
 

   
 
 
 

Dário Augusto Borges Oliveira 
 
 
 
 
 

A Linear Programming Approach to Vascular Network  
Segmentation from a Single Seed Point 

 
 
 
 
 
 

TESE DE DOUTORADO 
 
 
 
 
 

Thesis presented to the Programa de Pós-Graduação em 
Engenharia Elétrica of the Departamento de Engenharia 
Elétrica, PUC-Rio as partial fulfillmnent of the requirements for 
the degree of Doutor em Engenharia Elétrica.  

 
Advisor: Prof. Raul Queiroz Feitosa 

 
 
 
 
 
 
 
 
 
 
 

Rio de Janeiro 

April 2013 

DBD
PUC-Rio - Certificação Digital Nº 0912931/CA



 

 
 

Dário Augusto Borges Oliveira 
 
 

A Linear Programming Approach to Vascular Network  
Segmentation from a Single Seed Point 

 
 

TESE DE DOUTORADO 
 

Thesis presented to the Programa de Pós-Graduação em Engenharia 
Elétrica of the Departamento de Engenharia Elétrica do Centro Técnico 
Científico da PUC-Rio, as partial fulfillment of the requeriments for the 
degree of Doutor. 

 
 

Prof. Raul Queiroz Feitosa 
Advisor 

Departamento de Engenharia Elétrica – PUC-Rio 
 
 

Prof. Mauro Monteiro Correia 
INCA 

 
Profa. Aura Conci 

UFF 
 

Prof. Aristófanes Corrêa Silva 
UFRJ 

 
Prof. Bruno Feijo 

Departamento de Informática 
 
 

Prof. Sidnei Paciornik 
Departamento de Engenharia de Materiais – PUC-Rio 

 
 
 

Prof. José Eugenio Leal 
       Coordinator of the  Centro Técnico 

Científico da PUC-Rio 
 

 
                                                    Rio de Janeiro, 12th April 2013. 

DBD
PUC-Rio - Certificação Digital Nº 0912931/CA



All rights reserved 
 
 
 
 
 

Dário Augusto Borges Oliveira 
 
Holds an Electrical Engineering degree from the Rio de Janeiro State 
Univesity (UERJ) in 2007, having specialized professionally in the 
development of medical imaging and remote sensing applications. 
Obtained the MSc. degree, in Electrical Engineering at the Pontifícia 
Universidade Católica do Rio de Janeiro (PUC-Rio) in 2009. Since 
then has worked in the field of medical imaging and remote sensing 
image analysis. 

  
 
 

Bibliographic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDD: 510 

 
 Oliveira, Dário Augusto Borges 
 
         A Linear Programming Approach to Vascular Network 
Segmentation from a Single Seed Point / Dário Augusto Borges 
Oliveira; orientador: Raul Queiroz Feitosa. — Rio de Janeiro: 
PUC-Rio, Departamento de Engenharia Elétrica, 2013. 
 
          v., 79 f: il. ; 29,7 cm  
 
          1.  Tese  (doutorado)  -   Pontifícia  Universidade Católica 
do Rio de Janeiro, Departamento de Engenharia Elétrica. 
 
          Inclui referencias bibliográficas. 
  
          1. Engenharia Elétrica – Tese. 2. Medical Imaging. 3. 
Segmentation. 4. Graphs. 5. Linear Programming. 6. Computed 
Tomography. 7. Vascular Structures Network. I. Feitosa, Raul. II. 
Pontifícia Universidade Católica do Rio de Janeiro. 
Departamento de Engenharia Elétrica. III. Título. 

DBD
PUC-Rio - Certificação Digital Nº 0912931/CA



Acknowledgments

I would like to thank all who contributed directly or indirectly to the accom-

plishment of this work: friends, classmates, professors and my family. In special:

To my advisor, Prof. Raul Queiroz Feitosa, for the availability, generosity,

encouragement and support throughout the development of my PhD research.

To my advisor during my internship at University of Hannover, Prof. Bodo

Rosenhan, for his ideas and discussions. To Laura, Michele and Gerard, for the

friendship, laughs and specially for making me feel at home in Hannover.
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Abstract 
 

 
Oliveira, Dário Augusto Borges; Feitosa, Raul Queiroz (Advisor). A 
Linear Programming Approach to Vascular Network Segmentation 
from a Single Seed Point. Rio de Janeiro, 2013. 79p. PhD Thesis — 
Department of Engenharia Elétrica, Pontifícia Universidade Católica do 
Rio de Janeiro. 

 
 

This thesis presents the development and results of this PhD project, which 

objective, multidisciplinary, was to develop a methodology and a tool for 

segmenting vascular networks from CT images, using automatic segmentation 

procedures and visualization of three-dimensional images data. The suggested 

methodology tracks a vascular network iteratively using a single starting point. 

The approach uses a conical sampling model composed of multiple concentric and 

ordered spherical layers. Each sampled point is evaluated using a measurement of 

vascularity proposed in this thesis, which seeks to identify points that belong to 

vessels. A directed graph is then built with the selected points and analyzed to 

find chains of connected points that make up pieces of branches of the vascular 

network. Each vascular segment found generates a new seed from which a new 

sampling is performed, and in this way the iterative procedure is repeated until the 

entire vascular structure is segmented. The methodology was tested using 

synthetic and real images. Among the real images several different vascular 

structures were segmented, such as coronary, carotid, hepatic, pulmonary and 

even a network of nerve fibers in the olfactory system. Vascular network 

topologies were also identified. The evaluation was quantitative where possible, 

although this type of data rarely provides a segmentation of reference, and apart 

from these cases the assessment was qualitative and visual. The results confirm 

the potential of the method and suggest directions for further developments. 

 

 
 

Keywords 
Medical Imaging; Segmentation; Graphs; Linear Programming; Computed 

Tomography.
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Resumo 
 

 
Oliveira, Dário Augusto Borges; Feitosa, Raul Queiroz (Orientador). 
Segmentação de Redes Vasculares a partir de uma Única Semente 
Utilizando Programação Linear. Rio de Janeiro, 2013. 79p. Tese de 
Doutorado — Departamento de Engenharia Elétrica, Pontifícia 
Universidade Católica do Rio de Janeiro. 
 
 
Esta tese apresenta o desenvolvimento e os resultados deste projeto de 

doutorado, cujo objetivo, de caráter multidisciplinar, foi desenvolver uma 

metodologia e uma ferramenta para segmentação de redes vasculares a partir de 

imagens de tomografia computadorizada, utilizando procedimentos de 

segmentação automática de imagens e visualização tridimensional de dados. A 

metodologia sugerida segmenta a rede vascular iterativamente utilizando um 

único ponto de partida. A abordagem utiliza um modelo de amostragem cônico 

composto de várias camadas esféricas concêntricas ordenadas. Cada ponto 

amostrado é avaliado utilizando-se uma medida de vascularidade proposta nesta 

tese, que busca identificar pontos que pertencem a vasos. Um grafo dirigido é 

então construído com os pontos selecionados e analisado para que se encontre 

localmente cadeias de pontos conectados que compõem pedaços de ramos da rede 

vascular. Cada segmento da rede vascular gera uma nova semente a partir da qual 

uma nova amostragem é realizada e desta forma o procedimento iterativo se 

repete até que toda a estrutura vascular seja segmentada. A metodologia foi 

testada utilizando-se imagens sintéticas e reais. Dentre as imagens reais foram 

segmentadas estruturas vasculares coronárias, carótidas, hepáticas, pulmonares 

além de uma rede de fibras nervosas do sistema olfativo. Também foram extraídas 

as topologias das redes vasculares. A avaliação foi quando possível quantitativa, 

embora este tipo de dado muito raramente ofereça uma segmentação de 

referência, e nestes casos a avaliação foi qualitativa e visual. Os resultados obtidos 

confirmam o potencial do método e indicam direções para promover 

desenvolvimentos futuros. 

 

Palavras-chave 

Imagens Médicas; Segmentação; Grafos; Programação Linear; Tomografia 

Computadorizada. 
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1
Introduction

The idea of living longer concerns men since ever. Health turned into a main

topic for mankind, leading to the development of new healthcare technologies that

improved dramatically life expectancy throughout the years. However, since it is

not possible to live forever, the challenge posed is to prolong life by preventing

the leading causes of death, which are, according to the World Health Organization

(WHO), related to vascular diseases and cancer (WHO08).

In Brazil, according to the Ministry of Health, the scenario is similar to the

rest of the world. In 2004, from a total of 1.024.073 deaths, 285.543 (27.88%) were

related to illnesses in the vascular system, whereas 140.801 (13.75%) were due

to tumors (MS04). It is also known that the growth of malignant tumors is directly

associated to vessel recruitment and angiogenesis (Holash99). Vascular diseases are

related to death and disability in people with diabetes as well (Lüscher03).

The numbers presented above show how urgent it is to develop new tech-

nologies to fight and prevent diseases related to vascular issues. Prevention plays

a central role, and proper examination tools are indispensable - even when a dis-

ease is detected, examination is fundamental to determine the best procedure to be

followed.

A great effort to develop this field has been performed, and vascular examina-

tion has received special attention. Non-invasive exams, such as Computed Tomog-

raphy (CT) and Magnetic Resonance Imaging (MRI), are increasingly replacing

invasive angiography in examining and visualizing vessels. They are an effective,

less traumatic and painless alternative: they allow the detection of vessel anomalies

and pathologies such as aneurysms, stenosis and plaques and also provide impor-

tant information for surgical planning, such as the delineation of vascular supply

architecture and operative landmarks.

These kinds of exam, however, provide raw information that must be filtered

to deliver useful information. This filtering is usually done visually by a specialist,

in a demanding and time consuming task which is also partially subjective. Al-

though the use of contrast chemicals enables specialists to filter the information

provided by these exams, surrounding structures, low contrast and artifacts such

as stents, usually hinder the correct identification of the structure to be analyzed.
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For this reason, segmentation algorithms are welcome to provide support to these

specialists.

Many segmentation algorithms for medical imaging have been proposed in

the literature. Even so, this is still an open challenge. Depending on the structures

the analyst deals with, different approaches are recommended. Deformable models

and region growing techniques are used generally to segment organs and massive

structures such as bones, muscles and many others (Hegadi10, McInerney96). The

combined use of statistical approaches, such as Gaussian mixture models (GMM),

and region growing techniques achieved some success in identifying nodules and

vessels inside an organ (Oliveira09, Oliveira11).

On the other hand, when it comes to general vessel segmentation, or their

topological description, other techniques must be considered (Kirbas04, Lesage09).

Many of them are based on a propagating behavior emanating from a given seed

point, and they use different techniques that benefit from local information to pursue

a vessel path. The differences between them lie on the constraints imposed to the

growth process.

The simplest algorithm used is region growing (Wan03, Brien94), which

works well for contrasted vessels but leaks into neighbouring structures if contrast

is low. To minimize leakage, some algorithms implement the enhancement of

vessel-like structures with a pre-processing step using Hessian filters or tubular

features (Manniesing04, Canero03). Deformable models, such as level-sets, bring

also some robustness against leakage using front propagation to pursue vessels

(Lorigo01, Deschamps01), albeit they are not very effective to segment small ones.

