
 17

2
Background

This chapter presents the main concepts to provide a better understanding

about the work described by this thesis. Since the prototype implementation of the

approach proposed by this thesis was developed using concepts and techniques of

Autonomic Computing and the MAPE-K loop, both are explained in the section

2.4.

2.1
DDS

The Data Distribution Service for Real-Time Systems (DDS) is a standard

managed by OMG [14] (Object Management Group) for Publish-Subscribe com-

munication that aims to provide an efficient and low-latency data distribution

middleware for distributed applications [15] [16]. The DDS standard promotes a

fully decentralized P2P (Peer-to-Peer) and scalable middleware architecture based

on the Data-Centric Publish-Subscribe (DCPS) model. It also supports a large ar-

ray of Quality of Service (QoS) policies for communication (e.g. best effort, relia-

ble, ownership, several levels of data persistency, data flow prioritization and

several other message delivery options) [13] [17].

Publishers and Subscribers of a DDS Domain (the collection of nodes per-

taining to a single application), which are named Participants, are containers for

Data Writers and Data Readers, respectively, which exchange typed data through

a common Topic [16]. Pardo-Castellote, Farabaugh and Warren [18] explain that

Data Writers and Data Readers are the primary point for a Participant to publish

data into a DDS Domain or to access data that has been received by a Subscriber.

Figure 1 illustrates the Publication and Subscription Models as well as how the

Topic, Data Reader (DR), Data Writer (DW), Publisher, Subscriber and DDS

Domain interacts.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 18

Figure 1 – Publication and Subscription Models [18]

The DCPS makes it possible to organize its Topics in a relational model,

providing support for identity and relations, i.e. for each Topic it is possible to de-

fine one or more primary keys, and any number of foreign keys representing, re-

spectively, relationships with other Topics.

Unlike traditional Publish-Subscribe middleware, DDS can explicitly con-

trol the latency and efficient use of network resources through fine-tuning of its

Network Services, that are critical for implementing real-time and soft real-time

systems that use QoS policies such as Deadline, Latency Budget, Transport Priori-

ty, etc.

Figure 2 – DDS System Architecture [16]

Figure 2 illustrates a hypothetical system that uses DDS as a data distribu-

tion middleware. This hypothetical application has some sources of “Raw Data”,

a Data Processor that performs some processing on the “Raw Data” to produce

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 19

“Processed Data”, some End Users that consume the processed data, and an Ad-

ministrative User performing auditing functions, for instance.

DDS supports not only Topic subscriptions, but also content-based subscrip-

tions. The latter are enabled by DDS Content Filtered Topics which holds a Filter

Expression, formed through SQL92 (Structured Query Language). This Filter Ex-

pression defines a selective information subscription, i.e. only the Topic data that

match the Filter Expression are delivered to the Data Reader. An use example of

Content Filtered Topic is shown in Figure 3, where a Filter Expression (Value >

260) is applied upon the “Value” field. The filters can be applied at the Publisher

(Data Writer) or at the Subscriber (Data Reader). By applying filters at the Pub-

lisher, some applications may conserve signification network bandwidth by avoid-

ing the network transmission of irrelevant data [19] to not interested Subscribers.

To do so, DDS uses unicast to send data instead of using broadcast or multicast.

Figure 3 – Content Filtered Topic example [20]

The DDS enables applications to filter data based on the content of the data

either at the Publisher side (Data Writer) or Subscriber side (Data Reader). By

applying filters at the Publisher, some applications can conserve signification

network bandwidth by avoiding the network transmission of irrelevant data [21].

Although this capability, for some kinds of application – such as those that have a

dynamic and unpredictable number of Publishers and Subscribers – the filtering at

the Subscribers is the best choice.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 20

2.2
SDDL

SDDL (Scalable Data Distribution Layer) [17] [22] [23] [24] is a communi-

cation middleware that connects stationary DDS nodes in wired “core” network to

mobile nodes with an IP-based wireless data connection. SDDL employs two

communication protocols: Real-Time Publish-Subscribe RTPS Wire Protocol [25]

for the wired communication within the SDDL core network, and the Mobile Re-

liable UDP protocol [23] [17] (MR-UDP) for the inbound and outbound commu-

nication between the core network and the mobile nodes.

The core elements rely on DDS’ DCPS Model, where DDS Topics are de-

fined to be used for communication and coordination between these core nodes.

As part of the core network, there are some SDDL nodes with distinguished roles,

three of them are: (i) Gateway, (ii) Controller and (iii) GroupDefiner.

The Gateway (GW) defines a unique Point of Attachment (PoA) for connec-

tions with the mobile nodes. The Gateway is thus responsible for managing a sep-

arate MR-UDP connection with each of these nodes, forwarding any application-

specific message or context information into the core network, and in the opposite

direction, converting DDS messages to MR-UDP messages and delivering them

reliably to the corresponding Mobile Node(s).

