

Sergio Orozco Orozco

Estabilidade de Poços em Zonas de Sal Empregando Técnicas de Transferência de Tensões

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio.

Orientador: Prof. Sergio Augusto Barreto da Fontoura

Co-Orientador: Dr. Nelson Inoue

Sergio Orozco Orozco

Estabilidade de Poços em Zonas de Sal Empregando Técnicas de Transferência de Tensões

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Sergio Augusto Barreto da Fontoura Orientador

Departamento de Engenharia Civil - PUC-Rio

Dr. Nelson Inoue Co-orientador GTEP/PUC-Rio

Prof. Celso Romanel

Departamento de Engenharia Civil - PUC-Rio

Prof. Paulo Couto

Universidade Federal do Rio de Janeiro

Clemente José de Castro Gonçalves

CENPES/PETROBRAS

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 22 de fevereiro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Sergio Orozco Orozco

Graduado em Engenharia de Petróleo pela UNAL ("Universidad Nacional de Colombia") em 2005. Durante a graduação, atuou como pesquisador de iniciação científica nas áreas de Geomecânica de Reservatórios utilizando técnicas numéricas em diferencas finitas. Possui experiência profissional nas áreas de Estabilidade de Poços, Interação Química rocha-fluido, Análise de Tempos Não Produtivos durante a perfuração de poços de petróleo, Otimização de Fluidos de Perfuração e Completação, bem como no Desenvolvimento de software para a indústria do petróleo. Atualmente atua como pesquisador no Grupo de Geomecânica Computacional do GTEP - PUC-Rio na área de estabilidade de poços em zonas com presença de estruturas de sal.

Ficha Catalográfica

Orozco, Sergio Orozco

Estabilidade de poços em zonas de sal empregando técnicas de transferência de tensões / Sergio Orozco Orozco ; orientador: Sergio Augusto Barreto da Fontoura ; coorientador: Nelson Inoue. – 2013.

187 f. il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013. Inclui bibliografia.

1. Engenharia civil – Teses. 2. Sal. 3. Estabilidade de poços. 4. Fluência. 5. Geomecânica. 6. Creep. 7. Transferência de tensões. 8. Elementos finitos. 9. Abaqus. 10. Submodelagem. I. Fontoura, Sergio Augusto Barreto da. II. Inoue, Nelson. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Agradecimentos

Meu maior agradecimento é dirigido a Deus por cada dia de vida, pela oportunidade de poder interagir com tantas pessoas que me ajudaram a crescer, pelas oportunidades oferecidas.

Agradeço aos meus pais e aos meus irmãos por terem sido o continuo apoio em toda a minha vida. Eu tenho certeza que o amor em cada família representa a presença vida de Deus no mundo. Assim me considero abençoado por ter uma maravilhosa família.

Agradeço de um modo muito especial ao Grupo de Tecnologia e Engenharia de Petróleo (GTEP), onde tive a oportunidade de crescer profissionalmente e como pessoa. Sobretudo, eu gostaria de expressar minha profunda gratidão aos meus grandes amigos Guilherme Righeto, Carlos Emmanuel R. Lautenschläger, Ingrid Milena Reyes, Juan David Velilla, Carla Carrapatoso, Pamela Alessandra Rodríguez, Bianca F. Lima, Sandra Rosero, Talita Miranda, Jose F. Consuegra, Constantino Niño Pinto, Vivian R. Marchesi, Rafael Albuquerque, Darwin Mateus, Ruby Lorena Hernandes, Paola Rosas, Roger Webber e Michel Felipe, pelos momentos que passamos juntos. Agradeço a Deus pelo privilégio de ter conhecido pessoas com tanta qualidade humana. Eu, verdadeiramente, fico muito honrado pela amizade de cada uma dessas pessoas, assim como muito grato pelo valioso e importante apoio recebido nos momentos difíceis e por terem me ensinado que um ideal pode ser construído em conjunto.

Agradeço ao meu orientador Sergio Augusto Barreto da Fontoura pela confiança depositada em meu trabalho e pela oportunidade de fazer parte do grupo GTEP. Agradeço também pelas inúmeras discussões técnicas, que me ajudaram a crescer e aprofundar o meu conhecimento.

Gostaria de agradecer ao meu co-orientador Nelson Inoue por ter compartilhado seus conhecimentos em análises numéricas com grande entusiasmo e paciência. Agradeço pelo seu grande apoio e pela sua amizade. Sem seu empenho não teria sido possível! "Que Deus abençoe você e sua família: Shoraia e Mateus".

Gostaria de agradecer de maneira especial aos professores Celso Romanel e Paulo Couto, bem como ao engenheiro Clemente Gonçalves, por fazer parte da banca examinadora desta dissertação de mestrado. Eu me sinto muito honrado pela participação de cada um de vocês neste trabalho de pesquisa.

Agradeço aos professores do Departamento de Engenharia Civil da PUC-Rio pelos ensinamentos ministrados.

Agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES – e à Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ – pela concessão da bolsa de mestrado.

Agradecer a todos que ajudaram a construir esta dissertação não é tarefa fácil. O maior perigo que se coloca para o agradecimento seletivo não é decidir quem incluir, mas decidir quem não mencionar. Então, eu gostaria de expressar minha profunda gratidão a cada um dos meus grandes amigos, tanto brasileiros quanto estrangeiros, que de uma forma ou de outra contribuíram com sua amizade e com sugestões efetivas para a realização deste trabalho. Embora que quisesse mencionar a todos, muitos nomes ficaram ausentes nestas paginas. Contudo, eles nunca ficarão ausentes em meu pensamento. Cada um desses amigos refletem inúmeras boas lembranças de tantos momentos compartilhados durante este tempo no Brasil. Sou grato a Deus por ter conhecido essas pessoas que fizeram parte do caminho que eu percorri para atingir este objetivo.