Implementing vessel models in a tracking framework is becoming common-

place to deal with vascular structures. The so called vessel tracking algorithms are

among the ones with best results for vessel segmentation. They can be divided into

ridge, cross-section and tubular tracking. In ridge tracking modeling (Wink00), ves-

sels are modeled as intensity ridges through the use of local information features,

such as the Hessian matrix, which allow minimal path approaches to find a mini-

mum cost path between points and identify a vessel (Deschamps01, Olabarriaga03).

Differentiation techniques, such the ones using Hessian, are, however, very sensitive

to noise, and many times modeling the geometry of a vessel to reinforce vessel con-

straints is necessary. In cross-section approaches, modeling a vessel cross-section

as an ellipse is very usual (Florin05, Krissian06), and provides useful information,

such as the local vessel diameter and direction. Again, small vessels are problem-

atic, since their cross-sections may look very different from an ellipse. To overcome

this limitation, tubular tracking algorithms (Worz07, Rossignac07) model vessel

paths as a chain of connected tubular pieces, since even small vessels keep their

tubular aspect. Even though they provide diameter and direction information, and
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are more robust for small vessels, they can be computationally very demanding.

Whereas these techniques are reasonably successful for single vessel segmen-

tation, when it comes to vascular network tracking, there is still much room for im-

provement. The classic minimal path formulation, although widely used, provides

only single path minimization. Besides, many of current vessel segmentation al-

gorithms face problems to identify vessel bifurcations, hindering segmentation of

vascular networks, and also facing problems to describe their topology. The use

of hybrid techniques capable of tracking full networks emerged more recently. For

instance, Friman (Friman10) uses a Multiple Hypothesis Tracking framework to

connect vessel points described by a vessel template model based on local image

and geometry parameters, and Wang (Wang12) proposes a statistical model to track

tree-like tubular structures using also a bifurcation detector.

This work proposes a methodology to track vascular structures in non-invasive

exams using a graph-based model solved using a linear programming approach.

1.1
Objectives

In this thesis a new methodology for tracking and describing the topology of

vascular networks is presented. The following objectives were proposed:

General Objective: Develop a methodology for tracking and describing the

topology of tree-like structures.

Operational Objectives:

1. Develop and evaluate a method for tracking vascular structures.

2. Develop tools for visualizing in 2D and 3D the segmented structures.

3. Develop methods for the edition of results.

4. Develop a library containing funcions used in this work, to allow the fast

prototyping of new related methods.

5. Build a prototype in C++ that implements the techniques developed in this

work.

The following steps for the workflow were proposed:

1. Construct and select datasets.

2. Develop a pipeline to track iteratively a tree-like structure.

3. Develop a sample model related to vessel morphology.

4. Develop a method based on linear programming to identify vessel paths in a

given graph-structured cloud of points.
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5. Develop post processing methods to ensure coherence of the segmented

structure based on anatomical knowledge.

6. Develop edition tools for correction and completion.

7. Implement the proposed methods in a C++ library.

8. Develop a prototype in C++ and Qt.

9. Evaluate results.

1.2
Thesis contributions

The contributions presented in this thesis are the following:

– Sampling method to provide a cloud of points structured as a graph with

geometry that benefits from vessel anatomy.

– Vesselness assessment based on a cylindrical weighted Gaussian mixture

model.

– Graph structure modeling to allow the use of a linear programming approach

to find vessel paths.

– Iterative pipeline with post processing steps that ensure coherence of the

segmented structure and avoid anatomical aberrations.

1.3
Thesis organization

The thesis is structured in six chapters as described bellow:

– Chapter 2 - This chapter introduces the reader to basic concepts of medical

imaging and anatomy of vascular systems that will be used throughout the

thesis.

– Chapter 3 - The theoretical fundamentals needed for the understanding of this

work are shown in this chapter. The main concepts of graph theory, linear

programming and network flow problem are discussed.

– Chapter 4 - This chapter the methodology is presented in detail. The algo-

rithmic formulation to track a vascular network iteratively is scrutinized. The

sampling model adopted, the vessel points detection methodology and the

tracking of vascular structures based on a network flow formulation solved

by linear programming are presented in detail.
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– Chapter 5 - This chapter depicts the results obtained using images and

tables for different datasets, and provides an experimental analysis to discuss

efficiency and robustness.

– Chapter 6 - The conclusions are presented in this chapter with a brief dis-

cussion over the results obtained and their potential contribution for further

research.
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2
Medical Imaging and Vascular Anatomy

This chapter presents a brief introduction to vascular anatomy and discusses

how vessels appear on the kind of image data used in this work, so as to support the

heuristics adopted in the developed methodology.

2.1
Introduction to vascular anatomy

Blood vessels are part of the cardiovascular system, together with the heart

and blood (Silverstein94). They can be simply characterized as the tubes through

which blood flows throughout the human body and are involved in almost every

medical condition, including cancer, inflammation, and cardiovascular diseases.

Three types of blood vessels are found in the human body: arteries, veins, and

capillaries. The functionalities of each are very specific. While arteries typically

carry oxygenated blood away from the heart (with the exception of the pulmonary

arteries, which carry deoxygenated blood to the lungs), veins carry deoxygenated

blood back to the heart, and capillaries are the smallest blood vessels and allow

the exchange of various substances such as oxygen, carbon dioxide and nutrients

between the bloodstream and the tissues of the body.

Arteries are the largest types of vessels. As they branch away from the heart,

they become smaller arterioles, and finally capillaries. The capillaries then connect

to venules, then to veins that return blood to the heart and lungs, and then back to

the arteries. This way blood flows throughout the body.

Morphologically vessels can vary a lot, but have a similar tubular structure.

Arteries are the strongest of blood vessels, carry blood under very high pressure

and need to be very strong and elastic. Each artery is comprised of three layers. The

outermost layer is the tunica adventia composed by connective tissue and smooth

muscle fibers which allow them to handle the force of blood flow. The tunica media

is a middle layer composed of muscle cells arranged in a circular pattern to control

the constricting and dilating movements of the arteries. The tunica intima is the

innermost layer and is composed of three smaller layers that keep the smooth lining

of the arteries that allows free blood flow, enclosing the so called lumen, which is

the volume occupied by the blood.
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Veins also have three layers: tunica externa, tunica media and tunica intima.

They do not withstand as much pressure as arteries, so they are much less muscular

and elastic, and their walls are much thinner than artery walls. Veins also have valves

that avoid blood to flow back in the wrong direction.

Capillaries, as said before, are the smallest of the blood vessels and have walls

only one cell thick. These very thin walls allow for selective permeability, allowing

oxygen and nutrients that come through the arterioles to cross through capillary

walls to the cells of the body. They also allow waste and carbon dioxide to move

into the blood that is returning to the heart.

Many disorders can affect blood vessels. The most common are the aneurysm,

which is a ballooning caused by a weakness in the vessel wall; the stenosis that

occurs when blood clots form in blood vessels causing conditions like a stroke or

infarct; and the weakened vessels, which can also disrupt and cause hemorrhage that

can be very damaging depending on where it is located. Some of these disorders,

such as aneurysm and stenosis, can be detected by imaging since they appear in

images usually as abrupt differences in vessels radius, which normally range from

few micromilimeters to few centimeters. Image 2.1 depicts the anatomy of vessels.

The next section reports how computed tomography exams (CT) work and

how blood vessels appear there. Moreover, it shows the limits imposed by image

definition for blood vessel segmentation and how far it is possible to go with current

technology.

2.2
Medical Imagery

Medical imaging acquisition techniques provide detailed patient-specific

anatomic data, including vascular structures. One of the most established is com-

puted tomography, used in this work. Usually, CT scanners manufactures provide

workstations that are used in clinical practice to produce 3D models representing

structures identified in the acquired data. However, the segmentation techniques

available on these workstations are still too general to provide proper results on

vessel segmentation or their topology extraction. To provide methods able to ex-

tract this kind of information straight from the acquired image data, it is necessary

to understand how human body structures appear in those exams, and more specifi-

caly, how vessels appear.

2.2.1
Computed Tomography

Computed tomography is a radiological exam that acquires cross-section

images of a subject using X-ray measurements taken at different angles around
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Figure 2.1: Vessels anatomy: image depicts the blood flow

and the structure of veins and arteries and how they interact.

[http://www.baileybio.com/plogger/?level=picture&id=462]

the patient. Both the radiation source and the detector rotate around the subject to

perform a full scan of the patient, who can stay still. The radiation data is obtained

through computer-assisted mathematical reconstructions from the data captured by

the scanner sensors (Bontrager96). The intensity of X-rays traversed through the

body is attenuated according to the density of tissues found in the way, and captured

by photon detectors in a way that the line integral of tissue density is measured.

This measurement is then represented as a voxel intensity value proportional to the

observed attenuation. Image 2.2 shows an example of abdominal tomography. The

liver is identified by a green layer.

The tridimensional information is represented as very thin slices of the

scanned human body internal structure, with the x-ray beam being collimated

strictly to a specific cut at a time, ensuring no overlap images by overlying anatomy.

Besides, there’s no image degradation by secondary radiation or diffuse tissue

outside the cut. Since CT was introduced in clinical practice in the beginning of

the 70’s, the equipaments evolved, and each new scanner generation reduced the
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Figure 2.2: Example of an abdominal CT with the liver shown in green. It is also

possible to observe the kidneys, spleen and some other anatomical structures.

scan time and the interval between each image reproduced, delivering more accurate

exams, with less distortion due to patient’s movements or breathing.

In CT images, each voxel (volume element) has a volume size depending on

the scanner image definition and slice width. The intensity value at a given position

is related to the tissue density there and is defined by a numerical scale in Hounsfield

units (HU, named after G. N. Hounsfield, an English cientist responsible for the

first cranial TC scan in 1970). After capturing the X-ray beams, a relatively linear

atenuation coefficient is determinated for each voxel, represented through a matrix

of exposure and converted to HU.

In this way a grayscale image is generated, considering as main references the

water, assigned with 0 HU (zero); cortical dense bone, that ranges between +1000

and +3000 HU in modern scanners; and the air, that produces the lowest level of

attenuation, assigned with -1000 HU (Schneider96). Between the two extremes (air

and cortical dense bone) lay different tissues and substances, that have different

gray levels according to their density.

Every CT scanner must be calibrated to respect these standard values but it is
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Figure 2.3: Some examples of vessels are highlighted with red circles on the figures,

and many other vessels can be observed following the ellipsoidal pattern as well.

also possible to manipulate and adjust the image after the scan, changing brightness,

enhancing boundaries, zooming into specific areas and changing contrast to better

visualize the desired anatomy. To get an idea, in conventional radiography it is

possible to differentiate tissues that have at least 10% of difference in density,

whereas in CT exams it is possible to detect differences of 1% or less in tissues

density.

Especifically for this work it is important to know how vessels appear in CT

exams. Blood vessels are filled with blood, which ranges between +30 and +45 HU

(Schneider96). This value can vary, however, depending on the calibration of the

scanner, and other structures sharing the same range, like muscles (which appear

around +40), can hinder their identification. Morphologically they are more or less

cylindrical and therefore appear as circles or ellipses depending on the view (axial,

coronal or sagital). Figure 2.3 shows how a vessel usually appears in a CT exam.

2.2.2
DICOM standard

Different manufacturers produce CT scanners, and as a consequence the

exams delivered usually hold small format differences. Hence arose the need

to standardize the information format so as to allow the reliable exchange of

information between different specialists using CT exams(Bidgood97).

