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Abstract 
 
 
 
 
 
 
 

Ribeiro, Ayrton Soares; Freire, Rosane Riera (Advisor). Inferring the 
nature of deterministic sources of real series through Permutation 
Entropy and Statistical Complexity measures. Rio de Janeiro, 2013. 53p. 
Dissertação de Mestrado — Departamento de Física, Pontifícia 
Universidade Católica do Rio de Janeiro. 

 
 

 

The scope of this dissertation is to infer the character of the forces 

controlling complex systems modeled by Langevin equations, by recourse to 

information-theory quantifiers. We evaluate in detail the permutation entropy (PE) 

and the permutation statistical complexity (PSC) measures for two classes of 

similarity of stochastic models characterized by drifting and reversion properties, 

respectively, employing them as a framework for the inspection of real series. We 

found new relevant model parameters for PE and PSC measures as compared to 

standard entropy measures. We determine the PE and PSC curves according to 

these parameters for different permutation orders n and infer the limiting measures 

for arbitrary large order. Although the PSC measure presents a strongly scale-

dependent behavior, a key n-invariant outcome arises, enabling one to identify the 

nature (drifting or reversion) of the deterministic sources underlying the complex 

signal. We conclude by investigating the presence of local trends in stock price 

series. 
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Resumo 
 
 
 
 

 

 
Ribeiro, Ayrton Soares; Freire, Rosane Riera. Inferindo a natureza das 
fontes determinísticas de séries reais através de medidas de Entropia de 
Permutação e Complexidade Estatística. Rio de Janeiro, 2013. 53p. 
Dissertação de Mestrado — Departamento de Física, Pontifícia 
Universidade Católica do Rio de Janeiro. 

 
 
 

O objetivo dessa dissertação é inferir o caráter das forças que governam os 

sistemas complexos modelados por equações de Langevin, utilizando 

quantificadores provenientes da teoria de informação. Avaliamos em detalhes as 

medidas de entropia de permutação (PE) e de complexidade estatística de 

permutação (PSC) para duas classes de similaridade de modelos estocásticos, 

caracterizadas por propriedades de arrasto ou de reversão, respectivamente, 

empregando-as como referência para a inspeção de séries reais. Encontramos 

novos parâmetros relevantes dos modelos para as medidas de PE e PSC, em 

relação a medidas tradicionais de entropia. Determinamos as curvas de PE e PSC 

de acordo com esses parâmetros para diferentes ordens de permutação n e 

inferimos as medidas limites para uma ordem arbitrariamente grande. Apesar de a 

medida PSC apresentar comportamento fortemente dependente da ordem de 

permutação considerada, encontramos um importante resultado n-invariante, que 

permite identificar a natureza (de arrasto ou de reversão) das fontes 

determinísticas subjacentes ao sinal complexo. Concluímos investigando a 

presença de tendências locais em séries de preços de ações. 
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–Você sabe quem foi o primeiro a explicar a

verdadeira origem do arco-́ıris? – perguntei.

–Foi Descartes – ele respondeu. Depois de

um momento, me olhou nos olhos. –E qual

você acha que foi a caracteŕıstica do arco-́ıris

que mais se destacou aos olhos de Descartes

para inspirá-lo na sua análise matemática? –

perguntou.

–Bem, o arco-́ıris na verdade é o pedaço de

um cone que surge como um arco das cores do

espectro quando gotas d’água são iluminadas

pelo sol atrás do observador.

–E?

–Suponho que sua inspiração tenha sido a

compreensão de que o problema podia ser ana-

lisado a partir de uma única gota d’água e da

geometria da situação.

–Você está deixando de lado uma carac-

teŕıstica fundamental do fenômeno – ele disse.

–Tá legal, desisto. Para você, o que teria ins-

pirado a teoria dele?

–Eu diria que sua inspiração veio pelo fato de

ele achar que os arco-́ıris eram lindos.

Leonard Mlodinow, O arco-́ıris de Feynman.
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1

Introduction

When it comes to the study of complex systems, uncertainty plays an

ubiquitous and significant role. Any approach that can provide tools which

allow scientists to measure and manipulate it is also a contribution to a better

description of the complex phenomena.

There has been considerable interest in quantifying the complexity of

empirical time-series, despite the ill-defined concept of complexity. Amongst

the approaches proposed to date, there are many entropy-based methods

(1, 2, 3). Nevertheless, classical entropy measures neglect temporal relationship

between neighboring values of time series, so that possible temporal patterns

in the process are not accounted for.

Recently, it was introduced an entropy-based complexity measure, na-

mely, the permutation entropy (4), which was designed to characterize the

irregularity of the local temporal structure of the dynamic variables. In the

course of time, other authors have proposed generalized complexity measures

(5, 6, 7). In particular, one can distinguish the entitled statistical complexity

measure, which accomplished to discriminate different dynamical behaviors

such as periodic, chaotic or stochastic (8).

Here, we will be concerned on the composition of the permutation entropy

and the statistical complexity measures to quantify not only diversity but also

the correlational structures presented in the hidden dynamics of real-world

time series.

Our analysis is based on the assumption that the observed signal evolve

according to a deterministic source (predictable from the past) plus unpre-

dictable stochastic fluctuations due to internal degrees of freedom or the en-

vironment. In many applied fields such as biomedical sciences, eco-systems

and social-economic systems, the characterization of such sources is essential.

For example, in the biomedical domain, the analysis of physiologic data from

entropy-based complexity measures allows one to distinguish between normal

and pathological recordings (9, 10). Another example, in the realm of eco-

systems, the complexity of daily flow rate of river systems shows changes along

time due to human intervention on the soil (11).
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1. Introduction 14

However, it is considerably difficult to find the nature of the deterministic

forces describing the evolution of complex systems, which provides the optimal

framework for predicting its behavior. In this work we will follow this issue by

analyzing in detail some information-based quantifiers.

In order to introduce the reader to this technique, we first present in

chapter 2 some measures based on information theory. We define and analyze

the main properties of Shannon’s entropy, Kullback-Leibler divergence and the

Jensen-Shannon divergence.

Next, in chapter 3 we combine the previous measure to build the

statistical complexity measure and apply it on the logistic map via amplitude

statistics and symbolic analysis. At this point, the reader should be ready to

understand the need of a special methodology for constructing an histogram

which captures the transition structure present in time series of a given process.

Therefore, in chapter 4 we explain in details the methodology proposed

by Bandt & Pompe (4), known as permutation entropy, and illustrate its po-

werfulness by arriving at the best results for the logistic map: the permutation

entropy and statistical complexity measure are capable of distinguishing noise

from chaos.

Then, we proceed to chapter 5 where we investigate, via the presented

technique, two representative classes of stochastic models showing drifting

or reversion properties. The framework of our approach is to consider a

parsimonious number of similarity classes, which encompass diverse models,

and employ them as a reference tool for the inspection of determinism in real

world noisy data sets.

After, in chapter 6, these measures are computed for financial data,

namely, price series from American and Brazilian markets. By examining

the levels of permutation entropy and complexity measures of both empirical

and theoretical models, we achieve important clues about the nature of the

underlying market forces. Finally, we summarize the results and findings in

chapter 7.
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2

Principles of Information Theory

In order to decrease the uncertainty of a given process, one can collect

more information about it. However,

“More often than not, more knowledge may increase the uncer-

tainty and therefore we cannot claim that the so-called information

explosion has led to a proportional diminution of ignorance in the

world we live.”

