

Lidia Pacheco Miranda

Análise do comportamento mecânico de pavimento reforçado com geossintético sob carregamento cíclico em modelo físico de verdadeira grandeza

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientadora: Profa. Michéle Dal Toé Casagrande Co-orientadora: Profa. Laura Maria Goretti da Motta

Lidia Pacheco Miranda

Análise do comportamento mecânico de pavimento reforçado com geossintético sob carregamento cíclico em modelo físico de verdadeira grandeza

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Michéle Dal Toé Casagrande Orientadora Departamento de Engenharia Civil - PUC-Rio

Profa. Laura Maria Goretti da Motta Co-orientadora Universidade Federal do Rio de Janeiro/COPPE

Prof. Celso RomanelDepartamento de Engenharia Civil - PUC-Rio

Prof. Alexandre Benetti Parreira Universidade de São Paulo/EESC

Prof. Ben-Hur de Albuquerque e Silva Instituto Militar de Engenharia (IME)/RJ

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 01 de Março de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e da orientadora.

Lidia Pacheco Miranda

Graduou-se em Engenharia Civil pela Universidade San Antonio Abad del Cusco (Cusco-Perú) em 2004. Trabalhou em projetos e obras no Perú no período 2005-2010. Ingressou no mestrado na Pontifícia Universidade Católica do Rio de Janeiro em 2011, desenvolvendo dissertação na linha de pesquisa de Geotecnia Experimental com enfoque na linha de pavimentos.

Ficha Catalográfica

Miranda, Lidia Pacheco

Análise do comportamento mecânico de pavimento reforçado com geossintético sob carregamento cíclico em modelo físico de verdadeira grandeza / Lidia Pacheco Miranda ; orientadora: Michéle Dal Toé Casagrande ; co-orientadora: Laura Maria Goretti da Motta. – 2013.

199 f. il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Geogrelha. 3. Carregamento cíclico. 4. Pavimento reforçado. 5. Modelo físico. 6. Verdadeira grandeza. I. Casagrande, Michéle Dal Toé. II. Motta, Laura Maria Goretti da. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Dedico este trabalho a Deus, criador e guia de nossas vidas. Também aos meus pais e a minha família toda, pelo amor, apoio e por ser parte da minha vida.

Agradecimentos

Primeiramente a Deus, por ter me permitido viver essa nova experiência. Como sempre com você tudo é possível. Obrigada Pai.

Às minhas queridas orientadoras Laura Motta e Michéle Cassagrande, obrigada pela oportunidade de trabalhar com vocês, sem dúvida alguma foi a melhor decisão eleger duas pessoas admiráveis que me ensinaram muito durante a etapa da Dissertação. Obrigada pelo apoio e compressão.

Aos professores da Engenharia Civil da PUC-Rio pelas aulas ditadas e os conhecimentos transmitidos durante estes dois anos de mestrado.

A todos os amigos e colegas do Laboratório de Geotecnia da COPPE que foram parte deste trabalho, Mariluce, Álvaro Dêlle, Marcus, Ricardo Gil, Helcio, Bororó, Sergio, Gloria, Maiara, Juliana, Mauro, Carlinho, Luizão, Roberto, Jaelson, Verônica, Ana Souza, Mario, Francesco, Gustavo, Alice, Márcia, Salviano, Eduardo.

Aos grandes amigos Sandra Oda, Thiago, Washington, Allan, Leandro, Rodrigo, Vera, Cristina, o trabalho foi pesado, mas sem vocês não seria sido possível.

Aos meus queridos pais, Ubaldina e José Augusto, que confiaram e entregaram sempre tudo por mim, sem vocês não teria chegado onde cheguei.

Aos meus tios Rómulo e Julia, que são como os meus segundos pais, aos meus irmãos Yesica, Dante, Patricia, Rómulo Enrique e Julito, uma família assim, é o melhor presente que pude ter na vida.

A Angie e ao meu sobrinho querido Emanuel Alejandro.

Ao Alfredo, uma pessoa especial, que foi parte desta etapa da minha vida.

A todos meus amigos do Mestrado e Doutorado, especialmente a minha querida turma 2011-1, e também a Mirian, Ronald, Jorge, Marle, Ximena, Carlitos, pessoas admiráveis e inesquecíveis.

A meus queridos amigos Perlita Rosmery, Gary Gary, Paola, por todos os momentos especiais que vivemos durante este tempo. Obrigada pela amizade, apoio e confidencialidade.