DICOM (Digital Imaging Communications in Medicine) is a program created

to implement this standardization. The DICOM standard was built as a group of

rules internationally accepted for the communication of biomedical information,
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diagnostic and therapeutic. It allows for handling, storing, printing, and transmitting

information in medical imaging, and includes a file format definition and a network

communications protocol. It is also possible to link patient, hospital and scanner

information to the imagery, so as to improve realiability on the provided exam.

This stardard was developed by the medical imaging industry, represented

by members of NEMA (National Electric Manufacturers Association in USA)

and by the community of medical imaging users, such as the American College

of Radiology and the European Society of Cardiology. This process has been

happening for approximately 15 years, more recent than one could imagine, mainly

due to conflicts between the interested parts. The DICOM Standars Committee

meets three times a year to propose changes on the standard and adapt it to changing

needs.
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3
Theoretical Foundations

This chapter describes the theoretical foundations for understanding the

methodology proposed in chapter 4 to segment vascular networks. The fundamen-

tals of digital imaging, image segmentation, graphs and network flow analysis are

presented.

3.1
Digital Images

An image is defined as a bidimensional function, f(x, y), where x and y

are spatial coordinates and the amplitude f represents the brightness intensity

associated to the coordinates x and y. Monochromatic images follow exactly this

model, whereas coloured images are composed by a combination of 2D images.

For instance, in RGB format, there are three 2D components that represents each

one a primary color (red, blue and green) that are combined to form a complex color

at each pixel.

Images can be analogical, i.e., be continuous with respect to the x and y

axis, and to the amplitude f as well. However, in computer vision the usual is

to work with digital images, which are represented by a matrix containing real

numbers. With this kind of images it is possible to perform the diverse mathematical

operations that allow the extraction of useful information from imagery.

CT exams, used in this work, deliver 3D digital imagery that can be viewed as

a regular stack of 2D images. In this way, each exam can be represented as a function

f(x, y, z), where x, y and z are the spatial coordinates and f is the intensity assigned

to (x, y, z). Moreover, the voxel is usually parallelepiped-shaped since the scale of

x and y differs from the scale in z. The stack of 2D images composes a volume, as

represented in figure 3.1, which preserves spatial relationship with the real scanned

body, allowing the estimation of organ volumes, density measuraments and many

other morphometric and radiometric measurements from the human body.

3.2
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Figure 3.1: CT seen as a tridimensional image.

Graph Fundamentals

Graphs are mathematical structures used to model pairwise relationships

between objects from a given collection (Diestel10). In image processing for

instance, these objects can be pixels, segments or features of certain regions. A

graph is composed by a collection of vertices or nodes and a collection of edges

that connect pairs of vertices. The nodes may be part of the graph structure, or

may be external entities represented by integer indices or references. A graph data

structure may also associate to each edge some edge value, such as a symbolic label

or a numeric attribute. Figure 3.2 shows an example of graph.

A graph is commonly represented as an ordered pair G = (V,E), comprising

a set V of vertices or nodes together with a set E of edges or lines. Edges are two-

element subsets E(x, y) of V , represented also by the somewhat shorter notation

xy. The order |V (G)| of a graph is the number of its vertices, and the size |E(G)|
of a graph is the number of its edges. The graph G may be undirected, meaning that

there is no distinction between the edges xy and yx, or its edges may be directed

from one vertex to another, meaning that xy and yx represent different edges. The

two endpoints of an edge are also said to be adjacent to each other.

A loop in graph theory is an edge whose endpoints are the same vertex,

whereas a link has two distinct endpoints. An edge is multiple if there is another

edge with the same endpoints, otherwise it is simple. The multiplicity of an edge

is the number of multiple edges sharing the same end vertices; the multiplicity of a

graph, the maximum multiplicity of its edges. A graph is a simple graph if it has no
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Figure 3.2: Example of a graph with seven nodes and weighted edges connecting

them.

multiple edges or loops.

A non-edge is an edge that is not present in the graph. More formally, for two

vertices u and v, {u, v} is a non-edge in a graph G whenever {u, v} is not an edge

in G. The complement of a graph G is a graph with the same vertex set as G but

with an edge set such that E(x, y) is an edge in the complement only if xy is not an

edge in G. An edgeless graph or empty graph or null graph is a graph with zero or

more vertices, but no edges.

A walk is an alternating sequence of vertices and edges, beginning and ending

with a vertex, where each vertex is incident to both the edge that precedes it and

the edge that follows it in the sequence, and where the vertices that precede and

follow an edge are the end vertices of that edge. A walk is closed if its first and last

vertices are the same, and open if they are different. A path is an open walk, and

usually understood to be simple, meaning that no vertices are repeated. The closed

equivalent to this type of walk, a walk that starts and ends at the same vertex but has

no repeated vertices or edges, is called a cycle.

A weighted graph associates weight (also called cost), usually real numbers,

to every edge in the graph. The weight of a path or the weight of a tree in a weighted

graph is the sum of the weights of the selected edges. A weighted graph can be also

called a network.

Graphs structured as networks are specially suited for vascular segmentation,

and will be used in this thesis, since it possible to model topological knowledge

about vessels in this kind of structure, as we describe further.

3.3
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Image Segmentation

Human vision considers certain observable characteristics of objects in a

scene, such as shape and color to form groups within a context established by

the image, decomposing the image into significant elements in a process called

segmentation.

Image segmentation is a process that seek to emulate human cognitive pro-

cesses to identify relevant objects in the image, and is usually the most delicate

step in image processing. It is still subject of intense research, highly dependent

on the problem posed, and therefore usually based on prior knowledge about the

application field.

In medical imaging, medicine provides the knowledge about human body

anatomy used to develop heuristics that guides segmentation methods combining

various image processing techniques. These techiques can be basically divided into

two different groups (Masutani06): data-driven and model-driven.

3.3.1
Data-driven Segmentation

Data-driven segmentation techniques (Fujimoto02, Kim00) try to emulate the

human ability to identify visually objects, by detecting and classifying segments

and features in images using information over similarity present in the data. They

can be grouped into contour based segmentation and region based segmentation.

Contour Segmentation

This segmentation model relies on the fact that different regions often form

groups with different levels of intensity, which ultimately generate on their frontiers

a sharp variation of intensity, i.e., a contour. The analysis of contours is usually very

interesting for segmenting objects. For instance, generally, boundaries of objects in

a scene present variation of intensity, otherwise these objects would not be visible in

the image. Repeated patterns of edges can also be used on the definition of heuristics

for segmentation, indicating, for example, different textures for different objects.

If an object has edges detectable in its entire contour, then contour based

approaches are usually enough for having good segmentation results. It is very usual

to take advantage of borders detectors, such as the Canny detector (Canny86), to

improve reliability and achieve good segmentation results using contour.

However, in many cases, such as vascular structures in CT exams, it is not

possible to clearly define an edge along the entire length of the object to be

segmented. Neighbour anatomical structures sharing more or less the same density

of vessels, such as muscles (see chapter 2), compromise the clear definition of a
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complete contour and make it difficult to achieve good results using only traditional

contour based segmentation techniques.

Region Segmentation

Objects of interest in an image are usually composed by segments or regions.

Formally, segments can be defined as sets of interconnected pixels that share some

common characteristics such as similar texture or intensity. Region segmentation

methods aims to identify objects in an image by decomposing it into similar regions

according to some criterion of homogeneity.

There is a large number of segmentation methods based in regions, such as

Baatz&Schappe (Vanessa10) and Spring (Camara96), each of them is suited for a

group of problems. For vessel segmentation many techiques are suited, and one of

the most basic is region growing.

Region Growing by Hysteresis

If one is interested in segmenting vessels without considering their topology,

then region growing is quite effective. This method segment objects by fusing pixels

or subregions into larger regions iteratively. The procedure can be described as the

following:

1. Select an image pixel or region belonging to the object to be segmented. It is

called a seed.

2. Merge neighboring pixels or subregions to the segmented region if they

satisfy some criterion of homogeneity such as similar intensity, color or

texture.

3. Repeat step 2 until no more neighbouring pixel or subregion meet the simi-

larity criterion.

This process is based on a greedy strategy and can be slow depending on

image size and the homogeneity criterion used. An option for speeding up it

is to group pixels previously in regions by computing intervals of intensity that

characterize somehow a particular concept or structure in the image. This approach

is known as region growing by hysteresis, and follows a very simple procedure to

define seeds and the group of pixels that can be merged to them.

In this formulation, seeds are defined by a strict range of gray levels, narrowly

defining pixels that surely belong to a particular concept. Then, a second range,

more comprehensive, determines a larger group containing pixels that will be

added to the concept only if they are both similar to the seeds and belong to their

neighborhood.
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The procedure is then defined by five steps:

1. Label seeds as groups of adjacent pixels whose intensities belong to the

range of intensity [IL, IH ]. These pixels will necessarily belong to the final

segmented object.

2. Label a set of candidates for the object to be segmented, with less certainty.

They are defined as the pixels belonging to the range of intensity [IL −
ΔL, IH + ΔH ]. Pixels with intensity value outside this range will not belong

to the final segmented object.

3. Define a initial solution composed by the seeds.

4. Add the candidates adjacent to the current solution in 3 dimensions.

5. Repeat the previous step until the object estimated stops growing, ie, until the

resulting volume remains the same from one iteration to the next.

The resulting object is formed by pixels whose intensity is certainly charac-

teristic for the object to be segmented (seeds), and by pixels that both lie in the

seeds vicinity and have intensity values acceptable for describing the object to be

segmented. This model is particularly attractive for regions with intensity disper-

sion or when the intensity value of pixels belonging to the concept varies according

to their position in space, like blood vessels in CT images.

3.3.2
Model-driven Segmentation

Well contrasted structures are usually identified without a great effort using

data-driven methods. However, when it comes to images with low contrast, i.e.,

when adjacent structures share pixel intensity values, they usually fail. More in-

formation about the object model represented in the image, such as the shape, is

needed and model-driven approaches allow the embedding of this information in

the segmentation process.

Model-driven segmentation methods (Lamecker05, Soler01, Friman10) use

pre-defined templates to segment objects in images by matching the model to the

data. In this type of technique, the model representing the structure to be segmented

is defined by means of object characteristics such as spatial position, texture and

spatial relationship with other objects. Once these features are defined, the algorithm

searches the image for instances that fit the given model.

The different model-driven methods proposed rely on the kind of model used,

which can be probabilistic, geometrical or deformable. Among them, for vessel
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segmentation, the use of shortest path approaches (Deschamps01, Olabarriaga03) is

almost commonplace.

The shortest path problem is formally defined as the one of finding the

optimal path between two points, for instance pixels in an image, according to some

objective criteria. The optimization is usually defined as the cost minimization of

penalties associated to the edges that compose the path.

Transposing this to graph theory, let ei,j be the edge incident to both vertices vi

and vj . Given a real-valued weight function f : E → R, and an undirected simple

graph G, the shortest path from v to v′ is the path P = (v1, v2, . . . , vn) (where

v1 = v and vn = v′) that over all possible n minimizes the sum
∑n−1

i=1 f(ei,i+1).

When the graph is unweighted this is equivalent to finding the path with fewest

edges.