J. N. Kapur (12)

In this work, probabilistic uncertainty is investigated. We shall be concer-

ned only with processes that are appropriate to probabilistic modeling and

which events are well defined such that there is no ambiguity concerning them.

For example, one may analyze uncertainties about a football team winning a

championship, or which brand of chocolate Brazilians prefer, or what grade a

student’s work will receive.

2.1

Principle of Maximum Entropy

Consider a stochastic process with N possible outcomes. The only

information known is that for any set of probabilities {pi, i = 1, ..., N} there is

a normalization constraint, that is

N
∑

i=1

pi = 1 (2-1)

Different probability distributions have different uncertainties associated

with them. For instance, when comparing the probability distribution of

winning a lottery ([ǫ, 1 − ǫ] with ǫ << 1) with the probability distribution

for an unbiased coin ([0.5, 0.5]), the latter is much more uncertain. The

uncertainty associated with probability distribution P is known as probabilistic

uncertainty. Since the work of Shannon (13), it is called entropy1 and is denoted

by S[P ].

1The connection with thermodynamics will be explained in the next section.
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2.2. Shannon’s Entropy 16

On the other hand, uncertainty associated to a process can be minimized

using all the information available. Consider for instance an experiment with

unknown behavior. First, when looking at the literature one discovers that the

experiment can produce at each realization one of six different outcomes only,

leading to probability distributions limited to (p1, p2, . . . , p6). In addition, if

mean and variance are given, the uncertainty about the process is reduced

even more, because a smaller set of distributions can show the given statistical

moments.

Consider the set of probability distributions satisfying the given

constrains and the respective associated entropy values. For this set there is

a range of entropy [Smin, Smax]. Then, when extra constraints are revealed,

the set of distributions is reduced and Smax decreases (or at least it doesn’t

increase) while the Smin increases (or at least it doesn’t decrease).

If one finds a total of six linear independent constraints, the probability

distribution P ∗ will be uniquely determined, leading to the uncertainty mea-

sure S[P ∗] for the process. However, what probability distribution one shall

assign if not enough constraints are given? The answer is furnished by the

Principle of Maximum Entropy :

Out of all probability distributions consistent with a given set of

constraints, choose the one that has maximum uncertainty.

This statement is known as the principle of ancient wisdom and also the

principle of scientific objectivity and honesty, as any other choice of distribution

would imply the use of information that was not given.

2.2

Shannon’s Entropy

In order to determine the most uncertain probability distribution one

needs a measure of uncertainty. One famous candidate is the Shannon’s

information measure. In the derivation of his measure, Shannon(13) considered

the properties that this measure should satisfy. They are:

1. S(p1, p2, . . . , pN) should be continuous function of p1, p2, . . . , pN ;

2. S(1/N, 1/N, . . . , 1/N) should be a monotonic increasing function of N ;

3. S(p1, p2, . . . , pN) = S(p1 + p2, p3, . . . , pN) + (p1 + p2)S(
p1

p1+p2
, p2
p1+p2

)
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2.2. Shannon’s Entropy 17

Shannon proved that the only expression which satisfies these properties

is

S(p1, p2, . . . , pN) = −k

N
∑

i=1

pilog pi (2-2)

which is mathematically equivalent to the Boltzmann classical entropy. In order

to maintain property 2, k has to be a positive constant and for simplicity one

may assign k = 1. In addition, this measure satisfy other important properties,

such as

– non-negativity: S(p1, p2, . . . , pN) ≥ 0

– permutation symmetry: S(p1, p2, . . . , pN) = S(p2, p1, . . . , pN)

– differentiability: ∂S
∂pi

∃, for 0 < pi ≤ 1

– concavity: ∂2S
∂p2

i

< 0, for 0 < pi ≤ 1

In particular, the concavity property ensures that a local maximum is

always a global maximum. This property turns the Shannon’s measure suitable

for constrained optimizations.

As a first application, consider that the only information available about

the probability distribution is the normalization constraint. Then, in order to

maximize Shannon’s entropy given just this constraint, one can use Lagrange’s

Method of multipliers.

First, construct the Lagrangian functional using constraint equations:

L = −
N
∑

i=1

pi log pi − λ

(

N
∑

i=1

pi − 1

)

(2-3)

The probability distribution is obtained by maximizing the above func-

tional:

δL = 0 ⇒ pi = e−(λ+1) (2-4)

Therefore, by taking the normalization constraint into account:

N
∑

i=1

pi = 1 ⇒ pi = eλ+1 (2-5)

or P ≡ U =

{

1

N
,
1

N
, . . . ,

1

N

}

(2-6)

Thus, it is shown that the distribution which maximizes the Shannon’s

entropy is the uniform distribution. This in agreement with Laplace’s principle
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2.3. Principle of Minimum Directed Divergence 18

of insufficient reason, which states that in the absence of any reason to the

contrary, one should take all outcomes to be equally likely. In this case, the

uncertainty measure is

Smax = S[U ] = log N (2-7)

In contrast, Smin = 0 is obtained for processes with maximum order,

i.e. one pi is equal to unity while the others are null. In such cases, one have

complete predictability.

Smin = S(1, 0, . . . , 0) = 0 (2-8)

In Appendix A we illustrate the optimization procedure for processes

described by continuous probability distribution constrained by the the first

two moments.

2.3

Principle of Minimum Directed Divergence

This principle focuses on a “distance” of a probability distribution P from

another distribution Q. When extra information is given about the system, a

different probability distribution shall be designated.

Out of all probability distributions consistent with a given set of

constraints, select the one that is the most similar to the uniform distribution.

This is called the Principle of Minimum Divergence. Naturally, it de-

mands a measure of dissimilarity, distance or divergence in the probability

distribution space.

An elaborate measure which features some desired properties was

developed by Kullback and Leibler and is defined by

DK [P ||Q] =
N
∑

i=1

pilog
pi
qi

(2-9)

In fact, the Kullback-Leibler measure is a directed divergence, i.e. for any

P 6= Q , DK [P ||Q] 6= DK [Q||P ]. In addition, it can be proved that DK [P ||Q]

is non-negative. Here is the proof:

Let qi = pi(1 + ǫi) where (1 + ǫi) > 0 ∀ i. By computing the sum over all
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2.3. Principle of Minimum Directed Divergence 19

i, one gets

N
∑

i=1

piǫi = 0 (2-10)

Then,

DK [P ||Q] =

N
∑

i=1

pilog
pi

pi(1 + ǫi)

= −
N
∑

i=1

pilog (1 + ǫi)

=
N
∑

i=1

pi(ǫi − log (1 + ǫi)) (2-11)

The function f(x) = x − log(1 + x), defined for (1 + x) > 0, is positive

and has just one root at x = 0. Therefore,

DK [P ||Q] > 0 for P 6= Q (2-12)

and
DK [P ||Q] = 0 iff P = Q (2-13)

The use of the Kullback-Leibler measure in constrained optimization me-

thods enables one to write the pi as exponential functions (as the maximization

of Shannon’s entropy). Thus, the optimal probability values are never negative.

A central result is provided by this divergence when the uniform distri-

bution U , which is the most uncertain distribution,is taken as reference:the

closer a distribution is to U , the greater is its uncertainty:

DK [P ||U ] = S[U ]− S[P ], (2-14)

which means that minimum divergence is equivalent to minimum cross-entropy.