Ao pessoal do laboratório do Instituto de Pesquisas Rodoviárias IPR do DNIT pelo apoio no ensaio do CBR.

Ao professor Antônio Carlos Rodrigues Guimarães do IME pelo empréstimo do equipamento LWD.

À empresa Huesker por ter cedido a geogrelha para o desenvolvimento deste estudo.

À Rita de Cássia, pelo apoio e informação brindada.

Aos Professores, Celso, Alexandre e Ben-Hur, pela valorada participação na banca examinadora.

À CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Miranda, Lidia Pacheco; Casagrande, Michéle Dal Toé; Motta, Laura Maria Goretti. Análise do comportamento mecânico de pavimento reforçado com geossintético sob carregamento cíclico em modelo físico de verdadeira grandeza. Rio de Janeiro, 2013. 199 p. Dissertação de Mestrado. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A busca por soluções geotécnicas que aumentem a vida útil das estruturas e também possam economizar material natural levou ao desenvolvimento de produtos conhecidos como geossintéticos. Dentre as várias famílias de geossintéticos, foram criados elementos que funcionassem como reforço de basesubleito em pavimentos na condição de subleito muito deformável, denominadas geogrelhas. O presente trabalho teve o objetivo de analisar o comportamento mecânico de uma estrutura de pavimento reforçado com geogrelha, submetida à aplicação de carregamento cíclico e à variação de umidade do material do subleito. Foi utilizado para o desenvolvimento dos ensaios um modelo físico de verdadeira grandeza no qual foi construída a estrutura do pavimento composta de um subleito de 100 cm de espessura e uma camada de base de brita de 20 cm de espessura. Nesta estrutura analisou-se o efeito da inserção do geossintético como reforço de camada de base e a variação da umidade do subleito. As medidas fornecidas pelos transdutores de deslocamentos (LVDTs) foram os parâmetros de comparação entre a estrutura de pavimento com e sem reforço no decorrer dos ensaios. Os refletômetros no domínio do tempo (TDRs) monitoraram a variação da umidade do subleito. A comparação entre os deslocamentos da estrutura reforçada e não reforçada permitiu determinar a influência do reforço mostrandose eficiente na redução dos deslocamentos superficiais verticais. A utilização de equipamentos portáteis para avaliar o comportamento mecânico do pavimento "in situ" mostraram ser uma ferramenta recomendável para estudos defletométricos de forma pontual no pavimento.

Palayras-chave

Geogrelha; carregamento cíclico; pavimento reforçado; modelo físico verdadeira grandeza.

Abstract

Miranda, Lidia Pacheco; Casagrande, Michéle Dal Toé (Advisor); Motta, Laura Maria Goretti (Co-advisor). **Analysis of the mechanical behavior of Geosynthetic-Reinforced Pavement under cyclic loading in a true scale physical model.** Rio de Janeiro, 2013. 199 p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The search for geotechnical solutions that increase the life time of structures and can also reduce the use of natural materials carried out to the development of products known as geosynthetic. Among the various families of geosynthetics, have been created elements which function as reinforcement of base-subgrade of pavements when the condition of the subgrade is very deformable, called geogrids. This study had the objective to analyze the mechanical behavior of a structure of geogrid reinforced pavement, submitted to the application of cyclic loading and variation in subgrade layer moisture. It was used for the development of tests a true scale physical model, in which was built a structure of pavement composed of a subgrade with 100 cm of thickness and a gravel layer of 20 cm of thickness. In this structure has been analyzed the effect of insertion of geogrid like base layer reinforcement and a variation in subgrade layer moisture. The measures provided by the displacement transducers (LVDTs) were the parameters of comparison between a structure of pavement with and without reinforcement during the tests. The Time Domain Reflectometry (TDR) monitored the variation of moisture from the subgrade. The comparison between the displacements of reinforced and unreinforced structure allowed determine the influence of reinforcement showing to be efficient to reduce superficial vertical displacements. The use of mobile devices to evaluate the mechanical behavior of the pavement "in situ" proved to be a tool recommended for punctual studies on pavements.

Keywords

Geogrid; cyclic loading; reinforced pavement; true scale physical model.