Considering the various formulations for adressing the shortest path problem,

two can be stated: the fast marching method, an special case of level-sets formu-

lation proposed by Sethian and Osher (Sethian99, Osher03); and the graph-based

Dijkstra’s algorithm (Ahuja93). The second one is specially interesting for this the-

sis approach, as it is going to be clear in the following sections.

Dijkstra’s algorithm

In 1959 the Dutch computer scientist Edsger Dijkstra published a graph search

algorithm that solves the single-source shortest path for a graph with non-negative

edge path costs. The solution is composed by the shortest paths from a source vertex

v to all other vertices in the graph.

The algorithm is composed by conceptually simple steps (Ahuja93). Suppose

one wants to find the shortest path between two nodes in a graph. To start, the

distance to every node in the graph is marked with infinity or unvisited, which does

not imply there is an infinite distance, but only that the nodes were not visited yet.

Then, at each iteration, a current node is selected, beginning with the starting point,

for which the distance is marked as zero. For subsequent iterations, the current node

is set as the closest unvisited node to the starting point, which is easily computed by

inspection of the visited nodes.

At each iteration, an update of the distance to every unvisited node directly

connected to the current node is performed. This is done by computing the sum

of the distance between the unvisited node and the distance value of the current

node. If the sum value is less then the current value of the unvisited node then it

replaces the current value. In effect, the unvisited node is relabeled if the path to it

through the current node is shorter than the previously known paths. Nodes marked

as visited are labeled with the shortest path from the starting point to it and will not

be revisited or returned to.
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The iterative process continues updating the neighboring nodes with the

shortest distances, marking the current node as visited, and moving onto the closest

unvisited node until the destination node is visited. In some sense, this algorithm

implements a search outward from the starting point, iteratively considering every

node that is closer in terms of shortest path distance until it reaches the destination. It

clearly finds the shortest path, however it may be relatively slow in some topologies.

If the process is run until every node is visited then the paths with lowest cost

(i.e. the shortest path) between a source node and every other node are found. If one

is interested in finding only the shortest path between two nodes, then the iterative

process can be stopped once the destination node is marked as visited, which should

be faster.

Algorithmically it states like this:

1. Assign to every node a temporary distance value, initial node is set to zero

and all other nodes to infinity.

2. Mark all nodes as unvisited, and set the initial node as current. Create a set of

the unvisited nodes called unvisited set consisting of all the nodes except the

initial node.

3. For the current node, consider all of its unvisited neighbors and calculate

their temporary distances. For example, if the current node y is marked with

a distance of 5, and the edge connecting it with a neighbor z has length 2,

then the distance to z (through y) will be 5+2=7. If this distance is less than

the previously recorded temporary distance of z, then overwrite that distance.

Even though a neighbor has been examined, it is not marked as ”visited” at

this time, and it remains in the unvisited set.

4. When all unvisited neighbors of the current node were visited, mark the

current node as visited and remove it from the unvisited set. A visited node

will never be checked again.

5. If the destination node has been marked visited (when planning a route

between two specific nodes) or if every node is already marked as visited

(when planning a complete traversal), then stop. The algorithm has finished.

6. Select the unvisited node that is marked with the smallest temporary distance,

and set it as the new ”current node” then go back to step 3.

In figure 3.3 it is possible to follow the algorithm stepwisely for the definition

of the shortest paths to all other nodes and their respective final costs, i.e., final

distance values. Starting from node s. The initial costs are set to zero for node s and
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Figure 3.3: Djikstra algorithm step-by-step.

infinity for all ther others. Then the adjacent nodes t and y have their cost values

updated in step (b) considering the edges costs linking them and s, but not flaged as

visited yet. In next step the unvisited node with lowest cost (node y) is selected, set

as visited, and its adjacent nodes are checked to update their cost values. One can

notice that in step (c) node t has its value updated again, since the path through y

has a lower cost than the path coming straight from s. The procedure is repeated in

steps (d), (e) and (f), until all nodes are flaged as visited. The gray shadow shows

the shortest paths found from node s to all the others.

Concerning computation efficiency, Dijkstra’s original algorithm does not

use a min-priority queue and runs in O(|V |2), but there is an implementation

based on a min-priority queue implemented by a Fibonacci heap and running

in O(|E| + |V | log |V |). This is asymptotically the fastest known single-source

shortest-path algorithm for arbitrary directed graphs with unbounded non-negative

weights.

– Linear programming formulation
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Linear programming (LP) is a mathematical methodology for optimizing a

mathematical model represented by linear relationships (Dantzig63). More for-

mally, LP is a technique for the optimization of a linear objective function, sub-

ject to linear equalities and linear inequalities. The linear inequalities implement

constraints to the problem and define half spaces that together compose a convex

polyhedron representing the feasible geometric place for the problem. The linear

objective function is a real-valued affine function defined on this polyhedron, and

the linear programming algorithm finds a point in this region where the function has

the smallest (or largest) value (if such a point exists).

A general LP problem can be expressed in canonical form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize cTx

subject to Ax ≤ b

and x ≥ 0

(3-1)

where x represents the vector of variables (to be determined), c and b are

vectors of (known) coefficients, A is a (known) matrix of coefficients, and (·)T is

the matrix transpose. The expression to be maximized or minimized is called the

objective function (cTx in this case). The inequalities Ax ≤ b are the constraints

which specify a convex polyhedron over which the objective function is to be

optimized.

The shortest path problem can be naturally associated to a linear programming

formulation. Formally, given a directed graph G(V,E) with source node s, target

node t, and cost wij for each edge (i, j) in E, the linear program with variables xij

represents the shorstest path problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑

ij∈E wijxij

subject to x ≥ 0

and for all i,
∑

j xij −
∑

j xji =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if i = s;

−1, if i = t;

0, otherwise.

(3-2)

Many methods were proposed in the literature for solving this kind of linear

equations system. A very common approach is the simplex algorithm. It was

proposed by George Dantzig in 1947 (Dantzig63) and proceeds by performing

successive pivot operations on the system of linear equations system which each

give an improved basic feasible solution. The choice of pivot element at each step
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is determined so as that this pivot improves the solution. The algorithm is quite

efficient and can be guaranteed to find the global optimum if certain precautions

against cycling are taken. However, the simplex algorithm has poor worst-case

behavior for some problems, where it takes a number of steps exponential to the

problem size and can become unmanageable.

From a geometrical point of view, simplex solves LP problems by finding a

feasible solution at a vertex of the inequalities based polyhedron and then walking

along a path on the edges of the polyhedron to other vertices until an optimum is

reached. This walk happens with non-decreasing values of the objective function,

and in many practical problems, ”stalling” occurs and many steps are made with no

increase in the objective function. The reader can refer to (Dantzig63) for a detailed

explanation of the method.

The shortest path formulation is very used for single vessel segmentation.

However, for vascular network segmentation, a more complex model, based for

instance in network flow theory, is more appropriate, since we are dealing with

many connected paths forming a network.

3.4
Network Flow Problem

A flow network is a directed weighted graph where each edge receives a flow,

albeit the amount of flow on it cannot exceed its capacity (Ahuja93). Besides, a flow

must satisfy the restriction that the amount of flow into a node equals the amount of

flow out of it, except when it is a source, which has more outgoing flow, or a sink,

which has more incoming flow. This kind of structure can be used to model traffic

in a road system, fluids in pipes, or anything similar in which something travels

through a network of nodes. We model a vascular network this way.

Let G(V,E) be a directed graph in which every edge (u, v) ∈ E has a non-

negative, real-valued capacity c(u, v). If (u, v) �∈ E, it is assumed that c(u, v) = 0.

There are two special nodes: a source s from which the flow emanates and a sink

t in which the flow goes out of the network. A flow network is the real function

f : V × V → R with the following three properties for all nodes u and v:

1. Capacity constraints: f(u, v) ≤ c(u, v). The flow along an edge cannot

exceed its capacity.

2. Skew symmetry: f(u, v) = −f(v, u). The net flow from u to v must be the

opposite of the net flow from v to u.

3. Flow conservation:
∑

w∈V f(u, w) = 0, unless u = s or u = t. The network

flow to a node is zero, except for the source, which produces flow, and the

sink, which consumes flow.
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Figure 3.4: A flow network showing flow/capacity on the edges.

Formally, f(u, v) is the net flow from u to v. For example, if there is a flow of

4 units from u to v, and a flow of 3 units from v to u, one says that f(u, v) = 1 and

f(v, u) = −1.

Image 3.4, shows an example of a flow network with source s, sink t, and

four additional nodes. The flow and capacity are denoted f /c and are represented

over the edges. Notice that the total amount of flow from s to t is 5, since the total

outgoing flow from s is 5, which is also the incoming flow to t.

The residual capacity of an edge is cf (u, v) = c(u, v)−f(u, v), and it defines

a residual network denoted Gf (V,Ef ), which gives the amount of available capacity

of a network. Since flows in opposite directions cancel out, decreasing the flow from

v to u is the same as increasing the flow from u to v. An augmenting path is a path

(u1, u2, . . . , uk) in the residual network, where u1 = s, uk = t, and cf (ui, ui+1) > 0.

A network is at maximum flow if and only if there is no augmenting path in the

residual network.

Figure 3.5 shows the residual network for the given network flow example.

Notice how there is positive residual capacity on some edges where the original

capacity is zero, for example for the edge (d, c). This flow is not a maximum flow.

The network flow architecture holds the modeling of many different problems

and solutions depending on the applications. The most common problem using flow

networks is to find the maximum flow, which provides the largest possible total flow

from the source to the sink in a given graph, and can be solved efficiently with the

Ford–Fulkerson algorithm (Ahuja93). The max-flow min-cut theorem (Ahuja93)

states that finding a maximal network flow is equivalent to finding a cut of minimum

capacity that separates the source and the sink, and can be solved in a linear

programming formulation as well.

Another common configuration is the minimum cost flow, used in this thesis

to track a vascular network. Here, each edge u, v has a given cost c(u, v), and the
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Figure 3.5: Residual network showing residual capacities.

cost of sending the flow f(u, v) through the edge is f(u, v) · c(u, v). The objective

then is to send a given amount of flow from the source to the sink, at the lowest

possible cost. It is possible to see this problem as a generalization of the shortest

path problem algorithmically solved by Dijkstra, which could be modeled with the

starting node being the source s, the destination node the sink t and the shortest path

the one with the lowest total cost between these two nodes.

Next chapter details our methodology for segmenting a whole vascular net-

work using a single seed point. We propose an iterative method that allows multiple

vessel segmentation using a minimum cost network flow formulation solved by lin-

ear programming.
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4
Methodology

This chapter covers the proposed methodology for tracking a vascular net-

work from a given starting point. The first section (4.1) presents some motivation

for the proposed methodology and shows how vessels can be modelled as directed

graphs. Section 4.2 shows the general processing steps for the iterative segmenta-

tion of vascular networks, whereas section 4.3 addresses the sampling method based

on anatomical characteristics of vessels. Detection of vessel points is described in

section 4.4, while section 4.5 describes the local vascular network tracking proce-

dure, using a network flow model solved by linear programming. Finally, section

4.6 presents validation steps that ensure the anatomical coherence of the segmented

vascular network.

4.1
Motivation and Graph Modeling

The use of directed graphs to segment tree-like structures such as vascular

networks is quite intuitive. Figure 4.1 shows how a directed graph composed by

vessel point detections can describe a vascular structure. They allow the segmen-

tation of branches of a vascular network through the identification of linked vessel

point detections, such as the path depicted in green.

