
1

Introduction

The increasing use of complex technologies and large-scale software sys-

tems requires new approaches for developing software systems. Nowadays,

these software systems need to become more flexible, scalable, robust, energy-

efficient, configurable, and self-managed. In this context, Component-based

Software Engineering(CBSE) continues gaining interest for the rapid assembly

of software systems, combining concepts of software requirements engineer-

ing, architecture, design, verification, testing, configuration, and deployment.

CBSE is defined as a process that emphasizes the design and construction of

computer-based systems using reusable software components [Press01]. The

notion of component is the key concept on CBSE and is encouraged by its

reusability. Szyperski [Szy02] defines a software component as a unit of com-

position with contractually specified interfaces and only explicit context de-

pendencies, it can be deployed independently and is subject to composition by

third parties. According to this definition, developing complex software sys-

tems could be composed of a large number of heterogeneous components, of-

fering and requiring services among themselves. It comprises the design of each

component to reach a distributed, scalable and robust architecture, a reliable

testing model and a valid deployment plan. Most of these applications are also

deployed into distributed and heterogeneous target environments, becoming a

challenge for the software industry.

Software deployment involves a set of activities that are performed to

make a software system available to use. Dearle introduces several ideas

concerning software deployment [Dearle07]. He defines software deployment

as the processes between the acquisition and execution of software, performed

by a software deployer. Whereas Heydarnoori describes software deployment

as a sequence of related activities for placing a developed application into its

target environment and making it ready to use [Heydarnoori08]. A typical

software deployment begins with obtaining the software released, then it is

installed and finally activated. Heydarnoori proposes a generic deployment

process composed of ten well-defined activities: release, acquire, plan, install,

configure, activate, update, deactivate, uninstall, and retire.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 1. Introduction 12

Heydarnoori also summarizes the main deployment techniques of

component-based applications proposed by the research community. He clas-

sifies them into eight major deployment approaches. This work reviews two

approaches focused on the deployment of applications into distributed envir-

onments: Model-Driven Deployment proposed by OMG and the Grid Deploy-

ment. The first, the Model-Driven Deployment is part of Model-Driven Ar-

chitecture, which promotes the use of models for system specification and in-

teroperability on the development of software systems. OMG Deployment and

Configuration Specification [OMGDC06] describes metadata and interfaces to

support the deployment and configuration of component-based applications

into a heterogeneous distributed target environment and is compliant with

MDA [Miller01]. The second, the Grid Deployment needs to deal with the

complexity of grid environments. Grid environments are built upon a group of

resources loosely coupled, heterogeneous, and geographically dispersed. There-

fore, to take advantage of grid environments the Grid Deployment should be

as automated as possible. All deployment techniques suppose a set of services

grouped in a “Deployment Infrastructure” allowing users to manage all de-

ployment activities.

Dearle argues that complexity in deployment process comes from inter-

action between the product being installed, the environment, and constraints

of the execution policy. He proposes, to avoid this complexity, the creation of

a perfect custom environment into which applications and components may

be installed. These environments are possible using virtualization, which en-

ables the execution of multiple operating systems sharing the same hardware.

The virtualization layer is responsible for turning physical infrastructures into

virtual resources, and the software that controls this layer is called a “virtual

machine monitor” or “hypervisor” [RimalChLu09]. Some examples of hyper-

visors are Xen, KVM, VMware, and VirtualBox. They have gained great ac-

ceptance on the server virtualization market. In recent years, a new model

called Cloud Computing has emerged as a new computing paradigm. Cloud

Computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort [NIST01].

In conclusion, applications have become more complex and they need

more flexible target environments for their deployment. This flexibility can be

described in terms of elasticity, scalability, and on-demand features. This work

seeks to explore the advantages of using cloud infrastructures, a collection

of hardware and software, to obtain a flexible systen in which to deploy

distributed component-based applications. Additionally, we aim to use these

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 1. Introduction 13

computational resources to host the deployment infrastructure. The remaining

of this chapter is organized as follows. Section 1.1 summarizes our proposal.

Section 1.2 details the objectives. Section 1.3 describes our contributions.

Finally, section 1.4 reviews the structure of the dissertation.