Eu gostaria de finalizar com o seguinte pensamento, fazendo uma pequena homenagem ao valor da amizade: "Uma alegria compartilhada transforma-se em dupla alegria; uma dor compartilhada transforma-se em meia dor". Provérbio sueco.

Resumo

Orozco, Sergio Orozco; Fontoura, Sergio Augusto Barreto (Orientador); Inoue, Nelson (Co-Orientador). **Estabilidade de Poços em Zonas de Sal Empregando Técnicas de Transferência de Tensões.** Rio de Janeiro, 2013. 187p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A estabilidade de poços através de zonas de sal é um aspecto relevante em ambientes de perfuração offshore no Brasil. O fluxo convencional no planejamento de um poço de petróleo não reconhece a natureza complexa do estado de tensões *in-situ* em torno destes corpos de sal. Portanto, é necessária uma avaliação fiável das tensões in-situ considerando tanto a escala de campo (global) quanto as principais estruturas presentes no overburden. Neste trabalho, a análise de estabilidade de poços é realizada em três etapas. Primeiro, é realizada uma análise numérica a escala global para avaliar as tensões in-situ considerando a geometria de um corpo de sal. A seguir, são introduzidas as tensões in-situ em um modelo local, chamado subestrutura, através de duas técnicas de transferência de tensões propostas, denominadas as técnicas do Inverso Ponderado da Distância (IPD) e do Gradiente de Tensões (GT). O termo subestrutura é definido como uma linha curva no espaço composta por um conjunto de pontos, se assemelhando a uma seção ou trajetória completa de um poço. Finalmente, a janela operacional do poço é calculada acoplando os resultados de tensões da modelagem numérica com equações elásticas. Neste trabalho as técnicas IPD e GT são também utilizadas para transferir tensões em submodelos localizados dentro de um modelo global, visando realizar futuros estudos de submodelagem de estabilidade de pocos. O termo submodelo consiste em uma malha de elementos finitos de um tamanho menor e um refinamento maior em relação ao modelo global.

Palayras-chave

Sal; estabilidade de poços; fluência; geomecânica; *creep*; modelo global; submodelagem; transferência de tensões; elementos finitos; Abagus.

Abstract

Orozco, Sergio Orozco; Fontoura, Sergio Augusto Barreto (Advisor); Inoue, Nelson (Co-Advisor) **Wellbore Stability in Salt Zones Using Stress Transfer Techniques.** Rio de Janeiro, 2013. 187p. M.Sc. Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Wellbore Stability drilling through salt zones is an important current endeavor in many areas offshore of Brazil. The conventional well design workflow does not recognize the complex nature of the stress field near these salt bodies. Therefore, a reliable assessment of the in-situ stresses must be carried out considering a field (global) scale of the problem and the presence of major structures in the overburden. The proposed stability analysis is carried out in three stages. Firstly, a global finite element analysis is employed to evaluate the in-situ stresses at a global scale considering the geometry of a salt body. Secondly, the global scale in-situ stresses are introduced in a local model, that we call substructure, by using two proposed stress transfer techniques called the Inverse Distance Weighted Technique (IDWT) and the Stress Gradient Technique (SGT). We define Substructure as a set of points forming a section or a complete trajectory of an oil well. Finally, optimal mud weights are calculated combining numerical stress results with analytical elastic equations. These two stress transfer techniques are also proposed to be used to transfer stresses to submodels inside a global model domain for submodeling wellbore stability purposes. The term submodel is defined as a finite element mesh with a smaller size relative to the size of the global model.

Keywords

Salt; wellbore stability; geomechanics; creep; global model; submodeling; stress transfer technique; finite elements; Abaqus.

Sumário

1 Introdução	28
1.1. Relevância e Motivação do estudo	28
1.2. Objetivo e Metodologia	30
1.3. Organização da Dissertação	32
2 Revisão Bibliográfica	34
2.1. Conceitos Básicos Relativos à Estabilidade de Poços	34
2.1.1. Tensões <i>in situ</i> no Subsolo	34
2.1.2. Determinação das Tensões in situ na Parede de um Poço de Petróleo	35
2.1.3. Tipos de Falhas da Rocha na Parede do Poço	37
2.1.4. Pressão de Colapso e Pressão de Fratura	38
2.1.5. Estimativa do Gradiente de Fratura	39
A) Métodos Diretos	40
B) Métodos Indiretos	41
2.1.6. Considerações sobre os Métodos para a Determinação do Gradiente de)
Fratura	42
2.2. Aspectos Geológicos e Geomecânicos de Zonas de Sal	43
2.2.1. O Sal	43
2.2.2. O fenômeno de Fluência ou <i>Creep</i> no Sal	44
2.2.3. Propriedades Físicas do Sal	45
2.2.4. Mecânica do Movimento do Sal e Formação de Diápiros	45
2.2.5. Perturbação de Tensões <i>In Situ</i> causada pelo Movimento de Estruturas	de
Sal	47
2.3. Aspectos de Engenharia de Perfuração associados com Estruturas de Sa	l 67
2.3.1. Tempo Não Produtivo e Aparição de Eventos Indesejáveis durante a	
Perfuração	67
2.3.2. Zonas Sub-sal (Subsalt Rubble Zones)	67
2.3.3. Variação de Tensões <i>In Situ</i> ao longo da Trajetória de um Poço de	
Petróleo em Ambientes com Presença de Diápiros de Sal	68
2.3.4. Perfuração através do Sal Vs. Perfuração em torno do Sal	70
2.4. Modelagem Convencional Vs. Modelagem Numérica de Estabilidade de	
Poços em torno de Estruturas de Sal	71