Not very intuitive is the problem that arises from this choice when it comes to

tracking vascular structures in images whose voxels are distributed uniformly in a

given direction, such as CT scans. Vessels usually change direction continuously

and hardly follow the direction of an axis x, y or z. Since directed graphs, as

shown in section 3.2, consist of nodes organized in interconnected layers following

a certain direction, this behaviour is problematic. The use of any of x, y, z axes

to define the directed graph levels, would lead to the impossibility of segmenting

vessels whose direction goes in favor of a given axis at some point, but against it

later. In other words, the directed graph modeling does not allow a path passing

through a sequence of levels N and N+1 to return to any node on level N. Figure 4.2

depicts the problem. The yellow branch cannot be totally identified, due to a change

of direction that disrespects the directed graph structure. The detection stops at the

third vessel point detection of that branch, since the path is not allowed to go back
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vessel detections => nodes 

Figure 4.1: Modeling a vascular network in a graph using a single direction.

vessel detections => nodes 

Figure 4.2: Problems when modeling a vascular network in a graph using a single

direction (some edges were hidden to improve understanding).

on graph levels.

This thesis proposes an alternative solution for this problem, through the

definition of several local graphs, modeled according to the vessel direction at a

given point. The model for the graph implements local coordinates whose rotation

and translation vary according to the position and the direction of the vascular

network at a given point, as shown (simplified) in figure 4.3. This model provides,

at least locally, an environment in which the problem described above rarely occurs

and thus where the use of directed graphs is suitable.

The procedure that implements this special sampling follows a conical model,

which derives a valid directed graph, and is formally defined in section 4.3.

4.2
Algorithmic Formulation

The methodology proposed for finding full vascular networks is implemented

iteratively through a sequence of steps that uses a single starting point and provides

DBD
PUC-Rio - Certificação Digital Nº 0912931/CA



Chapter 4. Methodology 38

vessel detections => nodes 

Figure 4.3: Graphs built using the local direction of the vascular network

the tracking of a vascular network and its topology as well. It is composed by four

steps, as shown in the flowchart depicted in figure 4.4.

The iterative process can be understood with the aid of figures 4.3 and 4.4.

Using a user-defined starting point, part of the vascular network is identified and

defines new seeds, which feed the iterative process until the full vascular network is

segmented, that means, until no new seed is found. It is interesting to notice that this

proposition is a natural consequence of the use of local directed graphs for modeling

the vascular structure, but it is at the same time, what allows their use for tracking

vascular networks.

The formal definition of the algorithm states as the following:

1. Definition of the input exam, parameters and initial seed.

2. Sampling from a given seed point.

3. Detection of vessel points among sample points.

4. Tracking of vascular network within the detected vessel points.

5. Definition of new seeds from the vascular strucuture detected.

6. If there is any seed to evaluate, go back to step 2.

Each of these steps is explained in detail in the following sections.
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Figure 4.4: Flowchart of the proposed methodology.

4.3
Sampling Model

The sampling method follows a conical model composed by multiple concen-

tric and ordinated spherical layers, as figure 4.5 illustrates. This model has some

interesting characteristics for sampling vessel structures, such as:

– Points belonging to the same layer are equidistant in relation to the origin.

This provides an equiprobability (with respect to the coordinates) of points

laying on the same layer to belong to the same vessel found at the origin.

– The surface area of layers increases with the distance to the origin. It is taken

into account that the increase of distance in relation to the origin, increases

also the potential of spatial spreading of a vessel in relation to the estimated

direction axis.

– The cone opening angle and height are parameters to be set. Their definition

is related to the anatomic likelihood of a specific kind of vessel to change

direction suddenly.
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Figure 4.5: Sampling following a multilayered spheric cone.

– The sampling distance is isometric. Its definition can be related to the vessel

radius size and the voxel size.

The geometric model proposed for sampling points is defined by four param-

eters: the unitary direction vector D, estimated by a cylinder fit on the given seed

point (see section 4.4); the aperture angle α, the axis length A, and the sampling

distance s, defined empirically and set by the user. This four parameters define a

cone with spherical basis that delimits the volume to be sampled.

Figures 4.5 and 4.6 depict the model in detail. The sample points are grouped

in classes depending on how they are computed: co is the origin, cl are points on the

center line A and cθ,φ are points on the concentric circles of each layer.

The number of layers L (equation 4-1), the number of concentric circles

M (equation 4-3) in each layer, and the number of points N (equation 4-8) on

each circle from a given layer are computed respecting the user-defined sampling

distance s, so as to deliver isometric sample points. It is possible to notice that these

equations are just fractionating the space uniformly.

L =
A

s
(4-1)

Al =
A∗l
L

(4-2)

M = α∗Al

s
(4-3)
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Figure 4.6: Definition of α angle steps to implement M sampling circles at a given

layer. It is possible to see the iterative aspect of the process from the steps defined

by the sampling distance s.

cl = co + Al ·D (4-4)

The axis size Al corresponding to layer l is defined in equation 4-2. The

number M of circles at a layer l is computed respecting the sampling distance s

as well: each circle is defined by a corresponding αs step using the length of the arc

α ∗ Al delineated by the angle α at layer l. The left model on figure 4.6 illustrates

the idea. This spatial division fractionates the spherical calotte composing a layer l

in evenly distributed circles where cθ,φ sample points lay on.

θ = α∗m
M

(4-5)

Each circle m is defined by a corresponding θ angle given by equation 4-5, and

the number of points N laying on the circle is defined simply using trigonometry

rules, as shown in the right model of figure 4.6. The circle m corresponding

circumference length is computed and partionated using the angular step φs to

deliver points with sampling distance s. The variables involved are defined below.

φs =
s

rcirc
(4-6)
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rcirc = Al · sin θ (4-7)

N = 2π·rcirc
s

(4-8)

Once we define a cloud of points following the proposed geometry, it is

necessary to rotate and translate their coordinates according to the cone direction

and origin, so as to place them at the right spatial position, as described in section

4.1. This is perfomed by a regular transformation matrix.

For rotation, it is important to observe some considerations. The computed

cloud of points is fairly symmetric with respect to the Z-axis, and therefore, any

new coordinate basis where the original Z-axis is aligned with the direction D is

suitable for our model. In such case an orthonormal transformation matrix H has

the third row equal to D, which is an unitary vector.

This first restriction defines an infinite number of bases with one of the axes

equal to D, and since any of them is suitable, we can determine an arbitrary second

axis considering only the restriction to be orthogonal to D, i.e., D ·V1 = 0. The third

axis for the new basis is defined straightforwardly as the vectorial product between

the two other axes.

Formally, let the direction axis be D = [DxDyDz]. An arbitrary unitary axis

V1 orthogonal to D is defined in equation 4-9 and the rotation matrix is filled with a

third axis V2 = D × V1, as shown in equation 4-11.

[
V1

]
=

[
−Dy Dx 0

]
(4-9)

[
V2

]
=

[
−DzDx −DzDy DxDx +DyDy

]
(4-10)

[
H
]
=

⎡
⎢⎢⎣

−Dy

|V1|
Dx

|V1| 0

−DzDx

|V2|
−DzDy

|V2|
DxDx+DyDy

|V2|
Dx Dy Dz

⎤
⎥⎥⎦ (4-11)

The cloud of cθ,φ points are computed using the angles θ and φ from the

geometric model (refer to figures 4.5 and 4.6), computed for each concentric circle
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Algorithm 1 Iterative sample point coordinates definition

Add point co to B (Seed point at cone origin).

Compute L using equation 4-1

for l = 1 to l = L do
Compute Al using equation 4-2.

Compute cl using equation 4-4.

Add cl to B. (Points laying on the axis A).

Compute number M of circles of layer l using equation 4-3.

for m = 1 to m = M do
Compute angle θ and radius rcirc corresponding to the circle m using formulas 4-5

and 4-7 respectively.

Compute φs using equation 4-6.

for φ = 0 to φ = 2 · π do
Compute cθ,φ using equation 4-12.

Add cθ,φ to B. (Points laying on the M circles of a layer l).

φ = φ+ φs

end for
end for

end for

at a given layer, and then rotated and translated using matrix H and the origin co, as

defined in equation 4-12.

[
cθ,φ

]
= H

⎡
⎢⎢⎣Al

⎡
⎢⎢⎣
cosφ · sin θ
sinφ · sin θ

cos θ

⎤
⎥⎥⎦

⎤
⎥⎥⎦+ co (4-12)

where H is the rotation matrix that brings the sample points to direction D, φ is

defined by equation 4-6, θ is defined by equation 4-5, Al by equation 4-2 and co is

the seed point at the origin of the cone.

The computation of final coordinates for every sampled points follows an

iterative procedure. Let B be the set of sample points coordinates. Algorithm 1

is composed of a few steps that fill B sequentially.

Once we defined all sample point coordinates, each of them is evaluated as a

vessel point candidate, using a vesselness measurement proposed in section 4.4. The

selected ones are structured as a directed graph using the conical layers structure as

described in section 4.5.

4.4
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Figure 4.7: Vessel point detection steps.

Vessel Point Detection

This section shows how sample points are selected as points that actually

pertain to vessel path. This is done in two steps, as depicted in figure 4.7. First,

we compute a measurement, hereby called vesselness, to assess how likely it is for

a sample point to be part of a vessel. Then, we select only points that have local

characteristics, including vesselness, that are peculiar to vessels. These steps are

shown in detail in the following.

4.4.1
Vesselness Computation

As stated in section 4.1, the nodes in our graph are associated to vessel

hypotheses, and therefore a model that delivers a vesselness measurement at each

node must be defined. In the literature, a number of different models have been

suggested, e.g., elliptical cross-sections models (Florin05), spheres (Rossignac07)

or template models (Friman10, Worz07). Here, we propose a model for vesselness

computation using two concentric cylinders based on the common assumption that

a vessel and its neighboring volume form locally a biphasic Gaussian mixture.

Intuitively, this measurement seems to match the description of a vessel in CT

images: fairly cylindrical and with different intensity values from the surrounding

structures.

The cylindrical model is defined by a center point P , a direction of the

cylinder and a inner radius R2 (whose value is meant to be the vessel radius). The

central point is given by the position of the sample point, while the cylinder direction

and radius are the parameters to be defined during the cylinder fit process.

Let Q1 and Q2 be two concentric cylinders with radius, R1 and R2, as shown

in figure 4.8. WQin
represents the intensity of voxels t lying inside cylinder Q1, and

WQ2 the voxels lying inside cylinder Q2. Let Fin represent the Gaussian distribution

estimated from WQin
and Fout represent the Gaussian distribution estimated from

WQout = WQ2\WQin
. The vesselness is then given by:

Wm =

∑
t∈WQin

Fout(t) +
∑

t∈WQout
Fin(t)

‖WQ2‖
(4-13)
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Figure 4.8: Gaussian mixture for cylinder fitting. The red cylinder fits the vessel at

a given P point, and the blue volume models the neighbouring area.

The given vesselness formula represents how much the inner and outer vol-

ume voxel intensities are not within other Gaussian distribution, i.e., how exclusive

each distribution is in relation to the other. In this sense, a good cylinder fit would

define the inner and outer cylinders for which Fin and Fout form a biphasic mixture,

and therefore deliver very low values as an outcome. Since vessels are more or less

cylindrical structures filled with blood and surrounded by tissues, usually non-filled

with blood, it is reasonable to assume this as a vesselness measurement.