Moreover, the above expression links the principles of maximum entropy and

minimum cross-entropy, and sets the bounds of DK [P ||U ]:

0 ≤ DK [P ||U ] ≤ logN (2-15)

On the other hand, there is no proof of uniqueness for the divergence

measure (as there is for information/entropy given by Shannon). This makes

the choice of the divergence arbitrary and one may choose other ones instead
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2.3. Principle of Minimum Directed Divergence 20

of Kullback-Leibler measure. On the following, we present three different

measures of divergence for pairs of probability distributions.

First, consider the simplest measure of divergence, the Euclidean norm:

DE [P,Q] =

N
∑

i=1

(pi − qi)
2 (2-16)

Its simplicity comes from the fact that it disregards the stochastic nature

of {pi}. In contrast, the Wooters measure of statistical distance is defined as

(14):

DW [P,Q] = cos−1

(

N
∑

i=1

(pi)
1

2 · (qi)
1

2

)

(2-17)

Both measures are also non-negative but, differently from Kullback mea-

sure, they are symmetric divergences. It happens that the Kullback measure

of directed divergence can be used to form a symmetric measure. Consider the

Jensen-Shannon divergence (15):

Jα[P ||Q] = DK [αP ||αP + (1− α)Q] +DK [(1− α)Q||αP + (1− α)Q] (2-18)

with 0 < α < 1. In the special case (α = 1/2), one gets a symmetric measure.

The Jensen-Shannon divergence is non-negative because it consists of a

sum of non-negative terms (Kullback measures). In addition, one can write the

above expression in terms of Shannon’s entropies:

Jα[P ||Q] = S[αP + (1− α)Q]− αS[P ]− (1− α)S[Q] (2-19)

which, reinforce that the Shannon’s measure has negative concavity. Moreover,

it leads to the Jensen inequality (16):

S[αP + (1− α)Q] ≥ αS[P ] + (1− α)S[Q] (2-20)

A generalization of this measure can be made to compare more than 2

probability distributions (15, 17) and there is also a quantum version of it (15).

For the symmetric measure with α = 1/2, we denote J
1

2 [P ||Q] as J [P,Q]

and write
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J [P,Q] = S

[

P +Q

2

]

− S[P ]

2
− S[Q]

2
, (2-21)

which is the divergence measure used in this work. The bounds of J [P,Q] for

any N ≥ 2 are (15, 17):

0 ≤ J [P,Q] ≤ log2 (2-22)

In addition, when setting Q to uniform distribution, one achieves at:

J [P, U ] = S

[

P + 1
N

2

]

− S[P ]

2
− logN

2
, (2-23)

For this measure, for each N one obtains different values. One must set

P = {1, 0, ..., 0} , in order to get the maximum of J [P, U ], which is

Jmax = −
(

N+1
N

)

log (N + 1)− logN − 2 log2

2
(2-24)

Note that when N → ∞ ,Jmax converges to maximum J [P,Q].
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3

Complexity Measures

3.1

Complexity Vs Randomness

Several generalized entropy measures have been proposed in the literature

to quantify complexity (1, 2, 3). These information measures have in common

an increasing behavior with disorder. However, random data would exhibit

rather low complexity in their statistical description. In the following, we

present an information measure that catch the endeavor required to model

statistically the data.

3.2

Statistical Complexity Measures

An information measure I[P ] characterizes a given probability distribu-

tion P . Considering that P is associated to the possible states or patterns of a

physical process, one may achieve maximal knowledge if I[P ] = 0 is obtained.

On the opposite side, for I[P ] = Imax maximal ignorance is reached. This two

extreme circumstances (maximum foreknowledge and maximum randomness)

can be regarded as “trivial” ones. It follows that to quantify complexity, one

should use measures not fully dependent to the degree of randomness. After

that, one considers the statistical complexity measure:

C[P ] = H [P ] ∗Q[P ], (3-1)

where H [P ] = S[P ]/Smax is the normalized Shannon entropy and Q[P ] is a

measure of disequilibrium (6), defined as:

Q[P ] = Q0 ∗ J [P, U ]. (3-2)

where Q0 = 1/Jmax is a normalization factor.
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Note that from Eq. (2-23), the disequilibrium Q[P ] (3-2) is different

from zero if there exist privileged states among the others, so that the C[P ]

measure (3-1) will ascribe null value of complexity for both regular (totally

predictable) and random (totally unpredictable) series. Therefore, systems

composed by a mixture of regular and stochastic processes, exhibiting a

behavior in-between these two extremes, although encompassing intermediate

content of information, are more complex.

An important issue emerges, that is the characterization the complexity

measure bounds for a given value of entropy. They can be obtained by

considering the extreme distributions (6) with probability values pj, 1 ≤ j ≤ N

of the form:

0 for 1 ≤ j ≤ m (3-3)

p for m+ 1 ≤ j ≤ m+ n

(1− pn)/(N −m− n) for m+ n+ 1 ≤ j ≤ N

By evaluating the entropies and complexities of the above distributions,

one arrives at significant results for the complexity bounds. The results are

illustrated in Fig. 3.1, which shows the complexity bounds in the Complexity-

Entropy(C-H) plane for N = 6 and N = 1000.
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Figure 3.1: Upper and lower complexity bounds for N = 6 (left panel) and
N = 1000 (right panel). Full dark circles indicate the calculated points. A
polynomial interpolation was done in order to get the maximum curve for
N = 6.

When m = 0 and n = 1, one has Plow =
{

p1 = p; pj =
1−p
N−1

, 2 ≤ j ≤ N
}

which furnishes the minimum value C[Plow] for the complexity measure Eq. (3-

1), considering the set of distributions with entropy value H = H [Plow]. By

varying p, we vary Plow and thus, we can get an infinite number of points for

the lower complexity bound in the C-H plane. In addition, when n = 0, for each
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0 < m ≤ N , one has Pupp =
{

pj = 0, 1 ≤ j ≤ m; pj =
1

N−m
, m+ 1 ≤ j ≤ N

}

which furnishes the maximum value C[Pupp] for the complexity measure Eq. (3-

1), considering the set of distributions with entropy value H = H [Pupp]. By

varying m, we vary Pupp, leading to N points for the upper complexity bound

in the C-H plane. In Fig. 3.1, we interpolated these points to get a smooth

curve for N = 6. Note that the limiting upper and lower bounds curves are

valid for all distributions with the same number N of partitions.

3.3

Complexity-entropy plane: application to logistic map

In order to illustrate the applicability of the statistical complexity

measure, we consider the well known logistic map

xn+1 = b xn(1− xn) (3-4)

with b varying in the interval [3.5, 4.0]. This system can show periodic or chaotic

behavior depending on the value of b. When looking at Fig. 3.2, one can see

that for regions of periodic behavior the Lyapunov exponent decreases.

Figure 3.2: Bifurcations Diagram (top panel) and Lyapunov exponent (bottom
panel) for the logistic map. Each bifurcation corresponds to a period doubling.

One crucial step is the definition of the discrete probability density

function (PDF) associated to the process. A simple approach consists of

obtaining it via amplitude statistics, dividing the interval of xi values into a

finite number N of non overlapping subintervals. One then employs the usual

histogram-method, based on counting the relative frequencies of the time series

values within each subinterval.
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For the logistic map, we reproduced the results of (7), by generating 106

data values for each specific b value. We varied the logistic map parameter

b in the range [3.5, 4.0] with size step ∆b = 0.0005, forming 103 time series.