2.5. Resultados de Analises Numericas que Evidenciam o Efeito da Perti	urbaçao
de Tensões na Estabilidade de Poços	72
2.6. Panorama da Modelagem Numérica com Elementos Finitos em Mod	lelos
Globais que possuem Estruturas de Sal	77
2.7. Panorama da Modelagem Numérico-Analítica de Estabilidade Poços	83
2.8. Panorama da Modelagem Numérica na Área da Engenharia de Petro	óleo
Empregando Técnicas de Submodelagem no Programa Abaqus	84
a) A Técnica de Submodelagem em Elementos Finitos	84
b) Vantagens da Técnica de Submodelagem em Elementos Finitos	86
c) O Principio de Saint Venant	87
d) Estudos de Submodelagem no Programa Abaqus	89
e) Panorama de Técnicas de Submodelagem na Área da Engenharia d	е
Petróleo utilizando o Programa Abaqus	90
3 Modelagem Numérico-Analítica de Estabilidade de Poços Empregando	Técnicas
de Transferência de Tensões	96
3.1. Técnicas de Transferência de Tensões	97
a) Técnica do Inverso Ponderado da Distância (IPD)	97
b) Técnica do Gradiente de Tensões (GT)	100
3.2. Modelagem Analítica de Estabilidade de Poços	101
3.3. Modelagem <i>Numérico - Analítica</i> de Estabilidade de Poços	104
3.4. Análise de Estabilidade de Poços através de Técnicas de Transferên	ncia de
Tensões	108
Construção de um Modelo Global	108
 Modelagem Numérica do Creep no Sal 	110
Condições de Contorno	111
 Construção da Malha de Elementos Finitos 	112
• Estado Inicial de Tensões In Situ no Modelo Global A	113
Modelos Não Acoplados Vs. Modelos Acoplados com Poropressão	118
Subestrutura A	119
Subestrutura B	120
Determinação da Janela Operacional no Programa SEST	120
- Modelo de Análise:	121
- Critério de Ruptura e Propriedades Hidromecânicas	121
- Geometria do poço	123
- Localização dos eixos do <i>Modelo Global A</i> com relação ao Norte	124

4 Utilização de Técnicas de Transferência de Tensões para a Realização de	Э
Estudos de Submodelagem	125
4.1. Modelo Global B	126
• Estado de Tensões In Situ no Modelo Global B	129
4.2. Descrição dos Submodelos Adotados no Modelo Global B	130
Submodelo A	130
Submodelo B	131
Submodelo C	133
5 Resultados	135
5.1. Distribuição de Tensões no <i>Modelo Global A</i> após o <i>Creep</i> no Sal	136
• Distribuição das Tensões Principais e Normais no Modelo Global A Após	3 0
Creep no Sal	138
• Distribuição das Tensões Cisalhantes no Modelo Global A Após o Creep	on c
Sal139	
$\it 5.2.$ Transferência de Tensões do $\it Modelo$ $\it Global$ $\it A$ para a $\it Subestruturas$ $\it A$	e B
	140
Subestrutura A	140
Subestrutura B	142
5.3. Resultados da Análise de Estabilidade de Poços	146
5.3.1. Subestrutura A	146
5.3.2. Subestrutura B	146
 Cenário 1: Efeito da Variação da Poropressão na Largura da Janela 	
Operacional da Subestrutura B	147
• Cenário 2: Efeito da Variação da Magnitude das Propriedades Mecânica	ıs na
Largura da Janela Operacional na Subestrutura B	148
• Cenário 3: Efeito das Tensões Cisalhantes sobre a Largura da Janela	
Operacional do Poço na Zona de Arenito.	151
 Comparação dos Cenários A e B: 	151
5.4. Transferência de Tensões do $\mathit{Modelo\ Global\ B}$ para os $\mathit{Submodelos\ A},$	Be C
	153
Submodelo A	153
Submodelo B	155
• Evidência de Presença de Tensões Principais Perpendiculares na Interfa	ace
Sal-Underburden do Submodelo B	158

Submodelo C	159
• Efeito do Nível de Refinamento da Malha do Modelo Global sobre os	
resultados da técnica do IPD nas Zonas de Interface do Sal	161
6 Considerações Finais	164
6.1. Conclusões	164
6.2. Sugestões para trabalhos futuros	165
Referências	166
APÊNDICE	177
A. Variação das Tensões <i>In Situ</i> Iniciais no <i>Modelo Global A</i> Após o Proc	esso do
Creep no Sal	178
- Tensão Horizontal S11	178
- Tensão Horizontal S22	178
- Tensão Vertical S33	179
- Tensão Cisalhante S12	179
- Tensão Cisalhante S13	180
- Tensão Cisalhante S23	180
B. Deslocamentos no Modelo Global A após o processo do Creep na Car	nada de
Sal	181
C. Evidencia de Rotação de Tensões Principais no <i>Modelo Global B</i>	182