Controller is a control node capable of displaying all the mobile node’s cur-

rent position (or any other context information), and may be applied to manage

groups, as well as to send unicast, broadcast, or groupcast message to the mobile

nodes.

A processing node is any type of node that performs some processing opera-

tion upon the data exchanged. As an example, SDDL has a processing node called

GroupDefiner that is in charge of evaluating group-memberships of all mobile

nodes. To do so, GroupDefiner subscribes to the DDS Topic where any message

or context update from the Mobile Nodes are disseminated and maps each Mobile

Node to one or more groups, according to some application-specific group mem-

bership processing logic. This group membership information is then shared with

all Gateways in the SDDL core network, using a specific DDS Topic for this con-

trol.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 21

Figure 4 – SDDL Architecture [26]

Figure 4 shows SDDL deployed for a Fleet Tracking and Management ap-

plication where Mobile Nodes are seen as trucks. However, SDDL is application

independent, which means that SDDL can be deployed for any application data.

2.3
Load Balancing in Middleware

With the widespread and rapid development of Cloud Computing and mo-

bile devices, computational resources have become ubiquitous. Despite the recent

technology developments, mobile devices still have more restrictive processing

and memory capacity and stringent energy limitations than stationary machines.

On the other hand, for several applications one has the option to move some pro-

cessing tasks from the mobile client side to the server/cluster/cloud side. This shift

has several advantages for the application, but also increases the demand for load

balancing mechanisms [27] [9] [10] [11], especially at the middleware layer used

for communication among the servers and/or cluster nodes.

2.3.1
Classification of Load Balancing Algorithms

Load balancing strategies have been classified under a loosely unified set of

terms and according to [27], the first classifications came from [28] [29]. Figure 5

depicts the classification proposed by [29]. Following the proposed taxonomy, a

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 22

load balancing algorithms can be either local or global. Local solutions deal with

a single processing node, while global algorithms deal with more than one pro-

cessing node [27]. A global solution may be divided into static, when the load

balancing algorithm is executed only when there is a new task, and dynamic,

which runs the algorithm continuously or periodically. At an operational level, an

algorithm may be classified as physically distributed (distributed) or physically

non-distributed (centralized). Unlike the centralized approach, in physically dis-

tributed load balancing algorithms, the decisions are taken by several nodes. And

this decision can be made cooperatively, or non-cooperatively. In the former, the

algorithm requires a common agreement among the nodes, while in the latter each

node makes a selfish decision.

Figure 5 – Load balancing hierarchy [29]

Moreover, according to [30] in the global solution, decisions are made by a

single node such as the physically non-distributed defined by [27].

Using other classification criteria, [31] [32] [28] [33] propose that load bal-

ancing algorithms should be divided into static, dynamic and adaptive. As ex-

plained in [34], static algorithms run a predetermined policy where the current

(load) state of the system is not taken into account, unlike dynamic and adaptive

algorithms. Dynamic algorithms where their parameters and scheduling policy

may change depending of the global system state are called adaptive algorithms.

For the sake of simplicity, this thesis adopts the classification proposed by [29]

and [27].

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 23

2.3.2
Elements of a Dynamic Load Balancing Algorithm

Delving into more details of the load balancing process, a dynamic load bal-

ancing algorithm have four main elements that are: (i) Initiation, (ii) Load Bal-

ancer Location, (iii) Information Exchange and (iv) Load Selection, shown in

Figure 6 [35].

Figure 6 – Taxonomy of dynamic load balancing algorithms [35]

The Initiation policy defines how the current load information is exchanged

among the nodes. While in a periodic strategy, information is exchanged at prede-

fined time intervals, an event-driven initiation strategy is based on the local load

observation. According to [35], the later strategy better handles load imbalance

and has a lower overhead than the periodic strategy when the system load is al-

ready balanced.

A designer of load balancing algorithm should choose one of two strategies

for the location of the load balancer, i.e. the node in charge of analyzing the sys-

tem load and deciding whether a load redistribution among the nodes is required.

Load Balancer location strategies can be centralized or distributed. Unlike the

centralized strategy where a single node evaluates the load of the entire system, a

distributed approach has some, or possibility all, nodes responsible for made load

balancing decisions.

Because the remaining sub-strategies of the taxonomy shown in Figure 5

and Figure 6 are not of much relevance for this thesis, we refer to [35] for an in-

depth discussion about the characteristics of the other policies. Moreover, the ob-

jective of this thesis is not to propose specific load distribution algorithms, but

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 24

rather provide general mechanisms that support the implementation of several dis-

tributed load balancing algorithms.