The range of data values belongs to the interval [0, 1] and was divided in

103 subintervals for the construction of the histogram. In Fig. 3.3, we show

the entropy and statistical complexity measures according parameter b. It is

observed an “envelop function” in which the entropy measure increases globally

with b. The rapid growth at b = 3.5695 identifies the exponential multiplication

of periodic behaviors. Moreover, the many local falls of the entropic values

correspond to the periodic windows where the logistic map presents regular

trajectories. In addition, at the full chaotic configuration (b = 4), entropy is

very close to unity. This happens because, in this case, the logistic map has an

almost uniform probability density function, given by

p(x) =
1

π
√

x (1− x)

for 0 < x < 1. In Fig. 3.4, we show the empirical distribution for this

configuration, obtained numerically from Eq. (3-4).
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Figure 3.3: Entropy and statistical complexity measures for the logistic map
based on amplitude statistics with N = 103.

On the other hand, when analyzing the statistical complexity measure,

although one can observe an abrupt growth for the same parameter b = 3.5695,

this measure decreases as parameter b increases further, and, instead of

multiple drops in the periodic windows, several bursts are observed. This

behavior is not acceptable given that periodic trajectories are less complex

than the chaotic counterparts.

For a better overview of the relationship between entropy and statistical

complexity it is useful to draw the complexity-entropy plane. By comparing
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Figure 3.4: Probability density function for the logistic map with b = 4 based
on amplitude statistics with N = 103.

the range of entropy values related to periodic windows and with the chaotic

regime, one finds that periodic behaviors are located in the left side of the plane

(H < 0.5) and do not reach maximum complexity (see Fig. 3.5). This property,

enables the identification of regular dynamics (i.e. periodic) underlying a given

process, even if the model parameters are unknown (7). However, it is not clear

how to discriminate chaotic or stochastic dynamics, because both have similar

entropy/complexity values. This issue will be addressed in the next chapter.

3.4

Symbolic Analysis

As an alternative to histograms based on single amplitude values, one

might consider PDFs related to patterns of a sequence of values. In order to

accomplish it, a symbolization technique is required to transform a sequence of

real data values into a sequence of symbols belonging to a finite size alphabet.

Although there is not just one way of coding a time series, a popular and simple

symbolization technique is the so-called binary treatment that translates each

data value to 0 if x ≤ x∗ or to 1 if x > x∗. Considering strings of length L, one

has 2L symbol sequences associated to different the binary patterns, for which

one constructs the histogram of the relative frequencies of occurrence.

In this approach, we transformed the original time series generated from

the logistic map Eq. (3-4) into binary sequences, with x∗ = 0.5. We considered

strings of length L = 10 and built the histogram representing the frequency

of occurrence of the N = 1024 states. This PDF was used for calculating

both entropy and statistical measures. By looking at Fig. 3.6, one observes

DBD
PUC-Rio - Certificação Digital Nº 1112910/CA



3.4. Symbolic Analysis 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

H
hist

C
h

is
t

Figure 3.5: Complexity-entropy plane for the logistic map based on amplitude
statistics with N = 103. The dotted curves are the upper and lower complexity
bounds for N = 103.

that the binary-based entropy values present almost the same features of the

amplitude-based approach. On the other hand, complexity shows a different

behavior according to b, with a parabolic-like envelop shape and with falls in

the periodic windows (6, 7), which represents an improvement compared to

the amplitude-based approach. However, at b = 4, as the amplitude histogram

is symmetric (see Fig. 3.4), it leads to a uniform binary histogram, implying

similar entropy (close to unity) and complexity (close to zero) values. Thus,

chaos and noise are yet indistinguishable through this procedure.

3.5 3.6 3.7 3.8 3.9 4
0

0.1

0.2

0.3

0.4

0.5

b

C
bi

n

3.5 3.6 3.7 3.8 3.9 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b

H
bi

n

Figure 3.6: Entropy and statistical complexity for the logistic map based on
binary symbolic dynamics with N = 1024.
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Figure 3.7: Complexity-entropy plane for the logistic map based on symbolic
dynamics with N = 1024.

In sum, from both approaches, periodic behavior are restricted to the

region of low entropy in the complexity-entropy plane and the chaotic regime

is located in the complementary range of entropy. This fact turns difficult

the discrimination between irregular deterministic and random process. In

order to improve the results from the symbolization technique, a PDF which

encompasses time causality should be adopted and is the starting point of the

next chapter.
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4

Permutation Entropy

There are many techniques used to distinguish regular, chaotic and

stochastic behaviors, such as, entropies, fractal dimensions and Lyapunov

exponents. They are all defined for typical orbits of presumably ergodic

dynamical systems, and there are profound relations between these quantities.

However, these measures are not defined for arbitrary time series and may give

rise to misleading results when the data is not noise free. This is an important

drawback when one deals with real-world applications. Moreover, noise filtering

requires careful processing of the data and fine tuning of parameters, and the

results cannot be reproduced without specifying details of the method.

To overcome these issues, Christoph Bandt and Bernd Pompe designed

a technique called permutation entropy (4), which can be applied to any time

series, even if there is no knowledge about the system which had generated it.

4.1

Definition

Given a time-series {st : t = 1, ...., T}, we assign a symbol to a string of

n consecutive values [s(t−n+1), s(t−n+2), ..., s(t−1), st] at each time t ≥ n. One

considers all n! possible sort of ordering the values of the n variables and

identifies each ordering as an ordinal pattern. We associate to each ordinal

pattern a symbol Πi, i = 0, 1, ..., (n!− 1).

A good way of sorting Π is described in (18) for a sequence of n non-

negative integers. Here, we extend this procedure for sequences of n real

values . Basically, one starts defining index i = 0 for the increasing sequence

s(t−n+1) < s(t−n+2) < ....s(t−1) < st. The index i of the ordinal pattern Πi is

defined according to the hierarchy of interchanges (permutations) necessary to

perform over the n neighboring values within the string to attain the reference

order i = 0. In this way, for each n-size string one associate a permutation

symbol Π of order n. In Table 4.1 we illustrate the procedure for n = 3.
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Ordinal Pattern Symbol Index 1st Increment 2nd Increment
012 0 ∆x1 > 0 ∆x2 > 0
102 1 ∆x1 < 0 ∆x2 > 0, |∆x2| > |∆x1|
021 2 ∆x1 > 0 ∆x2 < 0, |∆x2| < |∆x1|
120 3 ∆x1 > 0 ∆x2 < 0, |∆x2| > |∆x1|
201 4 ∆x1 < 0 ∆x2 > 0, |∆x2| < |∆x1|
210 5 ∆x1 < 0 ∆x2 < 0

Table 4.1: Ordinal patterns associated to permutation symbols Πi, i = 0, 1, ....5
for block size n = 3. The strings of integer numbers 0,1 and 2 label the relative
level of the values of the variables
.

Note from Table 4.1 that, by inverting the order of increments, index

1 and 2 are interchanged, the same occurring with the pair of indexes 3

and 4. However, indexes 0 and 5 are invariant under this operation because

they are twofold, comprising the two situations: |∆x1| > |∆x2| and |∆x1| <
|∆x2|. Therefore they play a significant role when analyzing processes with

independent increments1.In particular, for symmetric sample distributions,

their frequencies are two times larger than the frequencies of other indexes.

The original Bandt-Pompe methodology was conceived for continuous

distributions, in which equal values are unlikely to appear. However, for low

resolution real-world time series, one should have a special care to process

strings that contains values with negligible differences. Simple solutions to

this issue are (a) to break equalities by adding statistical noise to the data

or (b) to interpret equalities as positive increments (4). Another approach is

the modified permutation algorithm (10) which introduces additional patterns

associated with strings containing equal values. Although these methodologies

are easy to compute, we have adopted an alternative unbiased algorithm,

which, for permutations of order n = 3 (which is used therein this work)

reads as follows.