1.1 Proposal

We have described our main motivation to use cloud infrastructures as

the target environment for the deployment of distributed component-based

applications. On the one hand, the deployment process managed by a deploy-

ment infrastructure includes several generic activities, from packaging a com-

ponent to installing in a target environment. Due to their complexity, many

researches have focused on deployment intermediate activities. They are fo-

cus on increasing the performance of characteristics such as self-adaptability,

self-configurability, and self-management. On the other hand, this deployment

process needs a target environment to be executed. Typical target environ-

ments for deployment of applications are combinations of machines from single

nodes to clusters and they are usually specified using description files. However,

with the recently adoption of the Cloud Computing model, new target environ-

ments are being delivered on-demand, leveraging properties such as scalability,

elasticity, flexibility, and so on. We aim to replace the typical description files of

target environments with a pool of virtual machine instances in order to define

a cloud-based target environment, and join it with the deployment activities.

For example, once the application has been delivered to a software deployer

for deployment, he writes a specification for the target environment according

to its requirements ensuring some level of QoS(Quality of Service). In order

to request a cloud-based target environment, the deployment infrastructure

requires an overview of the cloud because it will decide whether consume or

instantiate virtual machines on the cloud. Finally, the application is deployed

following the activities defined by the deployment infrastructure.

Therefore, we have concentrated on two main topics: first, software

deployment technologies and approaches focused on distributed component-

based applications; second, the provision of computational resources provided

by cloud computing.

1.2 Objectives

This work aims to combine two recent research areas: deployment of

distributed component-based approaches and cloud computing. Approaches for

deployment of distributed component-based applications have been designed to

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 1. Introduction 14

work with pre-defined target environments. Additionally, current deployment

technologies provide limited support to define on-demand target environments.

This limitation could be reduced using an Infrastructure as a Service(IaaS)

because it allows the consumption of computational and storage resources.

Following this, our main objective proposes connection point where the

deployment of distributed component-based applications and cloud infrastruc-

tures can combine. Thus, we need to provide mechanisms for the deployment

process to be able to use cloud resources. These mechanisms should add capab-

ilities to enable users to specify target environments on cloud infrastructures.

Our tests comprise the deployment of a SCS MapReduce application, which

allows us to assess the deployment infrastructure and its target environment

deployed on the cloud. To carry out the purpose of this work we need to ac-

complish:

• Extension of the deployment activities of distributed component-based

applications in order to acquire advantages of an elastic, scalable, and

on-demand provision of computational resources.

• Set up and use a cloud infrastructure focused on providing compute and

storage resources. Then, to consume these cloud resources based on user-

specified deployment requirements.

1.3 Contributions

This work aims to achieve three major contributions to the deployment

process of distributed component-based applications on cloud infrastructures.

Our first contribution proposes a way for setting up a cloud-based target

environment, which gives users the option of writing a set of parameters

of computational resources. To specify these resources we adopt the use of

policies combining them in a flexible form. For example, users could write a

policy to instantiate the cloud-based target environment previously specified

or only access it by using virtual machines running on the cloud. The second

contribution is the design and implementation of a cloud API, where its main

characteristic is the management of policies. For example, we can use both

default or our own policies to request a customized set of virtual machine

instances. Our third contribution, we got an experimental Platform as a Service

as consequence of deploying the SCS Deployment Infrastructure [Junior09]

using cloud infrastructures as its target environment. This means that we can

extend it to provide a SCS-based cloud infrastructure to deploy distributed

component-based applications.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA



Chapter 1. Introduction 15

1.4 Dissertation Structure

This work is organized in six chapters. Chapter 2 describes the funda-

mentals of Cloud Computing focused on the context of our work, and the

related work studied. Chapter 3 details our reference scenario including the

“Software Component System(SCS)” Component Model and its deployment

infrastructure. Chapter 4 describes the challenges of our work, the elements

developed to enable the use of cloud infrastructures, and our proposed architec-

ture. Chapter 5 explains an example of the use of our proposed infrastructure

using a SCS MapReduce application. Finally, chapter 6 details the conclusions

and future works.

DBD
PUC-Rio - Certificação Digital Nº 0921330/CA