Sumário

1 Introdução	27
1.1. Justificativa	27
1.2. Objetivo	29
1.3. Estrutura do trabalho	30
2 Revisão Bibliográfica	32
2.1. Mecanismo de ruptura de pavimentos flexíveis	32
2.1.1. Deformação elástica – Ruptura por fadiga	33
2.1.2. Deformação plástica – Afundamento de trilha de roda	37
2.2. Avaliação Estrutural do Pavimento	41
2.3. Retroanálise de Módulos de Resiliência	52
2.4. Distribuição de Tensões e Deslocamentos em Pavimentos	57
2.5. Instrumentação em estruturas de Pavimentos	59
2.6. Utilização de Geossintéticos em Pavimento Flexível	62
2.6.1. Pesquisas desenvolvidas empregando geossintético	
como reforço de base	69
2.6.2. Efeitos da geogrelha dentro da estrutura de pavimentos	
flexíveis	79
2.7. O fenômeno da capilaridade em pavimentos	83
3 Materiais e Métodos	86
3.1. Considerações iniciais	86
3.2. Materiais Empregados	87
3.2.1. Solo Fino	87
3.2.2. Brita	97
3.2.3. Elemento de reforço da base	104
3.3. Ensaio de Carregamento Cíclico em modelo físico de Grandes	
Dimensões	107
3.3.1. Tanque-Teste de Pavimentos	108

3.3.2. Estrutura do Pavimento Experimental no Tanque - Teste	109
3.3.3. Sistema de umedecimento e drenagem do tanque	110
3.3.4. Sistema de carregamento cíclico	111
3.3.5. Sistema de instrumentação	114
3.3.5.1. Células de Carga	115
3.3.5.2. LVDT (do inglês – "Linear Variable Differential	
Transformer")	117
3.3.5.3. Refletômetros no domínio do tempo (TDR)	121
3.3.5.4. Tensiômetros de alta capacidade (TAC)	124
3.3.6. Sistema de aquisição de dados	127
3.4. Programa dos ensaios realizados no modelo físico	
"Tanque-Teste"	129
3.4.1. Avaliação estrutural, compactação e controle dos materiais	130
3.4.1.1. Avaliação estrutural	130
3.4.1.2. Compactação e controle dos materiais	134
3.5. Medição indireta da sucção do solo através da curva	
característica do solo (ou curva de retenção de água)	138
3.5.1. Método do Papel Filtro	139
3.5.2. Obtenção da curva característica com o uso do	
Equipamento SWC-150	145
4 Apresentação e análise de Resultados	149
4.1. Considerações iniciais	149
4.2. Ensaio de carregamento cíclico	149
4.2.1. Deslocamentos verticais superficiais sobre o subleito	
compactado na umidade ótima	150
4.2.1.1. Ensaio sem a utilização de geogrelha	150
4.2.1.2. Ensaio com a utilização de geogrelha na interface	
subleito-base	153
4.2.2. Deslocamentos verticais superficiais após a inundação	
do subleito	157
4.2.2.1. Ensaio com a utilização de geogrelha na interface	
subleito-base	159
4.2.2.2. Ensaio sem a utilização de geogrelha	161

4.2.2.3. Análise comparativa dos deslocamentos verticais	
elásticos para o subleito inundado	165
4.2.2.4. Análise comparativa dos deslocamentos verticais	
plásticos para o subleito inundado	166
4.3. Análises Complementares	168
4.3.1. Análise das deflexões obtidas pelo LWD (Light Weight	
Deflectometer)	168
4.3.1.1. Ensaio sobre a estrutura reforçada na condição do	
subleito compactado na umidade ótima	169
4.3.1.2. Ensaio sobre a estrutura reforçada na condição do	
subleito inundado	170
4.3.1.3. Ensaio sobre a estrutura não reforçada na condição do	
subleito inundado	172
4.3.1.4. Análise comparativa dos ensaios realizados com o	
Light Weight Deflectometer (LWD)	173
4.3.2. Análise das leituras das células de carga	176
4.3.3. Variação do Módulo de Resiliência com a umidade	179
4.3.4. Análise das leituras realizadas pelos tensiômetros de alta	
capacidade (TAC)	180
4.3.5. Módulos de resiliência obtidos a partir da retroanálise	
das bacias de deflexão	185
4.3.6. Relação entre a abertura da malha da geogrelha e o	
tamanho médio dos grãos da brita.	187
5 Considerações Finais	189
5.1. Conclusões	189
5.2. Recomendações e sugestões para trabalhos futuros	191
6 Referências Bibliográficas	192
ANEXO	198