The cylinder direction and radius must be defined to model the cylinder

that fits the best to the vessel at a given point. For this, a stochastic method

called differential evolution (Das11) was used. The outcome delivers the vesselness

measurement and the optimal cylinder radius and direction for the given point. It

is important to notice that any other stochastic method could be used, and that the

optimization techique chosen is not really the focus in this thesis.

4.4.2
Vessel Point Candidate Selection

Now that we have a cloud of sample points B and a measurement for

evaluating them as vessel points, it is necessary to define some rules to select

those with great chance of actually belonging to a vessel. The selected points are

then stored, along with their vesselness assessment, in a graph structure as shown

(simplified) in figure 4.9, respecting the models presented in sections 4.3 and 4.5.
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The points selection is composed of two steps:

1. Points whose intensity values differs much from the ones observed at the

origin of a given sampling cone are discarded and not even evaluated for

cylinder fit optimization. This avoids waste of processing time, since these

points are not likely to hold vessels. It is implemented by estimating the

intensity Gaussian distribution of both the neighborhood of the seed point

and of the point to be evaluated, and checking how similar they are.

2. Points selected in step 1 are submitted to a cylinder fit. The cylinder found

by the optmization process is then validated to ensure it follows some rules,

defined below.

The second step uses three basic rules:

1. The mean value of the inner cylinder must be higher than the mean value of

the outer volume (see figure 4.8 for details). We assume that vessels appear

as bright cylindrical structures in CT images.

2. The vesselness for the evaluated point must be higher than a fraction of the

vesselness at the cone origin. This is done to avoid very badly evaluated

points to go further and hinder or slower the network tracking process. This

proportion is a user defined parameter and works somehow as a sensitivity

factor, which allows for finding weaker vessels (at the cost of adding noise)

or just stronger vascular branches.

3. Vessel points whose cylinder radius is too small are discarded. It happens

that the optimization process tends to deliver cylinders with very small

radius when the point is actually not in a vessel. Therefore, these points

are eliminated, and the threshold for eliminating them is the image spacing,

which is quite reasonable, since vessels with radius lower than image spacing

would hardly be detectable.

Once vessel point detections are defined, a graph is built and analyzed to

identify paths forming a vascular network, as explained in next section.

4.5
Vascular Network Tracking

The formulation for tracking vascular networks structured in graphs is pre-

sented in this section as a minimum-cost network flow problem, efficiently solved

using linear programming. It is composed of two steps as depicted in figure 4.10:

vascular network detection and vascular network validation.
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Figure 4.9: Sample points selection: only the points with high probability of

pertaining to a vessel remains in the final graph model.
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Figure 4.10: Network tracking steps.

4.5.1
Vascular Network Detection

The idea for detecting vascular networks is to build and analyze local graphs

for which the nodes represent the vessel detections, as found in Section 4.4, using

the computed sample points coordinates and their respective vesselness value. These

nodes are fully connected to neighboring detections by edges, which determine

the relation between two detections with an assigned cost. Thereby, the matching

problem is equivalent to a minimum-cost network flow problem: finding the optimal

set of vessels is equivalent to sending flow through the graph so as to minimize the

cost.

Let O = {oi} be a set of vessel detections with oi = (xi, yi, zi) represented

by the 3D position. A vessel is defined as a list of ordered vessel detections

Vk = {ok1 ,ok2 , · · · ,okN}, where k1, k2, · · · kN follow the axis direction found in

Section 4.4. A set of vessels V composing the vascular network is defined to be

the optimal set of vessels V∗ = {Vk} that best explains the detections. This is

equivalent to maximizing the a-posteriori probability of V given the set of detections

O. Assuming detections are conditionally independent, the objective function is

expressed as:

V∗ = argmax
V

P (V|O) = argmax
V

∏
i

Pprob(oi|V)P (V), (4-14)
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Figure 4.11: Finding vascular network branches in a graph with the selected vessel

detection points.

where Pprob(oi|V) is the likelihood of the detection (vesselness measure) as ex-

plained in Eq. (4-13). In order to reduce the space of V , we make the assumption

that vessels cannot overlap (i.e., a detection cannot belong to two vessels). The only

case in which this will not hold is at a vessel bifurcation. We will deal with this spe-

cial case with a new proposed optimization scheme presented in subsection 4.5.4.

We also define each vessel to be independent, i.e., each is found independently of

the others, which leads to the decomposition:

P (V) =
∏
Vk∈V

P (Vk) =
∏
Vk∈V

Pin(ok1) . . . Pt(oki |oki−1
) . . . Pout(okN ) (4-15)

for each vessel k, represented by an ordered chain. Pin(oi) or Pout(oi) is the prob-

ability that a trajectory starts or ends with detection oi. Pt(oi|oj) is the probability

that oj is followed by oi in the trajectory. As shown in next subsection, these prob-

abilities are going to be described as products of costs C and flows f , with no

detriment to the optimal path to be found during the minimization process.

4.5.2
Tracking with Linear Programming

We linearize the objective function by defining a set of flow flags f(i) which

indicate if an edge i is in the path of a trajectory or not. In a minimum cost network

flow problem, the objective is to find the values of the variables that minimize

the total cost of the flows over the network. Defining the costs as negative log-

likelihoods, and combining Equations (4-14) and (4-15), the following objective
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function is obtained:

V∗ = argmin
V

− logP (V ) +
∑
i

− logPprob(oi|V) (4-16)

= argmin
f

∑
i

Cin(i)fin(i) + Cout(i)fout(i) + Cprob(i)fprob(i) +
∑
i,j

Ct(i, j)ft(i, j)

subject to the following constraints:

• Edge capacities: we assume that each detection belongs either to one vessel

or to none, i.e. 0 ≤ f(i) ≤ 1 in its linearly relaxed form.

• Flow conservation at the nodes: the entering flow of a node equals its exiting

flow.

fin(i) + fprob(i) =
∑

j ft(i, j)
∑

j ft(j, i) = fout(i) + fprob(i) (4-17)

This way, we have a fully defined linear program. In the next section, we represent

this formulation as an intuitive graphical model, and explain each of the terms

present in equation 4-17.

4.5.3
Mapping the linear program to a graphical model

To map this formulation into a cost-flow network, we define G = (N,E) to be

a directed network with a cost C(i) associated with every edge i ∈ E. An example

of such a network is shown in Fig. 4.12; it contains two special nodes, the source

S and the sink T ; all flow that goes through the graph starts at the S node and ends

at the T node; each flow represents a vessel Vk. Each observation oi is represented

with two nodes, the beginning node bi ∈ N and the end node ei ∈ N (see Fig. 4.12)

and a detection edge connecting both nodes.

It is important to highlight that each vessel detection point is represented in

the graph by a pair of nodes bi and ei connected by an edge with a cost Cprob(i)

associated to the vesselness measurement for the sampled point. Also, each vessel

detection point is connected to the next layer detection points (ei, bj) by edges

with a cost Ct(i, j) associated to the coordinates distance between the two points in

question. In this way an optimal path would minimize the costs associated to both

vesselness and distance between nodes composing the path.

Below we detail four types of edges present in the graphical model. The

edges associated to Ctoll(i, j) are going to be explained later.

Transition edges. The edges (i, j) connect the end nodes ei with the beginning

nodes bj in the following layers (orange edges in Fig. 4.12), with cost Ct(i, j)
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Figure 4.12: Proposed graph structure. First layer of the cone consists of node 1,

second layer by nodes 2,3,4 and third layer by nodes 5,6. Each pair of begin/end

represents a node referenced by the index associated.

and flow ft(i, j) = 1 if oi and oj belong to Vk, and 0 otherwise. The costs of

the transition edges represent the spatial relation between different points in the

vessel. Since we are interested in matching points close to each other, we define the

costs to be a linear decreasing function of the distance between neighboring vessel

detections, assuming a maximum allowed distance Dmax:

Ct(i, j) = − log (P (oj |oi)) = − log
(
Dmax−‖oj−oi)‖

Dmax

)
(4-18)

Detection edges. These edges (plotted in green in Fig. 4.12) connect the beginning

node bi and end node ei, with flow fprob(i) = 1 if oi belongs to Vk, and 0 otherwise.

If all the costs of the edges are positive, the solution to the minimum-cost problem is

the trivial null flow. Consequently, we represent each observation oi with two nodes

and a detection edge in between with negative cost Cprob(i) = log (1− Pprob(oi)).

The higher the likelihood (vesselness) of a detection Pprob(oi) the more negative the

cost of the detection edge, hence, confident detections are likely to be in the path of

the flow in order to minimize the total cost.

Entrance and exit edges. Entry edges (purple in Fig. 4.12) connect the source
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S with all the end nodes ei, with cost Cin(i) = − log(0.1) = 1 and flow fin(i).

Similarly, exit edges connect the start node bi with sink T , with cost Cout(i) =

− log(0.1) + Cprob(i) = 1 + Cprob(i), to ensure that a trajectory ends at a detection

with high probability, and flow fout(i). The flows are 1 if the trajectory Vk starts/ends

at oi.

4.5.4
Iterative vessel branch detection

In order to solve Eq. (4-16), we can take several Linear Programming solvers

from the optimization community, such as Simplex or k-shortest paths (Dantzig63).

Nonetheless, these solvers would find many trajectories representing the same

vessel since there are many nodes (detections) inside a single vessel. To tackle this

problem, we propose an iterative procedure which is both fast and still finds the

global solution for each of the vessels consecutively.

The first vessel V1 is found by solving Eq. (4-16), allowing entering flow

only at the seed point and setting the maximum flow going out of node t to be 1.

Afterwards, we impose the fact that if a vessel’s path is not distant enough from V1,

it cannot be included in the set of solution paths, avoiding the creation of multiple

paths representing the same vessel. To implement this in the graph structure we

propose an edge connecting vessel detections in the same layer with a penalty cost,

hereby called “toll”, which is represented by the thick black edge in Fig. 4.12. This

”toll” cost is defined by:

Ctoll(i, j) = Ktoll · exp
(−‖(oi − oj)‖

Dradius

)
(4-19)

Therefore, for all points oj which are at a distance Dradius or less than any point

of the previously found vessel V1, we compute the corresponding Ctoll, which will

be added to Eq. (4-16). With this we ensure the new path found will be different

enough from V1, since the summation of costs through a very similar path would be

heavily penalized.

For detecting bifurcations the trick is quite simple. We update the flow

conditions, allowing any point of V1 to be the start of a new vessel as shown in

Fig. 4.13. Formally this is done by allowing fin to range between 0,1 in such vessel

detection points, being defined as zero in all the other points. Thus we inherently

deal with bifurcations, and new vessels are found until the cost of finding a new

vessel is no longer negative. We set Ktoll = 5 for all experiments, empirically.

An overview of the proposed optimization for both detection and tracking is

shown in Algorithm 2.
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(a) (b) (c) (d)

(e)

Figure 4.13: Proposed optimization method example of synthetic images. (a) Initial

point marked in orange. First path found is the one with minimum cost (red). In

the next step, sources will be added along the path (black arrows). (b,c,d) Paths

found iteratively, sources of each path marked by colored arrows. (e) 3D view of

the vascular network.