Whenever st = st+k = s∗, we assign st < st+k if s∗ is smaller than the

string average value; otherwise we assign st > st+k. In addition, strings which

three equal values are neglected. This leads to a balanced population between

symbol indexes with coarse movement up (0,1 and 2) and down (3,4 and 5)

shown in Table 4.1.

Next, we proceed to compute the permutation probability P (Π). To

ascertain that, in the limit of an infinite time series, the stationary distribution

is reached, the underlying stochastic process must fulfill a very weak stationary

condition: the probability that si < sj for (j − i) ≤ n should not depend on t

(4).

1Two events A and B are independent iff p(A ∩B) = p(A)p(B).
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The permutation entropy of order n ≥ 2 is defined as in Eq. (2-2), where

the sum runs over all N = n! permutations Π of order n. It is clear that 0

≤ S[P ] ≤ log N , where the lower bound is attained for monotonic sequence

of values and the upper bound, for a completely random system. Intermediate

S[P ] values indicate that the process presents some sort of temporal structure.

We remark that, as the permutation analysis look over the relative values

of the elements, not the absolute values, the associated probability measure is

scale-invariant. This means that the permutation entropy may be thought as

a complementary measure to standard entropy, once the latter is affected by

the magnitude of fluctuations.

An important consequence of handling the permutation probability P (Π)

compared to standard sample distribution P (x) is that one improves the per-

formance of the information-based quantifiers, capturing not only randomness

but also the memory structures. In this sense, when the normalized Shan-

non entropy H [P ] = S[P ]/Smax is measured over the permutation probability

distribution P (Π), the statistical complexity measure Eq. (3-1) reveals new as-

pects of the dynamical process: now, while H [P ] measures the diversity of the

observed ordinal patterns, C[P ] measures the endeavor required to reproduce

statistically the data flow at time scale n.

4.2

Application to logistic Map

Following the work of Bandt&Pompe, we applied the symbolic permu-

tation methodology to the logistic map with n = 6, which is big enough to

access the dynamics of the process.

It is worthwhile to inspect the permutation histogram for the fully

developed chaos within the logistic map. Indeed, By looking at Fig. 4.1, one

can see a highly complex structure. The histogram is rather non-uniform and

non-continuous, i.e. there are permutation indexes that never occur in the fully

chaotic map, as consequence of a deterministic process.

After that, we calculate the permutation entropy and the statistical

complexity using the permutation histogram and compare the results with the

approaches of the previous chapter. As we have n! = 720 possible patterns,

for each value of b we iterated the map 103n! times, which is close to the

previous statistics made for amplitude and symbolic analysis. As it is shown in

Fig. 4.2, permutation entropy behaves similarly to other entropies, exhibiting

an overall increasing behavior with parameter b with falls in the periodic

windows. On the other hand, for b = 4, it is not close to its maximum,

indicating that this measure can distinguish chaos (deterministic process) from
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Figure 4.1: Permutation histogram for the full chaotic logistic map (b = 4)
with N = 6! = 720.

noise (stochastic process). This means that the Shannon’s entropy measure

based on permutation histograms may be able to quantify complexity(4). For

recent reviews of the application of ordinal patterns and permutation entropy,

the reader is referred to (19) and (20).
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Figure 4.2: Entropy and statistical complexity measures for the logistic map
based on permutations with N = 720.

As shown in Fig. 4.3, the complexity-entropy plane, now presents qua-

litative different processes located in distinct regions. Regular,i.e. periodic,

dynamics is restricted to the left side (H < 0.35), while chaos exhibits inter-

mediary permutation entropy and high statistical complexity, Therefore one

expects that random processes must be on the right side. This last affirmative

will be checked on the next chapter for some classes of stochastic processes.
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Figure 4.3: Complexity-entropy plane for the logistic map based on permuta-
tions with N = 720.
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5

Inferring the nature of deterministic sources

5.1

Classes of Stochastic Processes

In physics, Brownian Motion is regarded as the motion of small particles

in suspended liquid and is modeled by a Langevin equation:

mẍ = −αẋ+ fext(t) + f(t) (5-1)

Where x and m are the position and mass of one particle, respectively,

α is the damping constant of the medium, fext is an external force applied to

the particle and f represents the random shocks due to other particles.

By assuming that the second order term is not appreciable when com-

pared to the others (this happens for example in over-damped media), we can

write:

dx

dt
=

fext(t)

α
+

f(t)

α

dx = µ(t)dt+ σ(t)dW (5-2)

where dW is the standard Wiener process. The last equation is called an Ito

process and is composed by two parts: the deterministic one µ(t)dt and the

stochastic one (σ(t)dW ). Different choices of µ(t) and σ(t) lead to different

models, some of them are well known. On the following, we consider three

models that will be used as test cases for permutation entropy.

We start with µ(t) = 0 and σ(t) = σ, describing the Brownian Motion

(BM), which is a continuous form of a random walk. This process is ma-

thematically equivalent to the Wiener Process, which shows some important

properties (21): independent and identically Gaussian distributed increments,

self-similarity, non-differentiability and non-limited variation.

The PDF based on amplitude statistics for BM at a fixed time t is a

Gaussian function with zero mean and variance σ2t (N (0, σ2t)). Therefore,
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one gets an increasing entropy value as function of time (12):

S(x; t) =

∫ +∞

−∞

−p(x) ∗ log(p(x))dx

S(x; t) =

∫ +∞

−∞

1√
2πσ2t

e−
1

2

x
2

σ2t

(

log
√
2πσ2t+

x2

2σ2t

)

dx

S(x; t) =

∫ +∞

−∞

log
√
2πσ2t√

2πσ2t
e−

1

2

x
2

σ2tdx+

∫ +∞

−∞

x2

2σ2t
e−

1

2

x
2

σ2tdx

S(x; t) = log
√
2πσ2t+

1

2

S(x; t) =
1

2
log
(

2πeσ2t
)

(5-3)

Thus, in order to obtain a stable entropy measure for BM, one needs to

deal with other associated PDF, for instance, the permutation histogram.

For general µ = const and σ = const, one has the Arithmetic Brownian

Motion (ABM), belonging to the class of drifting processes (therein this work,

we call it Drift, for simplicity). Its trajectory gets smoother for high |µ/σ|, and
its PDF is described by N (µt, σ2t).

For µ(t) = −k(x− x∗) and σ = const, one has the Arithmetic Ornstein-

Uhlebeck process, belonging to the class of Mean Reverting processes (therein

the work, we call it MR, for simplicity). It is asymptotically stationary and

Gaussian, with variance of the fluctuations varying with σ2/k. Thus its PDF

is described by N (x∗, σ2/k).

With the purpose of comparing the three models we set σ = 1.0 and

µ = k = 0.5 and plotted one sample path for each process in Fig. 5.1. One

can see that the Drift process perform a global increase while the MR and BM

process fluctuate around zero. However, MR is restricted to a tighter range of

values and shows smaller fluctuations.