Lista de Figuras

Figura 2.1- Tensões numa estrutura de pavimento
(Medina e Motta, 2005)
Figura 2.2 – Tipos mais comuns de trincas que se
apresentam no pavimento (Bernucci et al., 2008)36
Figura 2.3- Deformações num pavimento flexível (Reis, 2009)38
Figura 2.4 - Exemplo de deformação permanente em
pavimento asfáltico (Franco, 2007)39
Figura 2.5-Afundamentos de trilha de roda segundo os
modos 0, 1, 2 e 3 (Malysz, 2009)40
Figura 2.6 – Rotação das tensões principais provocadas
pela ação da carga de roda (Medina e Motta, 2005)45
Figura 2.7 - Equipamento GeoGauge H-4140 da Humbolt
no local do presente estudo sobre a base imprimada47
Figura 2.8 – Esquema de um deflectômetro de impacto
(Fonte Bernucci et al., 2008)
Figura 2.9– Equipamento Light Weight Deflectometer
(LWD) do IME, usado neste estudo50
Figura 2.10 – Visão geral do equipamento LWD
(Fonte: Reis e Guimarães, 2012)52
Figura 2.11 – Esquema dos dados necessários para a
retroanálise de pavimento (Fonte: Nóbrega, 2003)53
Figura 2.12- Distribuição de tensões (Burmister, 1945
apud Kakuda, 2010)59
Figura 2.13 - Tipos de Geotêxteis utilizados em obras
geotécnicas. (a) Geotêxtil não tecido (b) Geotêxtil tecido
(c) Geotêxtil tricortado (CTG - ABINT, 2001)63
Figura 2.14 - Geogrelha flexível, utilizada para reforço de
aterros/muros de contenção (CTG – ABINT, 2001)64
Figura 2.15 – Proposta de modelo de transferência

de tensões de disalhamento na interface base-geossintetico.	
(Fonte: Perkins 1999 apud Antunes, 2008)	65
Figura 2.16 – Esquema da interação do reforço	
(geogrelha) com o material de base (Antunes, 2008)	66
Figura 2.17 – Efeito que produz o geossintético numa	
via não pavimentada (ANAPRE, s/d)	68
Figura 2.18 – Aplicação de geossintéticos como material de	
reforço em pavimentos.	69
Figura 2.19- Diagrama esquemático de equipamento de ensaio	
(Perkins et al, 1999)	70
Figura 2.20- Equipamento de ensaio (Demerchant et al., 2002)	71
Figura 2.21 – Diagrama esquemático de caixa de teste e	
configuração do carregamento (Leng e Garb, 2002)	72
Figura 2.22- Vista em corte do LSME (Kim et al., 2005)	72
Figura 2.23- Teste de pavimento em laboratório	
(Tingle e Jersey, 2005)	73
Figura 2.24 Esquema geral do equipamento de carregamento	
cíclico de grande escala (Antunes, 2008).	76
Figura 2.25 – Caixa de ensaios utilizada por Kakuda, 2010	77
Figura 2.26– Esquema geral do equipamento de grande escala	
(Góngora, 2011)	78
Figura 2.27 – Resultados de ensaios triaxiais mostrando a	
influência da posição do geotêxtil: a) 21kPa: b) 210kPa	
(Koerner 1994 apud Antunes, 2008).	81
Figura 3.1 – Localização da jazida de onde foi coletado	
o material utilizado no subleito do experimento desta pesquisa	88
Figura 3.2 – Armazenamento e aparência física do material	
utilizado como subleito no experimento deste estudo	89
Figura 3.3 – Curva Granulométrica do material utilizado como	
subleito no experimento deste estudo	90
Figura 3.4 – Curva de compactação do solo utilizado como	
subleito no experimento deste estudo	91
Figura 3.5 – Gráfico de classificação MCT (Nogami &	
Villibor, 1995) com a classificação do solo utilizado como	

subleito no experimento deste estudo	93
Figura 3.6 – Esquema do permeâmetro de carga variável	95
Figura 3.7 – Resultado do ensaio triaxial cíclico de módulo de	
resiliência do material empregado como subleito	96
Figura 3.8 – Armazenamento e aparência física do material	
utilizado como base no experimento deste estudo (brita)	98
Figura 3.9 – Curva Granulométrica do material utilizado	
como base nesta pesquisa	100
Figura 3.10 - Curva granulométrica da brita deste estudo	
enquadrada na Faixa A	101
Figura 3.11 - Curva de compactação do solo utilizado como	
base neste experimento	102
Figura 3.12 – Resultado do ensaio triaxial dinâmico de	
Módulo de Resiliência do material empregado como base	
neste estudo	103
Figura 3.13 – Geogrelha Fornit J600 (30/30) utilizada neste	
experimento	105
Figura 3.14 – Ancoragem da geogrelha utilizando grampos	
numa lateral do modelo físico (tanque-teste) usado	
nesta pesquisa	106
Figura 3.15 – Ancoragem da geogrelha no interior da camada	
granular na outra lateral do modelo físico (tanque-teste)	
usado nesta pesquisa	107
Figura 3.16 – Prédio onde está localizado o	
"Tanque-Teste" da COPPE/UFRJ	108
Figura 3.17 – Planta baixa do tanque teste de pavimentos	
(sem escala) da COPPE/UFRJ (Bastos, 2010)	109
Figura 3.18 – Esquema das camadas do pavimento	
experimental desta pesquisa	110
Figura 3.19 – Medidor de nível d'água e tubulação para	
abastecimento de água no interior do tanque usado neste	
experimento	111
Figura 3.20 – Montagem do lastro de brita de (1") neste	
experimento	111