Lista de Figuras

Figura 1.1 – Principais depósitos de sal no mundo (em vermelho) (Cruz <i>et al.</i> 2007)
Figura 1.2 - Movimento do sal e a formação de trapas de petróleo (Crossno
2005)
Figura 1.3 – Riscos geomecânicos durante a perfuração de poços associados a ambientes com presença de estruturas de sal (Wilson & Fredrich, 2005)30
Figura 2.1 – Tensões <i>in-situ</i> em um elemento de rocha no subsolo (Adaptado de
Rocha & Azevedo, 2007)34
Figura 2.2 - Representação das tensões principais no sistema cartesiano
(X'-Y'-Z') (Adaptado de Rocha & Azevedo, 2007)35
Figura 2.3 – A geometria de transformação: aw corresponde ao azimute do poço
com relação à tensão horizontal máxima σH , enquanto que iw corresponde
à inclinação do poço com respeito ao eixo Z' (Pasic et al., 2007)36
Figura 2.4 – Tensões em coordenadas cilíndricas (Fjaer et al., 2008)36
Figura 2.5 - Representação de um estado de tensões em coordenadas
cilíndricas. Nota-se que as tensões normais atuando na parede do poço
correspondem a tensões principais, dado que as tensões cisalhantes são
iguais a zero (Adaptado de Rocha & Azevedo, 2007)37
Figura 2.6 - Exemplo típico de Janela Operacional de um poço de petrólec
(Rocha & Azevedo, 2007)39
Figura 2.7 - Comportamento da pressão durante o teste de microfaturamento
(Petrobras) (Apud Rocha & Azevedo, 2007)40
Figura 2.8 - Comparação entre valores típicos de pressão de absorção (Leak of
Pressure, LOP) e os valores de tensão in situ mínima no Golfo de México
O eixo horizontal corresponde à profundidade (a partir da linha de lama da
torre de perfuração), enquanto que o eixo vertical corresponde à razão
entre a pressão de absorção e a tensão in-situ mínima (Keaney et al.
2010)43
Figura 2.9 - Estruturas de sal típicas no subsolo (A) Sweatman et al 1999; (B)
Modificado de Jackson & Talbot, 1991 (apud Mohriak et al., 2009)46
Figura 2.10 - Malha em elementos finitos com esfera de sal no seu interior
(Fredrich <i>et al.,</i> 2003)50

Figura 2.11 – Trajetórias usadas na malha de elementos finitos para visualizar a
perturbação de tensões devido ao processo de equilíbrio de tensões na
esfera de sal: trajetória 1: linha vermelha; trajetória 2: linha azul; trajetória 3:
linha verde (Adaptado de Fredrich et al., 2003)51
Figura 2.12 - Distribuição da tensão vertical com profundidade na malha que
contem a esfera de sal: trajetória 1: linha vermelha; trajetória 2: linha azul;
trajetória 3: linha verde (Adaptado de Fredrich et al., 2003)51
Figura 2.13 – Distribuição da Tensão Horizontal com profundidade na malha que
contem a esfera de sal: trajetória 1: linha vermelha; trajetória 2: linha azul;
trajetória 3: linha verde (Adaptado de Fredrich et al., 2003)52
Figura 2.14 – Distribuição da Tensão de Von Mises com profundidade na malha
que contem a esfera de sal: trajetória 1: linha vermelha; trajetória 2: linha
azul; trajetória 3: linha verde (Adaptado de Fredrich et al., 2003)52
Figura 2.15 – Perturbação do Campo de Tensões in situ produzido pelo
diapirismo de estruturas de sal (Dusseault et al., 2004b)54
Figura 2.16 - Evidencia do fenômeno de rotação de tensões no entorno de
estruturas de sal: (a) orientação da Tensão Principal Máxima Total; (b)
orientação da <i>Tensão Principal Intermediária Total</i> ; (c) orientação da
Tensão Principal Mínima Total (Schutjens et al., 2010)55
Figura 2.17 – Orientação das tensões principais nas zonas de interface do sal
com os sedimentos adjacentes (Adaptado de Van der Zee et al., 2011)56
Figura 2.18 - Distribuição da Tensão de Von Mises no modelo global e a
identificação de "hot spots". Nota-se que as tensões de Von Mises estão
dadas em MPa. A tensão de Von Mises é de aproximadamente 0 MPa na
zona de sal, e ao mesmo tempo ocorrem zonas onde o valor da tensão de
Von Mises é amplificado ou reduzido com relação ao valor da tensão de
Von Mises longe da estrutura de sal (Fredrich <i>et al.</i> , 2007)57
Figura 2.19 – Estreitamento da Janela Operacional do poço nas vizinhanças da
esfera de sal: (a) janela operacional para um poço vertical perfurado através
do centro da esfera de sal; (b) janela operacional para um poço vertical
perfurado próximo da região lateral da esfera. Nota-se que a linha tracejada
corresponde à pressão de poros, a qual possui um valor de zero dentro do
sal (Luo et al., 2012a). Nota-se que a unidade ppg corresponde a "pounds
per gallon", termo inglês equivalente a lb/gal (libras por galão)58
Figura 2.20 – Largura da janela operacional de poço calculada a partir de poços
verticais perfurados nos arredores da esfera de sal. Nota-se o estreitamento
da janela operacional do poco em torno da esfera de sal (em cor vermelho)