We point out that, the transformation of variable x in Eq. (5-2) by any

non-linear function with a monotonous growing character keeps the relative

ordering of the variables, leading to invariant P (Π)1. Thus, from the Itô’s

lemma , the present analysis of the models Drift and MR represents, in fact,

a broaden class of models, including for instance, the Geometric Brownian

Motion and the Exponential O-U process, respectively. In this way, one can

map a rather diverse model-generated temporal patterns {xt} onto two classes

that we identify as “generalized ordinal states”. Here, we shall use them as a

1A monotonic decreasing transformation inverts the order of the indexes, but maintain
the same entropy measures due to pi symmetry.
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Figure 5.1: Sample paths of Drift (blue), BM (black) and MR (red) with
µ = k = 0.5 and σ = 1.0

parsimonious tool to capture the nature of the deterministic forces governing

the examined signal.

5.2

Assessing Permutation Entropy and Statistical Complexity

Artificial time series for the quoted stochastic processes were generated

by using the Marsaglia’s Mother-of-All random number generator2 (23).

We compute the set of probability P (Πi) of index i = 0, ....(n! − 1) for

permutation order 3 ≤ n ≤ 8. In each case, the results are based on the

statistics of blocks of n consecutive outcomes along synthetic data of total

length 210n!.

Its worthwhile to mention that one may discriminate specific time scales

by considering a string of n non-consecutive (embedding delays τ = 2, 3, ...)

elements of the time series. This approach is particularly useful to identify

intrinsic time scales of the dynamics under study (24). Our approach considers

consecutive (embedding delay τ = 1) elements only, however, our focus is

comparing different systems under a unique basis, including invariant systems

under scaling of time (Brownian motion).

New interesting features arise when looking to the relative frequency of

the permutation indexes underneath the entropy and disequilibrium measures.

In Fig. 5.2, we show the set of BM permutation probability P (Πi) of index i for

n = 8. For this simplest class of stochastic process, one gets already complex

patterns, which anticipate non-trivial information measures.

2it has period length of 2158 and passes trough all TestU01 statistical tests of randomness
(22)
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Figure 5.2: Permutation histogram for Brownian Motion with N = 8! = 40320.

Moreover, one may catch the relevant parameter of each model, as far

as the ordinal permutation pattern is concerned. In Fig. 5.3, we illustrate

this finding for Drift and MR classes, for n = 3. As expected for symmetric

distributions of independent steps, for µ = 0 or k = 0 respectively, one gets

p0 = p5 = 1/4 and p1 = p2 = p3 = p4 = 1/8 corresponding to the Brownian

Model. This leads to SBM = 2.5 log 2, that will be used as a reference

permutation entropy value. Clearly, when adding a drift force (Drift class),

the probabilities become asymmetric, while for a restoring force (MR class),

the symmetry is sustained.
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Figure 5.3: Probability p(Πi) of index i = 0, ...5 according to the respective
relevant parameters x = µ/σ and x = k for Drift processes (left panel) and
MR processes (right panel). In the present case, n = 3.

In Fig.5.4, we present the normalized permutation entropy H [P ] for each

analyzed process according to the respective relevant parameter. It is shown

that the entropy of Drift-processes follows a q-Gaussian curve according to the

order/disorder parameter µ/σ. Such behavior is in contrast with the sample
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Figure 5.4: Normalized Permutation Entropy (open circles) for Drift and
MR processes according to the respective relevant parameters x = µ/σ and
x = k. The observed values are well fitted (lines) by a q-Gaussian curve
HBM [1 + (q − 1)(x/x0)

2]−1/(q−1) with q = 1.06 and x0 = 1.35 (Drift) and
by an exponential curve 1− (1−HBM)exp(−(x/x0)) with x0 = 0.51 (MR).

Shannon’s entropy, that is independent of µ (similar calculation that led to

Eq. (5-3), gives the same result when applied to N (µt, σ2t)).

In the case of MR process, one gets an exponential growing curve

according to k, with σ playing no role for the permutation entropy. This means

that σ acts only as a scale factor for the MR process, not affecting the relative

magnitude ordering of the variables. This behavior is also in contrast with

the sample Shannon’s entropy, which varies according to log [σ/
√
k] (similar

calculation that led to Eq. (5-3), when applied to N (0, σ/
√
k), gives this last

result). The spring constant k acts as a restarter of the process, limiting the

relative growth of the variables. In sum, the permutation entropy of both

classes present properties not carried by the standard entropy, exhibiting new

relevant parameters. This feature distinguishes it as an alternative information

measure.

Another important finding for empirical analysis applications is that

the range of the normalized permutation entropy of both models are com-

plementary: the maximum value for Drift-processes is HBM = 2.5 log 2/ log 6

(≈ 0.9671), corresponding to the BM case, while the MR model assumes still

bigger values.

In attempt to attain the full description of randomness and memory

structure from H [P ], Q[P ] and C[P ], we examined the Drift and MR models,

for different permutation order n. This procedure account for the multi-scale

structures embedded in time series.

In Fig. 5.5, we plot the normalized permutation entropy H [P ] and the

normalized disequilibrium Q[P ] for both models. It clearly shows that the

H [P ] and Q[P ] measures have opposite behaviors according to the respective

model relevant parameters. As expected, Drift-processes covers a wider range
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of H [P ] values. Note also that selecting n = 2, the H [P ] peak for Drift-

processes is equal to unity, turning MR and BM processes indistinguishable.

Thus, one should use n ≥ 3 for meaningful information measures. Searching

for invariant outcomes, the key finding is that H [P ] measures for both models

keep complementary for any n. In what follows, we address the issue of the

relevance of the complexity measure C[P] comparing to H[P]. To this aim, we

scrutinize the information measures for Drift and MR processes.
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Figure 5.5: Normalized Permutation Entropy and Disequilibrium according to
the relevant parameter of Drift (left panels) and MR (right panels) processes.
Each color represents a different permutation order n (see inset).

First, we search for possible dependence between H and Q. In Fig. 5.6, a

close inspection reveals a strong linear relationship between the two measures

for small n, but a non-linear dependence emerges with increasing length scale.

This non-trivial relationship according to n endorses that H [P ] and Q[P ]

furnish different information contents.

The independence of both information measures implies that C[P ] also

provides extra information when compared to H [P ] and we proceed with

its evaluation. In Fig. 5.7, we show the complexity measure C[P ] according

to the Drift (µ/σ) and MR (k) parameter for several permutation order n.

New structures were found at all scales, which means that new information is

revealed as n increases (25).

One natural question arises: once the information measures change with

n, can one assign any true statistical complexity value to these model-generated

series? We start this analysis by extrapolating the maximum value of H [P ] and

C[P ] for Drift processes with n arbitrary large. The results displayed in Fig.

5.8 shows a well behaved tendency, furnishing Hmax
∼= 0.80 and Cmax

∼= 0.56.

Notice that both extrapolated maximum values are assigned to BM (µ = 0).
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Figure 5.6: Normalized Disequilibrium Normalized versus Permutation En-
tropy. The gray line represents the values for the BM model, which splits the
Drift (left) and MR (right) values. Each color represents a different permuta-
tion order n.
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Figure 5.7: Complexity curve for different permutation orders n (see inset)
for Drift processes (left panel) and MR processes (right panel). The inferred
limiting shape for n arbitrary large is shown in gray.

By inspection of the left panel of Fig. 5.7, notice the faster converge

of the tails as n increases. This allows to infer a limiting shape of C[P ] of

Drift processes for n arbitrary large, shown in gray line. Seeing the Drift

limiting behavior as a Gaussian function, we find the asymptotic maximum

value 0.56 ± 0.06, consistent with the previous findings shown in Fig.5.8. On

the other hand, from the analysis of the right panel of Fig. 5.7, for MR processes

we get an exponential behavior for the limiting shape of C[P], shown in gray

line, starting from the asymptotic value assigned to BM (k = 0).