Figura 3.21 – (a) Sistema de vigas de reação, (b) Cilindro
pneumático de diâmetro de 200 mm e placa circular de
25,05 cm de diâmetro deste experimento
Figura 3.22 – Calibração do cilindro utilizado na
aplicação do carregamento na calibração do atuador de carga
usado no experimento113
Figura 3.23 – Distribuição da instrumentação de aquisição
de dados utilizada nesta pesquisa115
Figura 3.24 – (a) Células de carga utilizadas (b) Sistema de
aquisição de dados para o monitoramento de aplicação
de carga. (c) Instalação a cada 30,0 cm no topo do subleito
(d) Instalação a 15,0 cm entre células no topo da base117
Figura 3.25 – Suporte inicial dos LVDTs preso ao teto do
laboratório no tanque-teste118
Figura 3.26 – Fissuras apresentadas no teto do laboratório119
Figura 3.27 – Novo sistema de suporte dos LVDTs no
tanque-teste119
Figura 3.28 – Gráficos das calibrações dos LVDTs utilizados
nesta pesquisa120
Figura 3.29 – Conjunto para medição de umidade no solo.
(a) Sonda TRIME-P2Z, (b) Receptor de sinal TRIME-ES e
(c) fonte de alimentação para o TDR121
Figura 3.30 – Distribuição dos TDRs ao longo da profundidade
no interior da estrutura do pavimento122
Figura 3.31 – Fluxograma para a calibração das sondas
TDR (Silva, 2009)123
Figura 3.32 – Etapas de preparação do corpo de prova para
a realização das leituras de umidade para a respectiva
calibração com ambos materiais123
Figura 3.33 – Equipamento do Tensiômetro de alta
capacidade (corpo acrílico, pedra cerâmica porosa de 15 bar
e transdutor K1 da Ashcroft®) montado na COPPE124
Figura 3.34 – Processo de calibração do equipamento TAC.
(a) Saturação da pedra porosa através de vácuo.

(b) Pedras porosas colocadas em água deareada. (c) Montagem
do corpo acrílico. (d) Tensiômetros submersos em
água deareada125
Figura 3.35 – Detalhes da aplicação da lama bentonítica
na ponta do tensiômetro para garantia de contato pedra
porosa – solo
Figura 3.36 – Distribuição dos tensiômetros ao longo do
interior da estrutura do pavimento127
Figura 3.37 – Tela principal do programa SicTri utilizado
para o ensaio de carga repetida, aplicado também no
experimento na estrutura do pavimento128
Figura 3.38 – Tela principal do programa DefTan utilizados
para o registro das deformações do pavimento durante
os experimentos desta pesquisa128
Figura 3.39 – Estrutura do pavimento para as quatro etapas
de ensaios no "Tanque-Teste". (a) Estrutura compactada na
umidade ótima. (b) Estrutura compactada na umidade ótima
com a inserção da geogrelha na interface subleito-base.
(c) Estrutura reforçada com o subleito inundado.
(d) Estrutura não reforçada com o subleito inundado130
Figura 3.40 – Utilização do Geogauge para a avaliação
do modulo de rigidez das camadas do pavimento deste estudo131
Figura 3.41 – Uso do equipamento LWD no desenvolvimento
das deformações elásticas da presente pesquisa133
Figura 3.42 – Resultados de deslocamentos obtidos pelo
LWD no acompanhamento do carregamento cíclico133
Figura 3.43 – Betoneira de 400 litros utilizada para homogeneização
da umidade do material na umidade ótima para construção do
pavimento no tanque-teste134
Figura 3.44 – (a) Distribuição do material, (b) Compactação
do material utilizado como subleito no tanque teste (esquema
do método de compactação), (c) Controle da compactação
através do emprego do frasco de areia137
Figura 3.45 – Superfície do pavimento no tanque-teste