com relação a largura da janeia operacional do poço longe da estera de sai
(Luo <i>et al.</i> , 2012a)59
Figura 2.21 - Evidências na literatura de presença de zonas com pressão de
poros anormalmente alta em torno de estruturas de sal (a) adaptado de
Sweatman <i>et al.</i> , 1999; (b) adaptado de Romo <i>et al.</i> (2007)60
Figura 2.22 - Presença de zonas com pressão de poros anormalmente baixa
em torno de estruturas de sal identificadas a partir de medições de MDT
(Adaptado de Weatherl et al., 2010). Com relação à figura, cabe destacar
na que o sal é um material impermeável que não possui poropressão,
portanto, a distribuição de poropressão apresentada na figura é fictícia na
camada do sal61
Figura 2.23 - Alteração das geopressões acima e abaixo do sal no Golfo do
México (Figura adaptada, originalmente modificado de Tomasi, 2005; apud
Mohriak <i>et al.</i> , 2009)63
Figura 2.24 - Evidência da redução do gradiente de fratura em torno de
estruturas de sal a partir de medições de Testes de Integridade da
Formação (FIT) e Testes de Absorção Clássico (LOT) (Adaptado de
Weatherl et al., 2010)64
Figura 2.25 - Evidência da redução do gradiente de fratura em torno de
estruturas de sal a partir de medições de Testes de Integridade da
Formação (FIT) e Testes de Absorção Clássico (LOT) (Adaptado de
Rohleder <i>et al.</i> , 2003)65
Figura 2.26 - Evidência da redução do gradiente de fratura em torno de
estruturas de sal a partir de medições de Testes de Integridade da
Formação (FIT) (Adaptado de Barker & Meeks, 2003)66
Figura 2.27 - Exemplo ilustrativo da variação de tensões ao longo da trajetória
de três poços na presença de diápiros de sal - (a) tensão de Von Mises ao
longo da trajetória dos poços, sem presença de diápiro de sal; (b) tensão de
Von Mises ao longo da trajetória dos poços, com presença de diápiro de sal
(Adaptado de Koupriantchik <i>et al.</i> 2005)69
Figura 2.28 - Exemplo ilustrativo da variação de tensões ao longo da trajetória
de um poço na presença de diápiros de sal: (a) regimes generalizados de
tensões ao redor de um domo de sal; (b) gráfico de tensões para diferentes
trajetórias de poços (Dusseault et al., 2004b)71
Figura 2.29 - Simulação de tensões em 3D a partir de um modelo geomecânico
para predizer o gradiente de fratura de um poço de petróleo na base do sal
(Cullen <i>et al.</i> , 2010)73

estados de tensões dados na Tabela 2.3: (a) a partir de estado de tensões
longe da estrutura de sal; (b) a partir de estado de tensões no entorno do
sal, ignorando a rotação de tensões; (c) a partir de estado de tensões em
torno do sal, considerando a rotação de tensões (Wilson & Fredrich, 2005).
75
Figura 2.31 – Modelo global 1 com uma esfera de sal (Fredrich et al., 2003)77
Figura 2.32 - Modelo global 2 com uma folha de sal (salt sheet) (Fredrich et al.,
2003)
Figura 2.33 – (a) Modelo global 3 com um diápiro de sal que possui um formato
de coluna; (b) Modelo global 4 que possui um diápiro de sal com formato de
coluna e uma língua de sal na sua parte superior (Fredrich et al., 2003)78
Figura 2.34 - (a) Modelo global 1 com diápiro de sal idealizado (cor verde); (b)
Modelo global 2 com diápiro de sal adotado a partir de uma geometria real
(Koupriantchik <i>et al.</i> , 2004)79
Figura 2.35 - Modelo global 3 que possui no seu interior uma esfera de sal
(Koupriantchik <i>et al.</i> , 2005)79
Figura 2.36 - Modelo global construído a partir de duas malhas de elementos
finitos em 2D utilizando a informação de linhas sísmicas (Fredrich et al.,
2007)80
Figura 2.37 - (a) Modelo global 1 com esfera de sal; (b) modelo global 2 com
folha de sal (salt sheet); (c) modelo global 3 que possui um diápiro de sal
com formato de coluna e uma língua de sal na sua parte superior (Mackay
et al., 2008a)80
Figura 2.38 – Esquema da modelagem numérica das tensões in-situ no modelo
global (Schutjens et al., 2010)81
Figura 2.39 – Modelo global adotado por Nikolinakou et al. (2011a)82
Figura 2.40 – Modelo global adotado por Van der Zee et al. (2011a)82
Figura 2.41 - Modelos globais usados por Luo et al., 2012a; (a) esfera de sal; (b)
estrutura de sal de formato irregular83
Figura 2.42 - Janela Operacional de um poço de eptróleo criada a partir dos
resultados de tensões in situ fornecidos pelo programa Abaqus (Luo et al.,
2012a)83
Figura 2.43 - Exemplo de uma malha de elementos finitos, representando um
submodelo. Nota-se que o submodelo possui um tamanho menor em
relação ao tamanho do modelo global, bem como um nível de refinamento

Figura 2.44 – <i>Modelo giobal</i> com tres contornos possíveis para tres <i>submodelos</i>
(Minnicino & Hopkins, 2004)87
Figura 2.45 – <i>Modelo global</i> com três contornos possíveis para três submodelos:
(a) modelo global; (b) distribuição de tensões no submodelo de contorno 1;
(c) distribuição de tensões no submodelo de contorno 2; (d) distribuição de
tensões no submodelo de contorno 3 (Minnicino & Hopkins, 2004)88
Figura 2.46 - (a) geometria do modelo global; (b) componentes do modelo
global (Adaptado de Shen et al., 2010a)90
Figura 2.47 – (a) geometria do submodelo na interface do sal com o reservatório
de petróleo; (b) malha entorno do poço de petróleo (Shen et al., 2010a)91
Figura 2.48 – (a) geometria do modelo global; (b) localização do reservatório no
modelo global (zona em vermelho), (Adaptado de Shen, 2010b)91
Figura 2.49 - (a) geometria do submodelo; (b) pressão aplicada na superfície
interna do revestimento que encontra-se localizado no submodelo
(Adaptado de Shen, 2010b)92
Figura 2.50 – Geometria do submodelo (Shen et al., 2010c)92
Figura 2.51 – Geometria do modelo global (Shen, 2011b)93
Figura 2.52 - (a) geometria do submodelo; (b) ilustração do revestimento e do
cimento (Adaptado de Shen, 2011b)93
Figura 2.53 - Localização dos dois poços em estudo dentro do modelo global
(Shen, 2011c)94
Figura 2.54 - (a) Submodelo empregado no Poço 1, correspondente a uma
seção do reservatório com espessura de 0,5 m e diâmetro de 7 m; (b)
submodelo empregado no Poço 2, correspondente a uma seção do
reservatório com espessura de 0,5 pés e diâmetro de 7m, com 8 tiros por
pé no revestimento (Shen, 2011c)94
Figura 2.55 - Aspecto e distribuição de tensões no submodelo (Shen et al.,
2012b)95
Figura 2.56 - Distribuição das deformações plásticas dentro do revestimento
(Shen et al., 2012b)95
Figura 3.1 – Exemplos de Subestruturas
Figura 3.2 – O modelo global é dividido em oito quadrantes em torno de cada
ponto da <i>subestrutura</i> para a realização da interpolação de tensões a partir
do tácnico do IRD