The limiting shape of C[P ] for Drift-processes leads to a remarkable

outcome, that is the BM model furnishes low complexity values at short time-

scales n, but produces the largest value at the longest scale. The large increase

DBD
PUC-Rio - Certificação Digital Nº 1112910/CA



5.2. Assessing Permutation Entropy and Statistical Complexity 41

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

M
A

X
IM

U
M

 

 

Figure 5.8: Behavior of global maximum of H[P] (open squares) and C[P]
(open circles) for Drift processes according to n. Both data are well fitted with
exponential curves (lines).

of the statistical complexity for BM goes along with the decreasing value of the

maximum normalized entropy with n, as evidenced in Fig. 5.8. This specific

case indicates that the permutation order n considered in the analysis of the

time series is crucial for ranking purposes. Fig. 5.9 shows a color map of the

C[P] magnitudes according to the Drift relevant parameter and permutation

order n. From this figure, one can access the crossovers among the systems as n

increases. This means that, the finite-scale complexity measures for Drift-like

processes may significantly differ from the true values. In this case, general

low-order estimates should be taken with care.
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Figure 5.9: Color map of statistical complexity measure according to relevant
parameters µ/σ and permutation orders n.
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6

Application to Financial Series

Now we proceed with the representation of the analyzed models in the

complexity-entropy plane, to match up to with real data. We consider daily log-

price time series of the Brazilian and American stock markets. All investigated

series comprises N > 210 data collected from January 2002 to December 2007

(before the 2008 financial crisis). Several economic sectors are represented

with at least 3 companies each : Banking/Financial(B), Consumer/Industrial

Goods(G), Energy(E), Mining / iron and steel industry(M), Oil & Gas(O)

and Technology(T). The selected companies includes 10 companies amongst

the FT Global Top 35 companies at Dec. 2007 (26), with Market Capitalization

ranging from $511.9 to $155.9 B.

In Fig. 6.1, we display one representative time series of each market.

While the Brazilian stock, USIM5, shows a strong positive trend, the American

stock, IBM, fluctuates widely in the same period.
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Figure 6.1: Log-price series of two stocks: USIM5 (left panel), quoted in the
Brazilian market and IBM (right panel), quoted in the American market.

We also display in Fig.6.2 the permutation histogram for n = 3 of

the analyzed data. Permutation indexes 0 and 5 exhibits higher frequencies,
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with similar levels, a feature that is shared by the BM and MR processes.

These results anticipate that the associated model parameters µ/σ or k of the

empirical data shall be null or rather low.
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Figure 6.2: Permutation histograms of the analyzed time series. Bars are
organized from left to right in ascending order of entropy.

In Table 6.1, we quote the examined stocks and show the Permutation

Entropy (PE) and the Permutation Statistical Complexity (PSC) measures.

To set the precision of the threshold values HBM and CBM for finite

samples, we consider 100 synthesized series with length 210 from Eq. (5-

2). For strings of length n = 3, we got HBM = 0.9656 ± 0.0014 and

CBM = 0.0311 ± 0.0014, within the 95% confidence interval. It follows that

one can detect the character (drifting or restoring) of the deterministic forces

underlying the process with a precision at the second decimal digit in the PE

measure. This fix the model indeterminacy for the present empirical analysis.

Fig. 6.3 shows the representation of the empirical data in the complexity-

entropy plane contrasted with the Drift and MR lines for permutation order

n = 3 (25).

We found that most American stock values fall in the MR domain while

the Brazilian stocks fall in the Drift domain. This means that Brazilian stocks

are more subjected to local trends than the American counterparts. These

results are according previous findings for developed and emerging market

indexes (27). However, the Brazilian series displays more complexity than the

theoretical Drift-like processes, which means that there is a residual amount

of memory structure at the level of this class approximation.
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Stock PE PSC Model Stock PE PSC Model
VALE5(M) 0.9403 0.0538 Drift AA(M) 0.9585 0.0384 Drift
LAME4(G) 0.9486 0.0480 Drift INTC(T) 0.9652 0.0325 BM
RAPT4(G) 0.9499 0.0489 Drift CVX(O) 0.9682 0.0292 MR
USIM5(M) 0.9503 0.0451 Drift MCD(G) 0.9685 0.0293 MR
POMO4(M) 0.9512 0.0473 Drift IBM(T) 0.9692 0.0288 MR
CSNA3(M) 0.9522 0.0432 Drift GE(G) 0.9712 0.0269 MR
PETR4(O) 0.9533 0.0425 Drift HPQ(T) 0.9718 0.0263 MR
GGBR4(M) 0.9543 0.0421 Drift DIS(G) 0.9725 0.0258 MR
BOBR4(G) 0.9550 0.0427 Drift JPM(G) 0.9726 0.0259 MR
ITAU4(B) 0.9576 0.0393 Drift MMM(G) 0.9730 0.0253 MR
ELET3(E) 0.9578 0.0390 Drift JNJ(G) 0.9733 0.0251 MR
PCAR4(G) 0.9611 0.0363 Drift KO(G) 0.9736 0.0248 MR
BBDC4(B) 0.9617 0.0355 Drift XOM(O) 0.9747 0.0233 MR
BBAS3(B) 0.9643 0.0333 BM PG(G) 0.9771 0.0215 MR
AMBV4(G) 0.9676 0.0301 BM AXP(B) 0.9779 0.0209 MR
CMIG3(E) 0.9680 0.0298 BM WMT(G) 0.9779 0.0209 MR
EMBR3(G) 0.9716 0.0270 MR MSFT(T) 0.9782 0.0207 MR
TRPL4(E) 0.9724 0.0259 MR BAC(B) 0.9795 0.0193 MR

Table 6.1: Permutation entropy (PE) and statistical complexity (PSC) for
daily log-price series of Brazilian and American stocks (economic sectors are
represented in parentheses). Columns 4 and 8 indicates the model domain.
The standard Brownian Motion (BM) is ascribed for the entropy range H
∈ [0.9642, 0.9670].

Moreover, it was observed that stocks belonging to the same economic

sector and country differ little from each other. For instance, stocks from the

Brazilian Banking sector (ITAU4, BBDC4 and BBAS3) showed PE values in

the range [0.9576, 0.9643], while stocks JPM, AXP and BAC, which belong to

the same sector but are traded within the American market, presented entropy

in [0.9726, 0.9795].

At last, from the entropy values of the empirical data shown in Table

6.1, we calculated the model parameters of the respective domain according to

the expressions obtained in the last chapter. As expected, both Drift and MR

parameters are rather low:

0 < |µ/σ| < 0.22 (6-1)

and
0 < k < 0.23 (6-2)
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Figure 6.3: Complexity-entropy plane for Brazilian (green circles) and Ameri-
can (red squares) stocks for permutation order n = 3. The theoretical Drift
and MR lines are also shown (solid lines), and the bounds of complexity are
indicated by the dotted curves. The error bars of the threshold values HBM

and CBM are represented by vertical and horizontal dashed lines and set the
model indeterminacy.
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Conclusion

The objective of this work is develop an information-based tool that

enables one to discriminate drifting and reversion behaviors in real series.

As control data sets, we have analyzed the local time behavior of

representative stochastic processes characterized by drifting or mean reverting

deterministic forces. We computed the frequency of occurrence of synthesized

n-data strings according to the relative values of the neighboring variables.