após a imprimação	137
Figura 3.46 – (a) Inserção da geogrelha na interface do	
subleito-base. (b) Retirada da geogrelha ao final da etapa 3	138
Figura 3.47 – Papel Filtro tipo Whatman, utilizado para obter os	
valores de sucção	140
Figura 3.48 – Metodologia seguida para obtenção de valores	
de sucção através da técnica do papel filtro nesta pesquisa	143
Figura 3.49 – Curvas Características traçadas conforme a técnica	
do papel filtro para os materiais utilizados nesta pesquisa	144
Figura 3.50 – Valores de sucção ao longo do perfil do pavimento	
estudado para a condição do subleito compactado na umidade	
ótima	144
Figura 3.51 – Valores de sucção ao longo do perfil do pavimento	
estudado para a condição do subleito inundado	145
Figura 3.52 – Equipamento de determinação da curva	
característica de Fredlund usado nesta pesquisa	146
Figura 3.53 – (a) Montagem da pedra porosa e do corpo	
de prova. (b) Colocação da câmara de pressão. (c) Equipamento	
montado para o inicio do ensaio de curva característica	147
Figura 3.54 – Curva característica (ramo secagem) para o subleito	
através do equipamento SWC-150 do Fredlund	148
Figura 4.1 – Desenvolvimento dos deslocamentos superficiais	
elásticos no primeiro ensaio	151
Figura 4.2 - Desenvolvimento dos deslocamentos superficiais	
plásticos no primeiro ensaio	152
Figura 4.3 - Desenvolvimento dos deslocamentos superficiais	
elásticos no segundo ensaio	153
Figura 4.4 – Bacia de deslocamentos verticais em função do	
número de ciclos de carga – ensaio reforçado com geogrelha	154
Figura 4.5 - Desenvolvimento dos deslocamentos superficiais	
plásticos no segundo ensaio reforçado com geogrelha	155
Figura 4.6 – Valores de umidade nas camadas do subleito	
na umidade ótima e após a sua inundação	158
Figura 4.7 – Desenvolvimento dos deslocamentos superficiais	

elásticos no terceiro ensaio desta pesquisa159
Figura 4.8 – Bacia de deslocamentos verticais em função do
número de ciclos de carga – ensaio reforçado com geogrelha160
Figura 4.9 – Desenvolvimento dos deslocamentos superficiais
plásticos no terceiro ensaio - reforço e inundação do subleito161
Figura 4.10 - Desenvolvimento dos deslocamentos superficiais
elásticos no quarto ensaio – sem reforço e subleito inundado162
Figura 4.11 – Bacia de deslocamentos verticais em função do
número de ciclos de carga – ensaio não reforçado163
Figura 4.12 – Desenvolvimento dos deslocamentos superficiais
plásticos no quarto ensaio -sem reforço mas subleito inundado 164
Figura 4.13 – Deslocamento elástico em função do número
de ciclos de carga dos ensaios com e sem geogrelha, após
inundação do subleito
Figura 4.14 – Bacia de deflexão após 35.000 ciclos de
carga para estruturas sem e com reforço e subleito inundado166
Figura 4.15 - Deslocamento plástico em função do número de
ciclos de carga após 35.000 ciclos de carga para estruturas
com e sem geogrelha após inundação do subleito167
Figura 4.16 – Esquema em planta, da superfície do pavimento,
no tanque dos pontos para realização de ensaios com o LWD168
Figura 4.17 – Resultados obtidos pelo programa ZFG do LWD
para a estrutura do pavimento reforçada na condição do
subleito na umidade ótima169
Figura 4.18 – Resultados do LWD obtidos pelo programa
ZFG do LWD para a estrutura do pavimento reforçada - subleito
inundado171
Figura 4.19 - Resultados obtidos pelo programa ZFG do LWD
para a estrutura do pavimento não reforçada - subleito inundado 172
Figura 4.20 – Instalação das células de carga no pavimento
estudado176
Figura 4.21 – Exemplo de pulsos de carga medidos pelas
células instaladas no topo da base e do subleito para o pavimento
não reforcado com o subleito compactado na unidade ótima177

