5 Exemplos

Neste capítulo são apresentados cinco exemplos para avaliar a metodologia de análise aplicada à modelagem de fluxo em meios porosos fraturados que está sendo proposto neste trabalho.

5.1. Exemplo 1 – análise de fluxo em um meio poroso fraturado

No exemplo 1 apresenta-se um modelo simples de análise numérica para validar a consistência dos resultados para condições particularmente impostas. Este modelo é composto de um domínio de forma cúbica com duas famílias de fraturas inseridas em uma região porosa não saturada. A análise foi feita para duas condições; uma primeira análise de fluxo em regime permanente e uma segunda em condições de regime transiente. Para ambas as análises o método iterativo empregado foi o método de Picard. Nas figuras 5.1 e 5.2 podem-se observar o modelo em análise, isto é, a geometria das fraturas e o meio de forma cúbica, respectivamente.

Figura 5.1: Geometria do exemplo 1 contendo as famílias de fraturas e a malha de elementos finitos triangulares.

Figura 5.2: A malha de elementos finitos tetraédricos do meio poroso e das fraturas com elementos triangulares.

O cubo do modelo tem dimensões de 100 x 100 x 100 m. As características geométricas das famílias de fraturas estão apresentadas na Tabela 5-1.

Características geométricas	Família 1	Família 2
Número de fraturas	3	3
Metodologia de geração FracGen	Metodologia 1	Metodologia 2
Orientação: direção de mergulho e mergulho	90° e 45°	180° e 60°
Tamanho e forma da fratura	Tamanho 30 – 50 m. (distribuição uniforme) Poligonal de 8 lados	Tamanho 50 – 60 m. (distribuição uniforme) Poligonal de 8 lados

Tabela 5-1: Características geométricas das famílias de fraturas para o Exemplo 1.

Os parâmetros hidráulicos dos meios físicos estão listados na Tabela 5-2.

Meios	$\Delta (1^3/1^3)$	$\rho(1^3/1^3)$	$\propto (cm^{-1})$	n	k(m/s)	$S(m^{-1})$
físicos	$O_r(L/L)$	$U_{S}(L / L)$	~ (<i>cm</i>)	п	$\kappa_s(m/s)$	$S_s(m)$
Meio	0.068	0 38	0.08	1.09	1.6x10 ⁻⁸	2.0×10^{-3}
poroso	0.000	0.50	0.00	1.09	1.0/10	2.0.10
Famílias	0.01	0.70	0.24	27	3.5×10^{-4}	4.5×10^{-6}
1 e 2	0.01	0.70	0.21	2.7	J.J X10	1.5 X10

Tabela 5-2: Parâmetros hidráulicos dos meios físicos do exemplo 1 para a função analítica de Van Genuchten (1980).

A malha gerada apresenta as características descritas na Tabela 5-3.

Tabela 5-3: Resumo dos elementos da malha do exemplo 1.

	Elem		
Nós	Triangulares	Tetraédricas	Total de
	(fraturas)	(meio poroso)	elementos
5181	1111	27146	28257

As condições iniciais e de contorno deste exemplo podem ser verificadas na Figura 5.3. Apresentam-se 2 fases, uma a 25.0m da base em condições saturada e o resto em condições não saturadas. Há uma única condição de contorno de carga de pressão, esta carga está aplicada no topo e é igual a 50.0m. Os outros contornos são impermeáveis. O modelo comporta-se como um copo que vai sendo enchido de água e que apresenta caminhos preferenciais representados pelas fraturas.

Figura 5.3: Condições iniciais e de contorno do exemplo 1.

A seguir apresentam-se os resultados obtidos das análises feitas no exemplo

5.1.1. Análise de fluxo em regime permanente – exemplo 1

Na Figura 5.4 apresenta-se a distribuição das cargas de pressão para as condições de contorno indicadas.

Figura 5.4: Distribuição das cargas de pressões do exemplo1.

Da mesma forma, na Figura 5.5 verifica-se o valor de carga total de 150 m para todo o domínio inteiro.

+1.50e+002 +

Figura 5.5: Distribuição das cargas totais do exemplo 1.

1.

5.1.2. Análise de fluxo em regime transiente – exemplo 1

Apresenta-se a seguir alguns resultados obtidos da análise em regime transiente. As figuras 5.6, 5.7, 5.8 e 5.9 mostram a distribuição das cargas de pressão nas fraturas obtidas nos tempos 1 dia, 7 dias, 30 dias, 800 dias, respectivamente. Esta variação das cargas no tempo permite verificar como a frente de saturação vai avançando pelas fraturas implicando em mudanças nas cargas de pressão.