Figura 3.3 – Aspecto do programa desenvolvido em Fortran utilizando a tecnica
do <i>IPD</i> 99
Figura 3.4 – Representação esquemática da técnica do <i>GT</i> 100
Figura 3.5 – Tensões em coordenadas cilíndricas (Fjaer <i>et al.</i> , 2008)101
Figura 3.6 - Tensões em coordenadas cilíndricas (Fjaer et al, 2008): (a) campo
de tensões in situ no sistema de eixos $(X'-Y'-Z')$; (b) sistema de eixos
do poço $(X-Y-Z)$, onde o eixo do poço está alinhado com o eixo Z 102
Figura 3.7 – A geometria de transformação: aw corresponde ao azimute do poço
com relação à tensão horizontal máxima σH , enquanto que iw corresponde
à inclinação do poço com respeito ao eixo Z' (Pasic et al., 2007)102
Figura 3.8 - Tensões em coordenadas cilíndricas (Adaptado de GTEP, 2010).
103
Figura 3.9 - Sistema de eixos (positivo) adotado no Abaqus para o modelo
global105
Figura 3.10 - Aspecto da nova versão da calculadora pontual do programa
SEST, onde pode ser ingressado o tensor de tensões completo 106
Figura 3.11 - Convenção de sinais para tensões na mecânica de meios
contínuos tradicional, onde tração é positiva (Adaptado de Desai &
Christian, 1977)106
Figura 3.12 - Convenção de sinais para tensões onde compressão é positiva
(Adaptado de Desai & Christian, 1977)
Figura 3.13 – Características geométricas do <i>Modelo Global A.</i>
Figura 3.14 - Condições de contorno do <i>Modelo Global A</i> : (a) faces laterais
perpendiculares ao eixo X, com movimento restrito na direção X; (b) faces
laterais perpendiculares ao eixo Y, com movimento restrito na direção Y; (c)
base do modelo global com movimento restrito em todas as direções111
Figura 3.15 - (a) malha adotada no <i>Modelo Global A</i> ; (b) elemento empregado
na malha (Abaqus, 2009)112
Figura 3.16 - Representação das tensões principais máxima e mínima no
modelo de Mohr Coulomb de acordo com a convenção do programa
Abaqus (Adaptado de Abaqus, 2009)113
Figura 3.17 – Posicionamento dos planos que limitam a zona de <i>Sal</i> e o fundo do
mar no <i>Modelo Global A</i> 115
Figura 3.18 – Convenção usada pelo Abaqus para a leitura de tensões através
de sub-rotinas

Figura 3.19 – Aplicação de reações de apolo no <i>Modelo Global A.</i> (a) estado
Inicial da malha; (b) deslocamentos resultantes (metros) na malha do
modelo global após a aplicação das tensões iniciais litostáticas117
Figura 3.20 - Distribuição de tensões in situ iniciais no Modelo Global A: (a)
tensões In situ antes da aplicação das reações de apoio (tensão de Von
Mises); (b) tensões in situ resultantes após a aplicação das reações de
apoio (tensão de Von Mises)117
Figura 3.21 – Localização da Subestrutura A (linha amarela) na seção
transversal do <i>Modelo Global A.</i> 119
Figura 3.22 – Localização da Subestrutura B (linha verde) no Modelo Global A.
120
Figura 3.23 – Correlações adotadas na zona de Folhelho para a definição das
propriedades de <i>Resistência à Traçã</i> o e <i>Resistência à Compressão Uniaxial</i>
em função da profundidade122
Figura 3.24 – Correlações adotadas na zona do Sal e do <i>Arenito</i> para a definição
das propriedades de Resistência à Tração e Resistência à Compressão
Uniaxial em função da profundidade122
Figura 3.25 – Localização do sistema de eixos do <i>Modelo Global A</i> com relação
ao Norte124
Figure 4.1 Distribuição do Tonção do Von Misos em uma malha que contém
Figura 4.1 – Distribuição da Tensão de Von Mises em uma malha que contém uma esfera de sal. A linha vermelha corresponde a uma linha que passa
pelo centro da esfera, no instante do equilíbrio do sal (Adaptado de Fredrich
et al., 2003)125
Figura 4.2 – Geometria adotada para o <i>Modelo Global B.</i>
Figura 4.3 – Malha adotada para o <i>Modelo Global B.</i>
Figura 4.4 – Localização da origem de Coordenadas no <i>Modelo Global B.</i> 128
Figura 4.5 – Posicionamento dos Planos que limitam a zona do <i>Sal</i> no <i>Modelo</i>
Global B
Figura 4.6 – Localização do <i>Submodelo A</i> dentro do <i>Modelo Global B.</i>
Figura 4.7 – Malha adotada no <i>Submodelo A</i>
Figura 4.8 – Localização do <i>Submodelo B</i> dentro do <i>Modelo Global B.</i> 132
Figura 4.9 – Malha adotada no <i>Submodelo B.</i>
Figura 4.10 – Localização do Submodelo C dentro do Modelo Global B 133
Figura 4.11 – Malha adotada no Submodelo C