4.6
Vascular Branches Validation

Once we detected connected paths from the vascular network, as explained

in previous section, a validation procedure is performed to ensure that the final

outcome follows some basic rules of vascular anatomy.

These rules are listed bellow and depicted in figure 4.14:

1. Vessel branches should not be too close from each other, in which case, the

branches detected probably represent the same vessel. This is implemented by

computing a minimum distance between the branches found at each iteration.

If this value is lower than a treshold, the branch is discarded.

2. Vessel branches should not reconnect to the already segmented vascular

network, so as to avoid loops, which do not exist in vascular networks. This

is implemented by computing the minimum distance between the branches

found and the already segmented network. If this value is lower than a

treshold, the branch forming a loop is discarded.

The threshold cited above is a parameter set as a proportion to the vessel

radius size estimated at that point. In this way it is changed dynamically during

the segmentation process, so as to both avoid misconnections and ensure that small

vessels detection will not be hindered by the post processing procedure.
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Algorithm 2 Iterative vessel network tracking

while ‖S‖ > 0 do
1. Get a seed from S and find the vessel direction

2. Compute a sampling cloud of points as shown in section 4.3

3. Build the graph from the sample points

4. Compute vesselness measurements at sample points given Eq. (4-13)

while C(Vn) < 0 do
5. Find vessel Vn with minimum cost

6. Compute the toll charges (Eq. (4-19)) and new flow conditions.

end while
6. Define new seeds S

end while

(a) (b)

Figure 4.14: Post processing rules implement some anatomical constraints for a

vascular network. The red ’X’ shows the branches which would be eliminated

following each rule (a) and (b) described in section 4.6.

4.6.1
Next seeds definition

The final step is to define new seeds to be used as start points for new

conical samplings and vascular network detections in the iterative methodology.

Each branch found and validated derives a new seed, and to add robustness to the

process, a simple procedure was defined to ensure the best seed at each branch is

found. A simple search procedure is implemented considering the ending part (30%

last points) of each branch found and the node with the best vesselness value is

defined as the new seed, as depicted in figure 4.15.

Each new seed defined starts a new segmentation process, which iteratively

(recall figure 4.4) implements the segmentation of a full vascular network.

The next chapter shows some results, and discusses the experimental analysis.
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[0.34; 0.3; 0.4;  ; 0.28] 
[0.32; 0.3; 0.4;  ; 0.48] 

Figure 4.15: Next seeds definition.
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5
Results and Experimental Analysis

This chapter provides results and experimental analysis. Also presented the

software prototypes developed and the quantitative and qualitative evaluations of

the methodology are also presented. Cases of poor performance are discussed to

indicate further research.

5.1
Software Prototypes

To implement the ideas proposed in this thesis two prototypes were developed.

One runs in batch mode for analyzing a great number of exams sequentially. The

other implements a visual interface (GUI) with tools for editing, visualizing and

completing the segmented vascular network. They were implemented using C++

and Qt, VTK (Schroeder98) and ITK (Yoo02) libraries.

5.1.1
Batch software

The batch software runs at prompt command line with the following parame-

ters:

– vesseltrack - identifier for our algorithm inside the executable (there are few

other classic methods and batch modes implemented)

– {path to image} - path to the image in MHD format

– {output path} - txt file where the centerline points are written

– {initial radius} - estimated vessel radius at the given initial point

– {sensibility factor} - value in [0,1] range that defines how sensitive the vessel

point detector will be. The lower this value the more points one gets (and

more noise).

– {angle} - opening angle from the cone model used on conical sampling

– {axis size} - axis size of the cone model used on conical sampling

– {sampling distance} - physical distance in mm between the sampled points

– {Dradius} - from equation (4-19), this distance that implements the cost penalty

to avoid creation of parallel paths on network mapping module.
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– {Dmax} - from equation (4-18), this value that allows gaps on paths found on

network mapping module. The higher this value the bigger is the allowed gap.

– {max chains} - max number of chains found on the network mapping module.

0 means no restriction.

– {x initial} - initial point x coordinate

– {y initial} - initial point y coordinate

– {z initial} - initial point z coordinate

It has also a special configuration setup for looping different parameters, were

the user defines the ranges and size of the iterative step for each parameter. For

looping through different exams bash scripting was used.

5.1.2
GUI software

The GUI software allows for viewing, editing and completing the segmented

vascular network. For visualization of results and image conversion we used the

library VTK, and for some auxiliary functions of image processing we used the ITK

library. The prototype reads DICOM and RAW/MHD images. It is an improvement

of the GUI software developed for liver segmentation in (Oliveira09).

The software prototype has three well-defined spaces, as shown in figure 5.1:

a control panel, a display area, and an auxiliary panel, where the user can navigate

through slices, change contrast and see some image statistics like histograms.

The control panel consists of four different modules: segmentation, editing,

modeling (for 3D visualization of structures) and classification. The classification

module was not used in this thesis, and therefore not presented. It implements

computation of features and basic classification methods based on decision rules,

for classifying the segmented structures.

The segmentation module is where the different segmentation algorithms are

available. Moreover, in this space the user defines the parameters for segmenting

vascular networks using the methodology proposed in this thesis. Figure 5.2-a

shows this model highlighted.

In the visualization module the user can change objects colors and opacities,

as well as generate their three-dimensional models. A schematic tree of the struc-

tures segmented can be defined by the user and allows one to select structures and

then generate their 3D models, change their colors and opacities, or monitor their

computed features. Figure 5.2-b depicts this module.

The edition module, illustrated in figure 5.2-c, allows the user to edit the

results obtained in the segmentation process, correcting imperfections, or even

perform fully manual segmentation, which can serve as a reference definition tool
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Figure 5.1: GUI sotfware - Main screen

for a specialist. The available edition tools comprise a brush, with which the user

can iteratively paint (or erase) pixels; an editor of polygons where the user draws

polygons to edit segments; a plane definition to segment large areas; and also some

semi automatic tools for completing vascular networks, such as Djikstra shortest

path algorithm.

The display area has four view windows, or a full screen. Each of them

is for a specific view: axial, coronal or sagittal, and three-dimensional model of

the segmented structures. They can be interactively manipulated with tools that

implement zoom, pan, or adjust image parameters.

The bottom auxiliary panel provides the user interaction with the display area

for navigating through the slices or adjust contrast, and allow also the inspection of

voxel intensity values and coordinates. It is also possible to generate histograms of

images and segmented structures.

This tool is meant to allow physicians to actually use the techniques proposed

in this thesis as an auxiliary tool for helping in diagnosis or surgical planning.

5.2
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Figure 5.2: GUI Software - Segmentation, Editing and Visualization modules.

Segmentation Results Evaluation

In this section the results obtained using the proposed methodology are

presented. Different datasets were used, and whenever possible the evaluation was

done quantitatively. However, manual vascular networks segmentation is a complex

and really time demanding task, and therefore usually there is no reference for this

kind of anatomical structure. In this cases, the evaluation was qualitative through

visual inspection. The use of synthetic data is an alternative to evaluate performance

in these cases as well.

Whenever a reference was available, we use accuracy measures following the

competition tool made available in the competition website. The measures from

which the scores are computed are:

– Root mean squared (RMS) distance between reference and segmented 3D

surfaces.

– Hausdorff distance between reference and segmented 3D surfaces.

It is important to mention that the processing time is not easy to measure due

to the iterative nature of the methodology, which can take very variable ammount of

time to run depending on the complexity of the segmented network. Just to give an

idea of processing time, an iteration with 5000 points (the maximum ammount of

points we process) can take between 5 and 10 minutes approximately. Depending
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Figure 5.3: Synthetic data segmentation using sinusoidal shaped vascular-like struc-

tures

on the complexity of a network, the number of cones needed in the iterative process

to segment the whole network vary a lot. It is possible to say that the segmentation

of a complex network takes usually up to few hours.

5.2.1
Synthetic data

The use of synthetic data is very common for evaluating vessel segmentation

algorithms. This is mainly due to the difficulty of finding good datasets with

references. There are some for single vessel segmentation, but in the case of this

thesis, where the object to be segmented is a full vascular network, this is even

worse.

Two different synthetic datasets were used. The first one created by

(Macedo10) is a planar vascular-like structure modeled using sinusoidal shapes with

bifurcations. Additionally the data has also some noise with Gaussian distribution.

The result obtained with this dataset was very satisfactory. It is possible to see in

figure 5.3 that the vascular network was fully segmented, and even though we had

no reference, the visual assessment is enough to ensure that the method succeed in

this case.

The second one is more realistic. It generates three-dimensional syn-

thetic blood vessels using stochastic Lindenmayer systems (L-systems) and cre-

ating grammars that represent blood vessel architectures. For details refer to

(Galarreta-Valverde12, Galarreta-Valverde13). 9 different sequences were used,

each of them with different characteristics. The proposed methodology was tested

using the whole dataset, achieving maximum accuracies ranging from 99% to

100%, which is an evidence of the potential of the proposed method to track ar-

bitrary network-like structures.
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Figure 5.4: Parameter study of LP1=Dradius, LP2=Dmax, angle in radians and sam-

pling distance. (see sections 4.3 and 4.5)

To assess the sensitivity of the parameters involved in the process, we used

this controlled dataset to test the main parameters and get an useful insight of how

the algorithm works under stress. The results obtained are presented in figure 5.4.

The first two parameters tested were the sampling distance and aperture angle

of the conical model used for sampling, as described in section 4.3. The other

two parameters are related to the Linear Programming optimization described in

section 4.5, hereby referred as LP1 and LP2, which correspond to Dradius from

equation (4-19) and Dmax from equation (4-18). In order to compare the results,

we computed a simple overlap measurement between the centerline found during

the segmentation process and the one of the original image, which corresponds to

the centerline of the vessel network.

In figure 5.4(a), we analyze the effect of parameter LP1. The average overlap

measures of all 9 sequences is shown and it is possible to notice that on average

LP1 must be kept small, otherwise bifurcations are not detected because toll costs

are too high, causing the drop in accuracy. In figure 5.4(b) we make a similar study

for the Angle parameter, where it is possible to see that the best results are achieved
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Figure 5.5: Segmentation using synthetic data generated by L-Systems

with an angle of 1.8 radians. If the angle is too small bifurcations cannot be properly

followed because they do not fall inside the cone. On the other hand, if the angle is

too large, there is too much noise in the cone and spurious paths can be found.

In figure 5.4(c) we see the relationship between LP1 and Angle. As the angle

value used gets higher, the LP1 value which gives best results is also increased,

otherwise too many false bifurcations could be found. Nonetheless, we still see the

results are very stable with a wide range of parameters configuration. Finally, figure

5.4(d) shows a plot of LP2 and Sampling distance, where it is depicted a direct

relation between sampling distance and LP2, i.e., high values for sampling distance

need high values of LP2 to deliver good results. This is expected, since Ct values are

related to the distance between nodes, which are clearly affected by the sampling

distance. A sampling distance of 1-1.5 mm gives very good and stable results for

the experiments performed.

Visually it is also possible to assess the quality of the outcome generated with

the vascular-like networks being generally found, as shown in figures 5.6 and 5.5.

5.2.2
Pulmonary Data

This dataset concerns the pulmonary vessels found inside the lungs. The

dataset used was made available by the Extraction of Airways from CT 2009

(EXACT09) challenge (Lo12). There is a reference available for the pulmonary

airways but not for the pulmonary vascular network,therefore, our evaluation for

this case is qualitative. The goal of this challenge is to compare the results of various

algorithms to extract the airway tree from chest CT scans using a common dataset

and performance evaluation method. The training and testing datasets of this study
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Figure 5.6: Synthetic data segmentation using L-Systems

are available for download.