Each configuration was associated to an ordinal pattern Π of order n which

were identified as “generalized states” carrying information about the character

of the deterministic forces. We considered pattern histograms over many

time scales n to account for the multi-scale structures embedded in time

series. Then, we evaluated the permutation entropy as well as the statistical

complexity measures for this pattern histograms and determined the relevant

parameters for such measures.

For the class of drift-processes, we found a striking result: notwithstan-

ding the fact that the functions H [P ] are very similar, the complexity C[P ]

depend crucially on the permutation order under consideration, as evidenced

in Fig. 5.7. These results support that with increasing n, new informational

structures are captured by C[P ], but not by H [P ].

As a corollary of the strong n-dependence of C[P ], similar systems show

different signatures of its own complexity dependency on n giving rise to

crossovers, as illustrated in Fig. 5.9. Therefore, one particular time-series may

look more complex than others in short intervals n whereas the actual full

signal is not. This result warns that empirical analysis based on low-order

complexity measure should be taken with caution.

However, notice that due to the finite size of real series, large permutation

order may lead to non-significant statistical results. The series investigated

here are related to drift-class relevant parameter values given by Eq. (6-

1). According to Fig. 5.9, these systems do not exhibit crossovers within

empirically accessible time scales (which generates statistically meaningful

results). This validates the present analysis retrieved from the n = 3 results.

We attained the permutation entropy for Drift and MR processes in the
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full range of their respective relevant parameters. We found that, no matter

the parameter values, for each order n, the class of drift processes furnish

entropy values bigger than the class of mean reverting process. This sets an

entropy threshold value which impart to PE the power of discriminating real

data according to the nature (drift or reverting) of the deterministic forces

underlying complexity.

This work is also an attempt to characterize financial data by means

of PE and PSC measures. Like healthy physiological systems, a “ healthy ”

market needs to exhibit processes that runs over several different time scales, to

be able to adapt to an ever changing economic environment. From the analysis

based on these parsimonious number of classes of models, the dominance of

single characteristic time scales like in the MR processes causes a complexity

loss compared to the invariant scale MB process. In addition, the appearance

local trends is an indication of complexity gain, as suggested by the results for

Drift processes. In this sense, complexity is a sign of forecast opportunities in

short time horizons.

As a first application, we scrutinized log-price series of American and

Brazilian stocks. Comparing the empirical values of permutation entropy with

those of the studied models, we found that American stocks are less subjected

to local trends than Brazilian stocks. In fact, financial processes become more

random or unpredictable and loses its structure and correlation due to the

enlarged and efficient economic activities in developed markets.

However, mapping the empirical data onto the complexity-entropy plane,

we found that, while the American stocks are very close to the MR domain,

Brazilian stocks are more complex than its Drift-class counterpart. Such result

suggests further development of this methodology for the analysis of subtle

differences between real paths and general stochastic models. In principle, the

efficiency of the theoretical tools devised to estimate financial risks depends on

the adequacy of the stochastic modeling of the market fluctuations. Here, we

have shown that PE and PSC measures can unravel the nature of the coherent

market forces, without reference to a specific model.
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A

Gaussian Distribution through Principle of Maximum Entropy

Consider that besides the normalization constraint, only information

available is that a real random variable X has mean µ and variance σ2. That

is

∫ +∞

−∞

f(x)dx = 1 (A-1)

∫ +∞

−∞

x2f(x)dx = σ2 (A-2)

So, for obtaining the probability distribution f(x) which encompasses all

the given knowledge of X one should maximize the Shannon’s entropy subject

to the above constraints:

L =

∫ +∞

−∞

−f(x)logf(x)dx− λ0

(
∫ +∞

−∞

f(x)dx− 1

)

− λ1

(
∫ +∞

−∞

x2f(x)dx− σ2

)

δL = 0 ⇒ logf(x) = −λ0 − 1− λ1x
2

⇒ f(x) = e−(λ0+1)e−λ1x2

(A-3)

Using constraints

∫ +∞

−∞

f(x)dx = 1 ⇒ eλ0 =

∫ +∞

−∞

e−λ1x2

dx → eλ0 =

√

π

λ1
(A-4)

∫ +∞

−∞

x2f(x)dx = σ2 ⇒
∫ +∞

−∞

x2e−λ1x2

dx =

√

π

λ1

σ2 → λ1 =
1

2σ2
(A-5)

Thus,

f(x) =
1√
2πσ2

e−
x
2

2σ2

which is the Gaussian probability disribution with zero mean.
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B

Analytical determination of ABM permutation probabilities

The permutation probability P (πi) of order n = 3 for Drift class of models

can be analytically calculated. First note that, from Table 4.1, by changing the

signal of µ, the role of the pairs of permutation indexes 0− 5, 1− 4 and 2− 3

interchange. Thus, due to this symmetry, the four curves shown in the left panel

of Fig. 5.3 in the range 0 ≤ µ/σ collapse onto four curves in the full range of

the relevant parameter −∞ ≤ µ/σ ≤ ∞. The following figure reproduces this

result.
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Figure B.1: P (πi), 1 = 0, ...5 of order n = 3 for Drift model in the full range of
µ/σ . Note that some indexes collapse onto the same curve.

In order to derive the analytical expressions for P (πi) accor-

ding to µ, we previously introduce the definition of the Error function

erf (x) = (2/
√
π)

x
∫

0

exp(−t2)dt and the Complementary Error Function

erfc(x) = 1 − erf(x). The Normal Cumulative Distribution Function

Φ(x) = (1/
√
2π)

x
∫

−∞

exp(−t2/2)dt is essentially identical to the Comple-

mentary Error Function: Φ(x) = (1/2)erfc(−x/
√
2).

In what follows, we consider Drift-parameter σ = 1 and general µ.

From Eq. (5-2), steps δx are independent and obey the Gaussian distribution

P(δx) = (1/
√
2π)exp(−(δx− µ)2/2). According to Table 4.1, permutation

index 0 comprises consecutive positive steps with arbitrary sizes, then,

Pµ(π0) = [
1√
2π

∞
∫

0

exp[−(δx − µ)2/2]d(δx)]2 (A.1)

which leads to
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Appendix B: Analytical determination of ABM permutation probabilities 53

Pµ(π0) =
1

4
[erfc(−µ/

√
2)]2 (A.2)

Now we proceed to calculate P (π1). According to Table 4.1, this index

corresponds to an arbitrary negative step δx followed by a positive one of larger

size. Then, given the first step, the occurrence of second step is conditional:

Pµ(δx2|δx1) =
1√
2π

∞
∫

−δx1

exp[−(δx2 − µ)2/2]d(δx2) (A.3)

or
Pµ(δx2|δx1) =

1

2
[1 + erf(δx1 + µ)/

√
2)] (A.4)

Therefore,

Pµ(π1) =

0
∫

−∞

P(δx1)P(δx2|δx1)d(δx1) (A.5)

or

Pµ(π1) =
1

2
√
2π

0
∫

−∞

P(δx1)[1 + erf(δx1 + µ)/
√
2)]d(δx1) (A.6)

The probabilities for the other indexes are deducible along the same

lines. One can easily show that Pµ(π5) = P−µ(π0) and Pµ(π4) = P−µ(π1). The

equivalence Pµ(π1) = Pµ(π2) and Pµ(π3) = Pµ(π4) due to independence of step

order completes the analysis. One can also settle the constraints:

Pµ(π1) + Pµ(π3) = Pµ(π2) + Pµ(π4) =
1

4
[erfc(+µ/

√
2)erfc(−µ/

√
2)] (A.7)
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