Figura 5.1 – Convenção adotada nos gráficos de resultados
Figura 5.2 - Distribuição de tensões no Modelo Global A após o processo de
c <i>reep</i> na zona de <i>Sal</i> (Tensão de Von Mises em Pa)136
Figura 5.3 – Trajetória adotada no <i>Modelo Global A</i> para visualizar os resultados
de tensões (seção transversal da malha)136
Figura 5.4 - Variação das tensões in situ no Modelo Global A após o processo
de <i>creep</i> no Sal137
Figura 5.5 - Tensões principais máxima, intermediária e mínima no Modelo
Global A após o processo do creep no Sal138
Figura 5.6 - Tensões Normais S11, S22 e S33 no Modelo Global A após o
processo do <i>creep</i> no <i>Sal</i> 138
Figura 5.7 – Variação das tensões cisalhantes S12, S13 e S23 no <i>Modelo Globa</i>
A após o processo de <i>creep</i> no <i>Sal</i> 139
Figura 5.8 – Validação da transferência de tensões na Subestrutura A (esquerda
trajetória adotada na seção transversal do Modelo Global A; direita
Subestrutura A)140
Figura 5.9 - Tensões transferidas do Modelo Global A para a Subestrutura A a
partir da técnica do IPD141
Figura 5.10 – Subestrutura A: Detalhe da interface Sal-Arenito
Figura 5.11 - Subestrutura A: Detalhe da interface Sal-Arenito e pontos
corrigidos a partir da técnica do GT142
Figura 5.12 - Validação da transferência de tensões na Subestrutura E
(esquerda: trajetória adotada na seção transversal do Modelo Global A
direita: Subestrutura B)142
Figura 5.13 - Tensões transferidas do Modelo Global A para a Subestrutura B a
partir da técnica do IPD143
Figura 5.14 – Subestrutura B: Detalhe da interface Sal-Folhelho144
Figura 5.15 – Subestrutura B: Detalhe da interface Sal-Arenito
Figura 5.16 - Subestrutura B: Detalhe da interface Sal-Folhelho e pontos
corrigidos a partir da técnica do GT145
Figura 5.17 - Subestrutura B: Detalhe da interface Sal-Arenito e pontos
corrigidos a partir da técnica do GT145
Figura 5.18 – Janela operacional do poço na Subestrutura A
Figura 5.19 - Efeito do aumento da poropressão sobre a largura da janela
operacional do poço na Subestrutura B: (a) Gradiente de Poropressão
Hidrostático: (h) Gradiente de Poropressão major que o Hidrostático 148

Tigura 5.20 – Lielto da variação das propriedades mecanicas sobre a largura da
Janela Operacional na Subestrutura B: (a) variação da Resistência à
Tração; (b) variação da Resistência à Compressão Uniaxial149
Figura 5.21 - Efeito da presença de tensões cisalhantes sobre a largura da
janela operacional na zona do Arenito da Subestrutura B (Cenários A e B).
152
Figura 5.22 - Distribuição da tensão de Von Mises no Submodelo A após a
transferência de tensões do <i>Modelo Global B</i> (tensão de Von Mises em Pa):
(a) técnica do <i>IPD</i> ; (b) técnica do <i>GT</i> 153
Figura 5.23 – Validação da transferência de tensões no <i>Submodelo A</i> (esquerda:
trajetória adotada na seção transversal do <i>Modelo Global B</i> ; direita: trajetória adotada na seção transversal do <i>Submodelo A</i>)
Figura 5.24 – Resultados da transferência de tensões do <i>Modelo Global B</i> para o
Submodelo A (Tensão de Von Mises)
Figura 5.25 – Detalhe no <i>Submodelo A</i> (faixa de profundidade: 5000 – 5010 m).
Figura 5.26 - Distribuição de tensões no Submodelo B após a transferência de
tensões do Modelo Global B (tensão de Von Mises em Pa): (a) técnica do
IPD; (b) técnica do GT156
Figura 5.27 – Validação da transferência de tensões no Submodelo B (esquerda:
trajetória adotada na seção transversal do Modelo Global B; direita:
trajetória adotada na seção transversal do Submodelo B)
Figura 5.28 – Resultados da transferência de tensões do <i>Modelo Global B</i> para o
Submodelo B (Tensão de Von Mises)157
Figura 5.29 - Submodelo B: Detalhe da interface Sal-Underburden (Faixa de
profundidade: 5814 – 5824 m)
Figura 5.30 – Orientação das tensões principais máxima, intermediária e mínima
na interface Sal-Underburden do Submodelo B: (a) vista Y-Z; (b) vista X-Z.
Figure 5.01 Distribuição do tomação no Cultura dela Comás a transferência da
Figura 5.31 – Distribuição de tensões no <i>Submodelo C</i> após a transferência de tensões a partir do <i>Modelo Global B</i> (Tensão de Von Mises em Pa)159
·
Figura 5.32 – Validação da transferência de tensões no <i>Submodelo C</i> (esquerda:
trajetória adotada na seção transversal do <i>Modelo Global B</i> ; direita:
trajetória adotada na seção transversal do <i>Submodelo C</i>)
Figura 5.33 – Resultados da transferência de tensões do <i>Modelo Global B</i> para o <i>Submodelo C</i> (tensão de Von Mises)
Figura 5.34 – Detalhe das interfaces Sal-Overhurden e Sal-Underburden 161