It is possible to verify visually in figure 5.7 that a great part of the vascular

network including many of the bifurcations is found. Even though this kind of

evaluation is not really reliable, it shows the potential of the methodology, specially

if one takes into consideration that a single seed point was used.

5.2.3
Coronary Data

A very important application for vascular segmentation concerns the cardiac

vessels. To evaluate our algorithm in this case, the coronary dataset (Schaap09)

was collected for the MICCAI 2008 workshop ”3D Segmentation in the Clinic: A

Grand Challenge II” at the 11th MICCAI that took place in September 2008. It

is a database containing thirty-two cardiac CTA datasets with reference standard

available for the four main coronary vessels. It is important to notice that the

reference is composed by four single vessel segmentations, and therefore is not

exactly suited to our problem since they do not form a full vascular network for the

heart. Nonetheless, it is a very interesting dataset and the available references can

be used as guidance for visual assessment.

It is possible to see in figure 5.8 that the reference single vessel is among the
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Figure 5.7: Vascular segmentation for pulmonary real dataset

branches segmented on the vascular network derived by the proposed methodology.

Other two branches are also segmented.

Considering the single vessel reference available for this dataset, an interest-

ing effect is noticed. Since we use a single start point for segmenting the vascular

network, a ”blind effect” is observed. Even though the segmentation process seg-

ments the network and includes the reference single vessel, it also segments other

branches, and therefore would be badly evaluated. If we restrict the algorithm to find

a single path, then it is not possible to ensure a priori which of the three detected

branches will be chosen. Figure 5.9 depicts the described effect.

5.2.4
Liver Data

Another application for vascular segmentation is to segment the hepathic

veins for surgical planning. The liver dataset tested here was taken from the

Segmentation of the Liver Competition 2007 (SLIVER07) website (Heimann07).
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Figure 5.8: Vascular segmentation for coronary real dataset

The goal of that competition was to compare different algorithms to segment the

liver from clinical 3D CT scans.

Only the reference data for the liver delineation is available, and the hepatic

vascular network is not identified. Therefore, the evaluation is also qualitave in this

case. Since the anatomy of vessels inside the liver is somewhat well behaved, we

placed a single seed point at the root of the left hepatic vein, and visually verified

the segmentation of this branch of the hepatic vascular system, as figure 5.10 shows.

5.2.5
Carotids Data

Carotids are the vessels that irrigate the brain, and therefore are very important

for many medical conditions such as the cerebrovascular accident, commonly

known as stroke. We also tested our algorithm in segmenting the carotid vessels,

and the dataset used (Hameeteman11) was created for the 3rd MICCAI Workshop
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Figure 5.9: This figure shows what we called the blind effect. It is possible to

visually understand that since our algorithm does not take into account a specific

vessel end point to follow a vessel path, it will not necessarily find a desired vessel,

but segment all the vessels connected to the given start point.

in the series ”3D Segmentation in the Clinic: a Grand Challenge III”, which was

held on September 2009 at the 12th MICCAI.

The reference available here concerns the identification of carotid bifurcation.

Even though the carotid vascular network reference is not available, it is possible to

assess visually the outcome, since this vessels are morphologically simple, usually

having a single main bifurcation. It is possible to see in figure 5.11 that both vessels

and the bifurcation are found.

5.2.6
Olfactory Projection Fibers (OPF)

This dataset is actually not from a vascular system, but from nervous fibers of

the olfactory system. This, of course, hinders the detection of the vascular network,

albeit good results can be achieved. The dataset is available at the DIADEM (short

for Digital Reconstruction of Axonal and Dendritic Morphology) challenge website

(Brown11) that was a competition for evaluating algorithmic methods for automated

neuronal tracing.

OPF are network-like structures, but the inner part, corresponding to the

lumen in vessels, are not exactly homogeneous and theferore the Gaussian mixture

model proposed for vesselness evaluation, derives low likelihood values. Still, it is
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Figure 5.10: Vascular segmentation for liver real dataset

possible to take advantage of the structure and segment at least part of the network.

The best thing about this dataset is that there is a reference available, and therefore

it is possible to evaluate our methodology quantitatively as table 5.1 shows, also

comparing with other works (Türetken11, Türetken12). Visually figure 5.12 depicts

the result obtained in one of the datasets available.

5.3
Topological Description

The methodology described in this thesis delivers not only the segmention but

also the vascular network topology. It is possible to detect vascular branches and

identify conecting points, which can be assumed to be bifurcations (even though

the exact point of a bifurcation is not determined).

It is not possible to evaluate nummerically the results for topology with the

datasets used, but some visual feedback is given in figures 5.13 and 5.14. It is

possible to visualize branches in different colours and therefore assess the vascular
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Figure 5.11: Vascular segmentation for carothids real dataset

Exam1 Exam3 Exam4 Exam5 Exam6 Exam7 Exam8 Exam9

k-MST

Türetken11

– – 0.865 – 0.898 – 0.722 –

HGD-QMIP

Türetken12

– – 0.923 – 0.911 – 0.722 –

Proposed

method

0.800 0.818 0.745 0.833 0.843 0.692 0.327

Table 5.1: OPF database results. The table shows the results obtained for each

exam available in the website. The metric is also the one made available for the

competation so as to make it possible a straight comparison with other methods.

network topology. The result is coherent with visual inspection.
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Figure 5.12: Segmentation results for OPF dataset

Figure 5.13: Extracted topology for synthetic data
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Figure 5.14: Extracted topology for more realistic synthetic data
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6
Conclusions

This chapter presents the conclusions of this thesis, summarizing the results

obtained and their potential contribution for future applications. It also indicates

some possibilties for further research.

6.1
Discussion

The methodology presented in this work for the segmentation of vascular

networks implements an iterative procedure that segments full vascular networks

from a single given seed point. Beginning from that point, a sampling method based

on a multilayered spherical cone model defines points to be evaluated for pertaining

to a vessel. The points classified as vessel point detections are then organized in

a graph structure implemented as a flow network. This network is then analyzed

using linear programming in order to find part of a vascular network comprising all

branches connected to the seed point reachable in the sampling space. Each branch

defines a new seed, and the process restarts from each seed, iteratively segmenting

the network until no more branches are found.

The results obtained indicate a good perfomance, and the different tested

datasets atest some robustness. A great problem is the fact that only one dataset was

actually evaluated numerically. This is a classical question for vascular networks,

since it is very hard to find datasets with segmentation references, mainly due to the

difficult and time demanding work involved.

Considering performance, it is possible to conclude that the method derives

good results. Synthetic data was segmented without major problems, even when it

comprised many bifurcations and vessels with different diameters. The method also

produced valid vascular networks in different organs. The pulmonary dataset, with

high capillarity, was reasonably segmented, specially if one considers that a single

seed point was used. The carotid and coronoary datasets estressed the algorithm

due to their very hostile environment with many different structures surrounding

the vessels, with different textures and densities. Even so, the results obtained

were visually comparable with the expected. Finally, the OPF dataset, despite not

being a vascular dataset, but actually a nervous fibers network, provided a good
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reference, with which we could evalute numerically the method. It is important to

notice that our vesselness measure, derives likelihhod for vessels, and therefore it

is not completely suited for the task. Still, good results were obtained and the fibers

network was segmented properly.

An interesing thing about this work is that it is expandable to other application

fields besides medicine. If one changes the vesselness measurement into any other

measurement of interest, it is in theory possible to apply the methodology for

tracking any network like structure, like road systems and rivers in remote sensing,

or particles in high energy physics.

The modular aspect observed in the methodology is also an advantage. It is

possible to easily replace the sampling, or the linear programming approach, or the

point detection measurement and still take advantage of the remaining modules.

This is nice for the continuation of this research, since other state-of-art techniques

can be embedded and tested. The next section points some directions for this further

research.

6.2
Further Research

Some proposals for further research identified during the development of the

thesis, and experimental analysis are proposed here, to spur new developments.

The first one is quite natural. The methodology should be massively tested to

assess robustness in very different vascular systems. It should also take advantage

of any new dataset that arises with good segmentation references for vascular

networks. The visual inspection, even though it gives an idea that things are

working fine, is not enough. Numerical analysis can produce much more interesting

discussions about extreme cases and how to solve problems observed in those cases.

Another possibility concerns the sampling model. The way it is implemented,

the initial definition of parameters for the model is replicated during the whole

segmentation process. The problem is that big vessels behave differently from

small vessels. Main vessels are usually straighter and longer than secondary smaller

vessels, which tend to drift and disperse, changing direction often and suddenly.

This could be adressed by dynamically changing the parameters of the conical

model, depending on the estimated vessel radius observed at the cone seed point.

This could enhance the method in two different ways: it would go faster in main

vessels, and would also embed the capacity of segmenting carefully tiny vessels.

Concerning the vesselness measurement and cylinder fit for the estimation

of radius and direction of a vessel point, some improvements can also be tried.

To begin, the stochastic method used could be replaced by a straight mathematical

formulation that derives the same information in a single computation, if possible.
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The vesselness model is also based on a cylinder with circular basis, which is not

exactly what is observed specially in main vessels with large diameter. This vessels

actually are more or less cylindrical but with an ellipsoidal basis, and this could be

modelled to assess vesselness better. Of course this means to add one parameter to

the optimization process, since one needs two axis to define a ellipse instead of a

single radius for the circle.

Finally, an important improvement is related to computational speed. The

methodology allows for parallel processing in different stages and could run much

faster. For instance, the sampling method computes the vesselness and cylinder

optimal parameters for many sample points. They could be all computed at the

same time using parallel processes, and this would inscrease greatly the speed of the

segmentation process. Furthermore, every branch found derives a new seed, which

is responsible for a new independent iteration. This can also run easily in parallel.

These two improvements would have a tremendous impact in the processing time

for segmenting networks using the proposed methodology.

6.3
Final Considerations

Great efforts have been made in the direction of a diagnosis in an acceptable

time for the accomplishment of appropriate treatment that ensures longer survival

for patients. Much of this development occurs thanks to interaction between pro-

fessionals and institutions in the areas of technology and the medical field. This

cooperation is growing and providing an exchange of knowledge fundamental for

the develpment of tools that aid the physician, generating a direct feedback to soci-

ety.

This project was designed to promote the development of automated and

semi-automatic methods for the segmentation of vascular networks using CT scans.

It also fullfilled the objective of providing a sotfware that implements the method-

ology, allowing the use in diagnosis and surgical planning for different medical

conditions.

The methodology provided is meant to be general for different vascular net-

works and the parameters were also thought for allowing their empirical definition,

through the use of specific vascular anatomy knowledge. In this way many differ-

ent applications can be adressed, such as cardiovascular diseases, cerebrovascular

accident inspections or even cancer surgical planning.

The advantages offered by this methodology have been well accepted by the

experts involved in the project and therefore further research in this direction is

encouraged, including the use of other types of medical imaging beyond the CT,

such as MRI.
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Moreover, considering the currently available vascular segmentation tools,

still very incipient and mostly expensive commercial products, it is reasonable to

say that the development of automatic segmentation tools in medical imaging, such

as the one presented, is very welcome.
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