Figura 5.6: Distribuição das cargas de pressões nas fraturas do Exemplo 1 para um tempo de 1 dia.

Figura 5.7:Distribuição das cargas de pressões nas fraturas do Exemplo 1 para um tempo de 7 dias.

Figura 5.8: Distribuição das cargas de pressões nas fraturas do Exemplo 1 para um tempo de 30 dias.

Figura 5.9: Distribuição das cargas de pressões nas fraturas do Exemplo 1 para um tempo de 800 dias.

5.2. Exemplo 2 – análise de fluxo em um meio poroso e um meio poroso fraturado

No exemplo 2 apresenta-se um modelo que compreende duas regiões, um meio poroso e um meio poroso fraturado. O meio poroso fraturado contém 2 famílias de fraturas. A análise foi feita de duas formas; uma análise de fluxo em regime permanente e a outra análise em condições de regime transiente. Para ambas as análises o método iterativo usado foi o método de Picard. Na Figura 5.10 e Figura 5.11 podem-se observar a geometria das fraturas e dos meios respectivamente.

Figura 5.10: Geometria do exemplo 2 contendo as famílias de fraturas e a malha de elementos finitos triangulares.

Figura 5.11: A malha de elementos finitos tetraédricos dos meios e das fraturas com elementos finitos triangulares.

De acordo com a Figura 5.11, o paralelepípedo tem dimensões de 200m de largura, 100m de espessura e 150 m de altura. As características geométricas das famílias de fraturas são apresentadas na Tabela 5-4.

Características geométricas	Família 1	Família 2
Numero de fraturas	7	8
Metodologia de geração FracGen	Metodologia 2	Metodologia 2
Orientação: direção de mergulho e mergulho	180° e 60°	90° e 60°
Tamanho e forma da fratura	Tamanho 50 – 70m. (distribuição uniforme) Poligonal de 8 lados	Tamanho 50 – 60 m. (distribuição uniforme) Poligonal de 8 lados

Tabela 5-4: Características geométricas das famílias de fraturas para o exemplo 2.

Os parâmetros hidráulicos dos meios físicos estão listados na Tabela 5-5

Tabela 5-5: Parâmetros hidráulicos dos meios físicos do exemplo 2 para a função analítica de Van Genuchten (1980).

Meios	$A (L^3/L^3)$	$A(1^{3}/L^{3})$	$\propto (cm^{-1})$	n	k (m/s)	$S(m^{-1})$
físicos	0 _r (1 / 1)		u (em)	11	$\kappa_s(m, 5)$	$S_{S}(m)$
Meio	0.020	0.40	0.11	17	9 3x 10 ⁻⁶	0.02
poroso	0.020	0.10	0.11	1.7	<i>J.J.</i> 710	0.02
Meio						
poroso	0.068	0.38	0.08	1.09	9.95x10 ⁻¹¹	0.02
fraturado						
Famílias						
de	0.019	0.0	0.24	10	2.5×10^{-4}	4.5×10 ⁻⁶
fraturas	0.018	0.9	0.24	1.0	5.5810	4.3X10
1 e 2						

A malha gerada apresenta as características descritas na Tabela 5-6.

Tabela 5-6: Resumo dos elementos da malha do exemplo 2.

	Eleme		
Nós	Triangulares	Tetraédricas	Total de
	(fraturas)	(meio poroso)	elementos
7611	1821	40616	42437

As condições iniciais e de contorno em termos de carga de pressão estão esquematizadas nas figuras 5.12 e 5.13 respectivamente.

Figura 5.12: Condições iniciais do exemplo 2.

Figura 5.13: Condições de contorno do exemplo 2.

A seguir se apresentam os resultados obtidos das análises feitas para este exemplo.

5.2.1. Análise de fluxo em regime permanente – exemplo 2

Neste item apresentam-se resultados da análise de fluxo em regime permanente. A partir das figuras 5.14, 5.15, 5.16, 5.17 e 5.18 pode-se verificar as distribuições de cargas de pressão, cargas totais e campo de velocidades. Neste exemplo verifica-se a diferença no comportamento hidráulico de dois meios, um poroso e o outro poroso fraturado. Pode-se verificar um decaimento das cargas totais no meio poroso maior em comparação à rede de fraturas inseridas no meio poroso, isto é, em virtude da mostrar menor resistência ao fluxo. Na Figura 5.18 pode-se observar este comportamento constatando os valores das velocidades.