de refinamento maior
Figura 5.36 – Efeito do nível de refinamento na malha do <i>Modelo Global B</i> sobre
a qualidade/exatidão dos resultados obtidos nas interfaces do Sal com os
seus arredores
Figura A.1 – Variação da Tensão Horizontal S11 no <i>Modelo Global A</i> após o
processo do <i>creep</i> no <i>Sal</i> 178
Figura A.2 - Variação da Tensão Horizontal S22 no <i>Modelo Global A</i> após o
processo do <i>creep</i> no <i>Sal</i> 178
Figura A.3 - Variação da Tensão Vertical S33 no Modelo Global A após o
processo do <i>creep</i> no <i>Sal</i> 179
Figura A.4 – Variação da Tensão Cisalhante S12 no <i>Modelo Global A</i> após o
processo do <i>creep</i> no <i>Sal.</i> 179
Figura A.5 – Variação da Tensão Cisalhante S13 no <i>Modelo Global A</i> após o
processo do <i>creep</i> no <i>Sal</i> 180
Figura A.6 – Variação da Tensão Cisalhante S23 no Modelo Global A após o
processo do <i>creep</i> no <i>Sal.</i> 180
Figura B.1 – Deslocamentos finais após o <i>creep</i> na zona de <i>Sal</i> no <i>Modelo</i>
Global A: (a) deslocamentos na direção horizontal X (U1); (b)
deslocamentos na direção horizontal Y (U2); (c) deslocamentos na direção
vertical Z (U3)
vertical 2 (00)
Figura C.1 – Orientação da Tensão Principal Máxima no <i>Modelo Global B</i> antes
do processo de creep no sal (Paralela ao eixo Z): (a) modelo global
completo (plano Y-Z); (b) interface Sal-Underburden do modelo global
(plano Y-Z)182
Figura C.2 – Orientação da Tensão Principal Máxima no <i>Modelo Global B</i> depois
do processo de creep no sal: (a) modelo global completo (plano Y-Z); (b)
Interface Sal-Underburden do modelo global (plano Z-Y)183
Figura C.3 – Orientação da Tensão Principal Intermediária no <i>Modelo Global E</i>
antes do processo de creep no Sal (paralela ao eixo Y): (a) modelo global
completo (plano Y-Z); (b) interface Sal-Underburden do modelo global184

Figura C.4 – Orientação da Tensão Principal Intermediária no <i>Modelo Global E</i>
depois do processo de creep no Sal: (a) modelo global completo (plano Y
Z); (b) Interface Sal-Underburden do modelo global185
Figura C.5 - Orientação da Tensão Principal Mínima no Modelo Global B antes
do processo de creep no Sal (paralela ao eixo X): (a) modelo globa
completo (plano Y-Z); (b) Interface Sal-Underburden do modelo global186
Figura C.6 – Orientação da Tensão Principal Mínima no <i>Modelo Global B</i> depois
do processo de creep no Sal: (a) modelo global completo (plano Y-Z); (b)
Interface Sal-Underburden do modelo global187

Lista de Quadros

Quadro 5.1 - Critérios assumidos por alguns autores na literatura para
estabelecer o equilíbrio na zona de Sal após o processo de creep 137
Quadro 5.2 - Cenários utilizados para a criação da janela operacional na
Subestrutura B a partir da análise qualitativa de alguns parâmetros147
Quadro 5.3 - Cenários adotados para a estudar qualitativamente o efeito da
presença de tensões cisalhantes sobre a largura da Janela Operacional na
Subestrutura B na zona de Arenito

Lista de tabelas

Tabela 2.1 - Taxa de fluência (pol/h) por tipo de sal e pela densidade do fluido
de perfuração para uma mesma condição de pressão e temperatura (Costa
et al., 2005; apud Mohriak et al., 2009)45
Tabela 2.2 - Regressão do gradiente de fratura sub-sal estimado a partir da
análise numérica utilizando o método dos elementos finitos (Fredrich et al.,
2007)74
Tabela 2.3 - Parâmetros usados na análise de estabilidade de poços tanto nas
vizinhanças da estrutura de sal quanto a uma distância significativa da
estrutura de sal (Wilson & Fredrich, 2005)
Tabela 3.1 – Propriedades mecânicas dos materiais do <i>Modelo Global A.</i> 110
Tabela 3.2 - Equações usadas para o cálculo das tensões in situ iniciais no
Modelo Global A, correspondente a um regime de falhamento normal 115
Tabela 3.3 - Propriedades e parâmetros necessários para realizar a análise de
estabilidade de poços no programa SEST121
Tabela 4.1 – Propriedades mecânicas dos materiais do <i>Modelo Global B.</i> 128
Tabela 4.2 - Equações utilizadas para o cálculo das tensões in situ iniciais no
Modelo Global B, correspondente a um regime de falhamento normal 129
Tabela 4.3 - Comparação do refinamento do <i>Modelo Global B</i> x <i>Submodelo A</i> .
131
Tabela 4.4 - Comparação do refinamento do <i>Modelo Global B</i> x <i>Submodelo B</i> .
132
Tabela 4.5 - Comparação do refinamento do <i>Modelo Global B</i> x <i>Submodelo C</i> .
134
Tabela 5.1 – Variação, em <i>Ib/gal</i> , dos gradientes de <i>Fratura Superior</i> e <i>Colapso</i>
Inferior nas zonas do Modelo Global A150
Tabela 5.2 - Comparação entre os níveis de refinamento da malha inicial no
Modelo Global B versus a nova malha construída162

Lista Símbolos

 γ Gravidade Especifica.

 γ_{overb} Gravidade Especifica do *Overburden* no Modelo Global.

 γ_{sal} Gravidade Especifica do Sal no Modelo Global.

 γ_{underb} Gravidade Especifica do *Underburden* no Modelo Global.

C3D8 Elemento finito continuo hexaédrico de 8 nós, segundo notação do

programa Abaqus.

IPD Técnica do Inverso Ponderado da Distância

GT Técnica do Gradiente de Tensões

G.C.I. Gradiente de Colapso Inferior.

G.F.S. Gradiente de Fratura Superior.