Figura 4.22 – Pulsos de carga registrados pela célula (C-105)	
onde indica que sua capacidade nominal foi superada	178
Figura 4.23 - Pulsos de carga medidos pelas células instaladas	
no topo da base e do subleito para o pavimento reforçado com	
o subleito compactado na unidade ótima	178
Figura 4.24 – Gráfico do M _R vs a Tensão Vertical Cíclica	
na estrutura do pavimento reforçada para os casos	
do subleito compactado na umidade ótima e inundado	180

Lista de Tabelas

Tabela 2.1– Características técnicas do equipamento GeoGauge
H - 4140 da Humbolt (Fonte: Silva, 2009)48
Tabela 2.2 – Alturas capilares e materiais comumente
empregados em obras de terra (Fernandes, 2007)85
Tabela 3.1 – Métodos de ensaios utilizados para avaliar o solo
empregado no subleito no experimento deste estudo89
Tabela 3.2 – Resultados dos ensaios de caracterização do
material utilizado como subleito no experimento deste estudo90
Tabela 3.3 – Resultados do ensaio da Metodologia MCT e a
classificação do solo utilizado como subleito no experimento
deste estudo92
Tabela 3.4 – Resultados do ensaio de permeabilidade de
carga variável do solo utilizado como subleito95
Tabela 3.5 – Valores dos parâmetros de regressão do modelo
avaliado para o solo utilizado no subleito96
Tabela 3.6 – Análise físico-química, por ataque sulfúrico,
do material do subleito97
Tabela 3.7 – Propriedades Mecânicas do agregado da
Pedreira (Fonte: Ramos, 2003)98
Tabela 3.8 – Métodos de ensaios utilizados para avaliar
o material empregado como base99
Tabela 3.9 - – Resultados dos ensaios de caracterização
do material utilizado como base nesta pesquisa100
Tabela 3.10 – Valores dos parâmetros de regressão do
modelo avaliado para a brita utilizada na base104
Tabela 3.11 – Especificações técnicas da geogrelha
Fornit J600 (30/30)- Fonte: Huesker (Agosto-2010)105
Tabela 3.12 – Resultados da calibração dos LVDTs utilizados120
Tabela 3.13 – Configuração dos ensaios realizados no
"Tanque-Teste"129
Tabala 3.14 – Resultados da análisa do subleito

com o equipamento GeoGauge.	132
Tabela 3.15 - Resultados da análise da camada de	de
base com o equipamento GeoGauge	132
Tabela 3.16 – Características técnicas do soquete vibratório	
e da placa vibratória usadas neste experimento.	135
Tabela 4.1 - Características dos ensaios realizados por	
Antunes (2009) e Góngora (2011) com utilização de geossintéticos	éticos
como material de reforço.	strutura de
Tabela 4.2 – Resultados do ensaio de LWD na estrutura de	
pavimento reforçada com o subleito compactado na umidade	
ótima	170
Tabela 4.3 - Resultados do deflexão obtidos nos ensaios não	
destrutivos para a avaliação estrutural do pavimento	
reforçado - subleito compactado na umidade ótima	170
Tabela 4.4 – Resultados do ensaio de LWD na estrutura	
de pavimento reforçada com o subleito inundado	171
Tabela 4.5 – Resultados de deflexão obtidos nos ensaios	
não destrutivos para a avaliação estrutural do pavimento	
reforçado no caso de subleito inundado	172
Tabela 4.6 – Resultados do ensaio LWD na estrutura de	
pavimento não reforçada - subleito inundado	173
Tabela 4.7 - Resultados de deflexão obtidos nos ensaios	
não destrutivos para a avaliação estrutural do pavimento não	
reforçado no caso do subleito inundado	173
Tabela 4.8 – Deslocamentos e módulos de resiliência obtidos	
com o ensaio do LWD neste estudo no tanque teste	174
Tabela 4.9 – Média e desvio padrão dos valores de	
deslocamentos obtidos nos ensaios com o LWD	175
Tabela 4.10 – Valores de sucção máximos registrados	
pelos TAC instalados na estrutura do pavimento (subleito	
compactado na umidade ótima)	182
Tabela 4.11 – Valores de sucção máximos registrados	
pelos TAC instalados na estrutura do pavimento (subleito	
inundado).	183

Tabela 4.12 – Valores de sucção máximos registrados
nas duas condições de umidade do subleito183
Tabela 4.13 – Valores de sucção e umidade apresentadas no
trabalho de Silva (2009) para cada situação de umidade
Tabela 4.14 - Módulo de elasticidade e coeficiente de Poisson
típicos para os materiais que compõem um pavimento flexível186
Tabela 4.15 – Módulos de resiliência obtidos a partir da
retroanálise das bacias de deflexões com reforço, para a
condição de subleito compactado na umidade ótima180
Tabela 4.16 - Módulos de resiliência obtidos a partir da
retroanálise das bacias de deflexões, para a condição de
subleito inundado18

Lista de Abreviaturas

AASHTO American Association of State Highway and

Transportation Officials

ABINT Associação Brasileira das Indústrias de Não

Tecidos e Tecidos Técnicos

ABNT Associação Brasileira de Normas Técnicas

ANAPRE Associação Nacional de Pisos e Revestimento de

alto desempenho.