Figura 5.14: Distribuição das cargas de pressões do exemplo 2.

 $h_p(m)$

73

Figura 5.15: Distribuição das cargas de pressões nas fraturas do exemplo 2.

Figura 5.16: Distribuição das cargas totais do exemplo 2.

Figura 5.17: Distribuição das cargas totais das fraturas do exemplo 2.

Figura 5.18: Campo de velocidades das fraturas do exemplo 2.

5.2.2. Análise de fluxo em regime transiente – exemplo 2

Na etapa transiente desta análise de fluxo, os resultados obtidos podem ser verificados nas figuras 5.19, 5.20, 5.21 e 5.22 para distribuição de cargas totais nas fraturas e meio poroso obtido nos tempos 0 dias,10 dias, 100 dias, 1000 dias respectivamente.

Figura 5.19 Distribuição das cargas totais nas fraturas e meio poroso do Exemplo 2 no tempo zero.

Figura 5.20:Distribuição das cargas totais nas fraturas e meio poroso do Exemplo 2 para um tempo de 10 dias.

Figura 5.21: Distribuição das cargas totais nas fraturas e meio poroso do Exemplo 2 para um tempo de 100 dias. $$h_{\rm T}(m)$$

Figura 5.22:Distribuição das cargas totais nas fraturas e meio poroso do Exemplo 2 para um tempo de 1000 dias.

5.3. Exemplo 3 – análise de fluxo aplicado a um talude com uma fratura vertical

Neste exemplo é analisado um talude que compreende de duas regiões, um meio poroso e um meio poroso fraturado. O meio poroso fraturado contém uma fratura vertical isolada. A análise de fluxo foi feita para condições de regime permanente, de duas formas; uma primeira análise sem considerar a fratura e a segunda considerando a fratura. Isto com o intuito de verificar a influência da fratura no comportamento hidráulico do talude. Em ambas as análises, o método iterativo usado foi o método de Picard. Nas figuras 5.23 e 5.24 podem-se observar a geometria da fratura e dos meios, respectivamente.

Figura 5.23:Geometria do exemplo 3 contendo a fratura isolada e a malha de elementos finitos triangulares.

Figura 5.24: A malha de elementos finitos tetraédricos dos meios e da fratura isolada com elementos finitos triangulares.

O talude tem dimensões de 100 m de largura, 30 m de espessura, 25m de altura à jusante e 50 m de altura à montante, como se mostra na Figura 5.24. A fratura está localizada no centro do talude e equidistante dos lados do talude. As características geométricas da fratura estão apresentadas na Tabela 5-7

Características geométricas	Fratura isolada	
Numero de fraturas	1	
Metodologia de geração	Determinística	
Orientação: direção de	90° e 90°	
mergulho e mergulho		
Tamanho e forma da	Tamanho 60 x 25 m.	
fratura	Polígono de 4 lados	

Os parâmetros hidráulicos dos meios físicos estão descritos na Tabela 5-8.

Tabela 5-8: Parâmetros hidráulicos dos meios físicos do exemplo 3.

Meios físicos	$k_s(m/s)$	$S_s(m^{-1})$
Meio poroso	5.79x10 ⁻⁹	0.02
Meio poroso fraturado	5.79x10 ⁻⁵	0.02
Fratura	5.79x10 ⁻⁴	4.5×10^{-6}

A malha gerada apresenta as características descritas na Tabela 5-9.

Tabela 5-9: Resumo dos elementos da ma
--

	Elem		
Nós	Triangulares	Tetraédricas	Total de
	(fraturas)	(meio poroso)	elementos
7294	262	38102	38364

As condições de contorno em termo de carga de pressão podem ser verificadas na Figura 5.25.

Figura 5.25: Condições de contorno do exemplo 3.

A seguir apresentam-se os resultados obtidos das análises de fluxo permanente e transiente para o talude sem fratura e com fratura.

5.3.1. Análise de fluxo em regime permanente- exemplo 3

Os resultados da análise em regime permanente estão elaborados em termos de cargas totais, cargas de pressão e campo de velocidades, para ambos os domínios, isto é, para o talude com fratura e sem fratura. Quando se analisam estes modelos como um meio contínuo equivalente, isto é, sem modelar a fratura, não há como verificar a influência da fratura nas cargas de pressão, totais e campo de velocidades que poderiam ocasionar, eventualmente, alguns problemas de instabilidade. Um modelo considerando a fratura apresenta um comportamento diferenciado, como podemos verificar nas figuras 5.27, 5.29 e 5.31. Nesta análise pode-se verificar a notável influência da fratura. Isto é importante, por exemplo, quando se analisa transportes de solutos.

Figura 5.26: Distribuição das cargas de pressões no talude sem fratura do Exemplo 3.

Figura 5.27: Distribuição das cargas de pressões no talude com fratura do Exemplo 3.

Figura 5.28: Distribuição das cargas totais no talude sem fratura do Exemplo 3.

Figura 5.29: Distribuição das cargas totais no talude com fratura do Exemplo 3.

Figura 5.30: Campo de velocidades no talude sem fratura do Exemplo 3.

Figura 5.31: Campo de velocidades no talude com fratura do Exemplo 3.

Figura 5.32: Campo de velocidades na fratura e em no meio poroso do exemplo 3.

Figura 5.33: Campo de velocidades do talude no ponto B da Figura 5.32.

Figura 5.34: Campo de velocidades do talude no ponto A da Figura 5.32.

5.4. Exemplo 4 – análise de fluxo aplicado a um talude com fraturas verticais e uma junta de alivio

No exemplo 4 apresenta-se um talude, que consiste de duas regiões, um meio poroso e um meio poroso fraturado. O meio poroso fraturado contém 3 fraturas verticais e 1 junta do alivio que é uma formação comum nos taludes do Rio de Janeiro. A análise de fluxo foi feita em regime permanente. Para a análise o método iterativo de Picard foi usado. Nas figuras 5.35 e 5.36 pode-se observar a geometria das fraturas e dos meios, respectivamente.

Figura 5.35:Geometria do exemplo 4 contendo a família de fraturas, junta do alivio e a malha de elementos finitos triangulares.

Figura 5.36: A malha de elementos finitos tetraédricos dos meios, fraturas e a junta do alívio com elementos finitos triangulares.

O modelo tem dimensões de 100 m de largura, 30 m de espessura, 35 m de altura no talude à jusante e 70 m de altura no talude à montante, tal como se indicam nas figuras 5.35 e 5.36. As fraturas estão espaçadas a cada 25 m ao longo do eixo X, a junta do alívio é paralela à superfície do contato como uma interface entre o meio poroso e o meio poroso fraturado. As características geométricas das fraturas e da junta de alívio estão apresentadas na Tabela 5-10.

Características geométricas	Família de fraturas	Junta de alívio
Numero de fraturas	3	1
Metodologia de geração	Determinística	Determinística
Orientação: direção de mergulho e mergulho	180° e 90°	90° e 0°
Tamanho e forma da fratura	Tamanho 10 x 30 m. Polígono de 4 lados	Paralela à superfície de contato entre os dois meios

Tabela 5-10:Características geométricas da fratura do exemplo 4.

Os parâmetros hidráulicos dos meios físicos estão detalhados na Tabela 5-11.

Tabela 5-11: Parâmetros hidráulicos dos meios físicos do exemplo 4.

Meios	k(m/s)	$S_s(m^{-1})$	
físicos	$\kappa_s(m/s)$		
Meio	5.4×10^{-5}	0.02	
poroso	5.4810	0.02	
Meio			
Poroso	2.0x10 ⁻⁹	0.02	
fraturado			
Fratura e			
junta de	1.2×10^{-3}	4.5×10^{-6}	
alivio			

A malha gerada apresenta as características resumidas na Tabela 5-12

Tabela 5-12: Resumo dos elementos da malha do exemplo 4.

	Elementos		
Nós	Triangulares	Tetraédricas	Total de elementos
	(fraturas)	(meio poroso)	i otai de elementos
8304	969	42224	43193

A Figura 5.37 indica as condições de contorno aplicadas neste caso de estudo.

Figura 5.37: Condições de contorno do exemplo 4.

A seguir estão sendo apresentados os resultados obtidos da análise de fluxo. Este exemplo permitiu observar o comportamento hidráulico de um talude típico do Rio de Janeiro.

5.4.1. Análise de fluxo em regime permanente- exemplo 4

Os resultados da análise de fluxo permanente estão expressos em termos de cargas de pressão, cargas totais e campo de velocidades, de acordo com as figuras 5.38, 5.39 e 5.40 respectivamente. Isto nos permite verificar as condições hidráulicas na que se encontraria o talude sob estas condições de contorno. Além disso, podemos verificar a posição da linha freática no talude e da distribuição das cargas pressões nas fraturas e nos meios para controlar eventuais problemas de instabilidade.