2.3.3
Virtual Servers

Every load balancing solution needs a mechanism to enable the division of

the whole system workload in smaller portions, thus distributing these portions

over the nodes. A common load balancing technique for DHTs (Distributed Hash

Tables) is the concept of virtual servers. A virtual server is similar to a logical

peer (node) of the DHT. However each physical node of the system may execute

one or more virtual servers [36] [37] [38].

The main advantage of using virtual servers is the possibility of splitting the

load under smaller units, thus moving one (or more) virtual server responsible for

a fixed percentage of the total load to another node [37]. However, the action of

creating virtual servers to split the load increases the system complexity and in-

curs in some overhead related to their management and resource consumption

since each virtual server acts as an independent logical node on the system [37]

[38] [39]. In section 3.1 a novel technique to split the system workload is present-

ed.

2.4
Autonomic Computing

Autonomic Computing (AC) has been inspired by the human autonomic

nervous system [40] [41], which has developed strategies and algorithms to han-

dle complexity and uncertainties. The main goal of Autonomic Computing is to

build computing systems and applications able to manage themselves, thus mini-

mizing human intervention [42] [40] [43] [44] [45]. According to [41] in order to

accomplish the AC challenges scientific and technological advances in a wide

range of fields and system architectures are required, as well as new programming

paradigm and software.

Using technology to manage technology – that is software and hardware that

manage themselves – requires self-management autonomic capabilities to antici-

pate and independently solve run-time problems [46]. Such systems should have

the self-properties shown in Figure 7 [45]. Contrasting with [45], [42] mentions

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 25

that most of the existing “…Self-Adaptive systems have contained some of these

properties…” and gives as an example streaming media systems, which may

change codec and stream quality in response to network bandwidth fluctuations.

According to [43] [46] [41] the essential properties – shown in Figure 7 – to

achieve the AC goal are:

 Self-configuring: an autonomic system must be able to dynamically adapt

to changes in the environment based on policies;

 Self-healing: an autonomic system must be capable to detect system mal-

functions and perform policy-based corrective actions without halting or

disrupting the system execution;

 Self-optimizing: an autonomic system must have the capability to tune it-

self to meet the end-user/system needs or Quality of Service (QoS);

 Self-protecting: an autonomic system must have the capability of protect

itself from accidental or malicious attacks.

Figure 7 – General properties of Autonomic Computing [47]

In order to support the four aforementioned objectives, autonomous systems

require to have self-awareness, awareness of its environment, self-monitoring

functions and mechanisms for self-adjusting/-configuring, as explained in [43].

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 26

2.4.1
MAPE-K Loop

Some software architectures have been proposed to achieve the AC goal,

and all these proposals include the following activities [43]:

 Monitoring: function that collects, aggregates, correlates and filters data

about managed resources;

 Analysis and decision: the analysis examines data collected and deter-

mine whether changes must be made on current policies. The decision

making ensures convergence according to threshold values of parameters

such as performance, availability and security;

 Control and execution: function that performs the changes identified as

necessary by the analysis and decision function.

Among the several proposals, the most famous one is by IBM (International

Business Machines Corporation), that created the MAPE-K (Monitor, Analyze,

Plan, Execute, Knowledge) [46] reference model for autonomic control loops, as

illustrated in Figure 8. MAPE-K is a generic autonomic control loop that abstracts

characteristics of the control and data flow around its loop [48]. This reference

model describes the architecture building blocks used for construct autonomic ca-

pabilities and defines a common approach and terminology for describing self-

managing AC systems [46].

Figure 8 – MAPE-K control loop [49]

In the MAPE-K model, the managed resources stands for any IT system (or

system component) that exhibits autonomic behavior by its tight coupling with the

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 27

MAPE-K loop. A Sensor, which may be implemented as a software or hardware

component (e.g. CPU – Central Processing Unit – usage monitor or temperature

sensor), collects information about the managed resources and sends this infor-

mation to the Monitor. Also connected to the managed resource is the Effector,

which is responsible for modifying the state and/or behavior of the managed re-

source. Only sensors and effectors have direct access to the managed resource.

The Monitor accesses, configures and controls a sensor for collecting raw

data about the managed resource. This data may include details about metrics,

topology system, system configuration, CPU/memory utilization and air pres-

sure/temperature, for instance. Monitoring usually collects and interprets large

amounts of data from the sensors. Therefore it should be able to aggregate, pro-

cess or summarize data so as to pass consolidated data to the next MAPE-K step.

The Analyze function receives data from Monitor as its input, and is respon-

sible for processing the data, determining whether some change needs to be made

at the managed resource, and possibly generating a change request. The Plan is

responsible for choosing and structuring the actions required to perform the

changes upon the managed resource. In general, the Analyze and Plan functions

are implemented in the same component. As the last function of MAPE-K, Exe-

cute, actually controls the execution of the actions generated at the previous step,

Plan, by using the Effector to perform the actions, concluding a MAPE-K cycle.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