ASTM American Society for Testing and Materials

ATR Afundamento de trilha de roda

CBR California Bearing Ratio

COPPE Instituto Alberto Luiz Coimbra de Pós- Graduação

e Pesquisa de Engenharia

c.p. Corpo de prova

CTG Comitê Técnico Geotêxtil

DIRENG Diretoria de Engenharia Aeronáutica

DNER Departamento Nacional de Estradas de Rodagem

DNIT Departamento Nacional de Infraestrutura de

Transportes

FHWA Federal Highway Administration

FWD Falling Weigth Deflectometer

GPS Global Positioning System

HRB Highway Research Board

HWD High Weight Deflectometer

IG Índice de grupo

IME Instituto Militar de Engenharia

IPR Instituto de Pesquisas Rodoviárias

ISC Índice Suporte Califórnia

Ltda Limitada

LVDT Linear Variable Differential Transformer

LWD Light Weight Deflectometer

MCT Miniatura, Compactado, Tropical

NA Nível da água

NBR Norma Brasileira

PUC Pontifícia Universidade Católica

PVC Policloreto de polivinila

RCD-R Resíduos de construção de demolição reciclados

RIS Relação entre Índices de Suporte

RR-1C Emulsão asfáltica ruptura rápida

SUCS Sistema Unificado de Classificação de Solos

TAC Tensiômetros de Alta Capacidade

TDR Time Domain Reflectometry

TBR Traffic Benefit Radio

TLC Trincas Longitudinais Curtas

TLL Trincas Longitudinais Longas

TTC Trincas Transversais Curtas

TTL Trincas Transversais Longas

UFRJ Universidade Federal de Rio de Janeiro

USACE Corpo de Engenheiros do Exército dos Estados

Unidos

WT Whitetopping

Lista de Símbolos

ε_t Deformação de tração

ε_p Deformação específica plástica

N Número de repetições de carga

A,B Parâmetros experimentais obtidos nos ensaios

triaxiais que dependem do nível de tensão e das

condições de moldagem

M_R Módulo de resiliência

σ_d Tensão desviadora

 ϵ_R Deformação resiliente axial

 σ_1 Tensão principal maior

σ₂ Tensão principal intermediária

 σ_3 Tensão confinante

τ_{oct} Tensão cisalhante octaédrica

σ_z Tensão vertical

σ_h Tensão horizontal

R Raio do prato de carga do LWD

Df Deflexão

 E_{VD} Módulo de Elasticidade/Resiliência

p_a Pressão atmosférica

θ Primeiro invariante de tensão

P Carga aplicada sobre a área circular

E Módulo elástico

υ Coeficiente de Poisson

T_R Trilha de roda

 d_i Deflexão medida no ponto de distancia r_i

 r_i Distância radial do ponto de aplicação da carga

Δ Deslocamento vertical

 γ_w Peso específico da água

T Tensão superficial da água

h_c Altura de ascensão capilar

h_{cmáx} Altura de ascensão capilar máxima

 G_s Massa específica real dos grãos

 γ_d Massa específica aparente seca

w Teor de umidade

e Índice de vazios

S Grau de saturação

CL-ML Argila siltosa

c' Coeficiente do ensaio MCT

Pi Perda de massa por imersão no ensaio MCT

e' Índice de classificação do ensaio MCT

NS' Não Laterítico siltoso

 k_1, k_2, k_3 Parâmetros de regressão do modelo potencial e

composto

 k_i, k_r Índices de intemperismo

GW Pedregulho bem graduado

φ Diâmetro

Cu Coeficiente de uniformidade

Cc Coeficiente de curvatura

ppm Partes por milhão

' Polegadas

Nº Números/d Sem dataatm Atmosfera

kgf Kilogramo força

kPa Kilopascal
MPa Megapascal
kN Kilonewton
mm Milímetro

cm Centímetros

°C Graus centígrados

Hz Hertz m Metros

s Segundos