Figura 5.38: Distribuição das cargas de pressões nas fraturas e na junta de alivio do exemplo 4.

Figura 5.39: Distribuição das cargas totais nas fraturas e na junta de alivio do exemplo 4.

Figura 5.40: Campo de velocidades no talude do exemplo 4.

Figura 5.41: Campo de velocidades das fraturas e da junta de alivio do exemplo 4.

5.5. Exemplo 5 – análise de fluxo aplicado a um talude com uma fratura vertical e uma junta de alivio

No exemplo 5 apresenta-se um talude deformação geológica típica do Rio de Janeiro. Este consiste de duas regiões, um meio poroso e um meio poroso fraturado, um sobrepondo o outro. O meio poroso fraturado contém 1 fratura isolada vertical e 1 junta de alívio que é paralela à superfície de contato. A análise foi feita em condições de regime permanente. Para esta análise, o método iterativo

BFGS foi usado. Nas figuras 5.42 e 5.43 permitem observar a geometria das fraturas e dos meios, respectivamente.

Figura 5.42:Geometria do exemplo 5 contendo a fratura isolada vertical, a junta do alivio e a malha de elementos finitos.

Figura 5.43: A malha de elementos finitos tetraédricos dos meios porosos, a fratura e junta de alivio com elementos triangulares.

O talude tem dimensões de 100 m de largura, 30 m de espessura, 35 m de altura do talude à jusante e 65m de altura do talude à montante, tal como se indica na Figura 5.43. A fratura isolada está localizada no centro do talude e se inicia em

x=10 m indo até um x=50 m. A junta do alívio é paralela à superfície do contato entre o meio poroso e o meio poroso fraturado.

As características geométricas das fraturas e junta de alívio estão resumidas na Tabela 5-13.

Características geométricas	Fratura isolada	Junta de alívio
Numero de fraturas	1	1
Metodologia de geração	Determinística	Determinística
Orientação: direção de	90° e 90°	90° e 0°
mergulho e mergulho		
Tamanho e forma da	Tamanho 40 x 25 m	Paralela à superfície de
fratura		contato

Tabela 5-13: Características geométricas da fratura do exemplo 5.

Os parâmetros hidráulicos dos meios físicos estão detalhados na Tabela 5-14.

Tabela 5-14: Parâmetros hidráulicos dos meios físicos do exemplo 5.

Meios físicos	$k_s(m/s)$	$S_{s}(m^{-1})$
Meio poroso	5.8x10 ⁻⁵	0.02
Meio poroso fraturado	5.8x10 ⁻⁸	0.02
Fratura e junta de alivio	1.6x10 ⁻³	4.5x10 ⁻⁶

A malha gerada apresentam as características mostradas na Tabela 5-15.

Tabela 5-15: Resumo dos elementos da malha do exemplo 5.

	Elementos		
Nós	Triangulares	Tetraédricas	Total de Elementos
	(fraturas)	(meio poroso)	Total de Liementos
7828	1129	40453	41582

As condições de contorno deste caso de estudo podem ser verificadas na Figura 5.44.

Figura 5.44:Condições de contorno do exemplo 5.

A seguir apresentam-se os resultados obtidos da análise do fluxo.

5.5.1. Análise de fluxo em regime permanente – exemplo 5

Este exemplo tem uma variante na conformação espacial das estruturas quando comparado com o exemplo 4, de acordo com as figuras 5.35 e 5.42. Os resultados da análise de fluxo permanente estão expressos em termos de cargas de pressão, cargas totais e campo de velocidades, de acordo com as figuras 5.45, 5.46 e 5.48. O comportamento hidráulico deste talude típico é diferente do exemplo 4, o qual pode ser observado a partir do campo de velocidades, figuras 5.48 e 5.49, indicando uma subida do fluxo pela fratura vertical, a qual pode nos indicar uma

possível ocorrência de problemas de instabilidade do talude sob estas condições de contorno.

Figura 5.45: Distribuição das cargas de pressões no talude do exemplo 5.

Figura 5.46: Distribuição das cargas totais no talude do exemplo 5.

Figura 5.47: Distribuição das cargas totais da fratura e junta de alivio do exemplo 5.

Figura 5.48: Campo de velocidades do talude do exemplo 5.

Figura 5.49: Campo de velocidades da fratura e junta de alivio do exemplo 5.