

ment process and cloud infrastructures. FraSCAti is trying to solve main cloud

computing challenges by proposing to develop multi-Cloud systems.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA

