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Abstract 
Most structural components are designed against fatigue crack initiation, by 
procedures which do not recognize cracks. Large cracks may be easily detected and 
dealt with, but small cracks may pass unnoticed even in careful inspections, if they 
are smaller than the detection threshold of the inspection method used to identify 
them. Thus, structural components designed for very long fatigue lives should be 
designed to avoid fatigue crack initiation and to be tolerant to undetectable short 
cracks. But this self-evident requirement is still not used in fatigue design routines, 
which just intend to maintain the loading at the structural component critical point 
below its fatigue limit. Nevertheless, most long-life designs work just fine, which 
means that they are somehow tolerant to undetectable or to functionally admissible 
short cracks. But the question “how much tolerant” cannot be answered by SN 
procedures alone. This important problem can only be solved by adding a proper 
fatigue crack propagation threshold requirement to the so-called “infinite” life design 
criterion, which must include appropriate short crack corrections to be reliable. This 
paper presents a methodology to design notched fatigue test specimens specially 
conceived to verify the accuracy of the various theories proposed to evaluate the 
tolerance to short cracks. 
Key words: Short cracks; Non-propagating cracks; Fatigue life prediction. 
 

CORPOS DE PROVA PROJETADOS PARA INDUZIR TRINCAS PEQUENAS NÃO-
PROPAGANTES POR FADIGA 

Resumo 
A maioria dos componentes estruturais é projetada para resistir à iniciação de trincas por fa-
diga por métodos que não reconhecem trincas. Trincas longas podem ser detectadas e mo-
deladas com facilidade, mas trincas curtas podem passar despercebidas mesmo em inspe-
ções cuidadosas, se forem menores do que o limiar de detecção do método de inspeção. 
Assim, componentes estruturais projetados para vidas muito longas devem resistir à inicia-
ção e serem tolerantes às pequenas trincas que possam passar despercebidas na prática. 
Mas esta idéia ainda não é usada nas rotinas de projeto à fadiga, que visam manter tensões 
no ponto crítico abaixo do limite de fadiga. Porém, a maioria de projetos de vida longa fun-
ciona muito bem, o que significa que eles são tolerantes às trincas curtas, indetectáveis ou 
funcionalmente admissíveis. Mas a pergunta "quão tolerante" não pode ser respondida ape-
nas pelas rotinas SN. Este problema importante só pode ser resolvido adicionando um re-
quisito adequado de limiar de propagação de trinca por fadiga ao chamado projeto para "vi-
da infinita", que deve incluir correções de trincas curtas apropriadas para ser confiável. Este 
trabalho apresenta uma metodologia para projetar corpos de prova entalhados de fadiga es-
pecialmente concebidos para verificar a precisão das várias teorias propostas para avaliar a 
tolerância às trincas curtas. 
Palavras-chave: Trincas curtas; Trincas não-propagantes; Previsão de vida a fadiga. 
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1 INTRODUCTION 
 
Most structural components must have notches like holes, fillets, slots, grooves, 
keyways, shoulders, corners, threads etc., to perform their intended functions. Such 
notches act as local stress raisers which modify the component fatigue resistance in 
relation to the material fatigue strength measured in standard smooth and polished 
specimens. In fact, to correctly predict the fatigue resistance of notched structural 
components has been a major goal for structural designers since Wöhler times.(1) 
Following this tradition, this work proposes a methodology to find the nominal stress 

range n and maximum stress max combinations that initiate and propagate for a 
while short cracks from the notch of specifically designed specimens, until they arrest 
and become non-propagating under fixed loading conditions. These are the 
conditions that actually define the fatigue resistance of notched structural 
components. Indeed, when designed for very long fatigue lives, they should be able 
to avoid fatigue crack initiation and to tolerate undetectable or functionally admissible 
short cracks. To properly design specific specimens is the only way to check if a 
given loading condition can in fact be reliably and robustly associated with 
predictable non-propagating cracks in notched components designed for “infinite” 
lives.  
According to Frost, Marsh e Pook,(2) fatigue cracks initiate and propagate under 

pulsating loading conditions if n  S0/Kt, where Kt is the elastic stress 

concentration factor (SCF) and S0 is the fatigue limit of smooth specimens under R 

= min/max = 0; and non-propagating short cracks form at the notch root if S0/Kt  

n  S0/Kf, where  Kf is the fatigue SCF for the notch. Short cracks must behave 
differently from long cracks, since their fatigue crack propagation (FCP) threshold 

must be smaller than the long crack threshold Kth(R), otherwise the nominal stress 

range n required to propagate them would be higher than the material fatigue limit 

SL(R).(3,4) Indeed, assuming that the FCP process is primarily controlled by the 

stress intensity factor (SIF) range, K  (a), if short cracks with a  0 had the 

same Kth(R) threshold of long cracks, their propagation by fatigue would require  

 , a physical non-sense. The FCP threshold of short fatigue cracks under 

pulsating loads Kth(a, R = 0) can be modeled using El Haddad-Topper-Smith (ETS) 

characteristic size a0, which is estimated from S0 = SL(R = 0) and K0 = Kth(R = 
0).(5) This clever trick reproduces the Kitagawa-Takahashi plot trend(6) (Figure 1), 

using a modified SIF range K’ to describe the fatigue propagation of any crack, 
short or long. 
 

     0K (a a )
,  where 

    
2

0 0 0a 1 K S
      (1) 
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Figure 1. Kitagawa-Takahashi plot describing the fatigue propagation of short and long cracks under 

pulsating loads (R = 0) in a HT80 steel with K0 = 11.2MPam and S0 = 575MPa. 

 

As ETS K’ has been deduced using the Griffith’s plate SIF, K = (a), it is 
important to use the non-dimensional geometry factor g(a/w) of the general SIF 

expression K = (a)g(a/w) to deal with other geometries, re-defining as 
Equation 2. 
 

      0K g(a w ) (a a )
,   where 

        
2

0 0 0a 1 K g(a w ) S
 (2) 

 

But the tolerable stress range  under pulsating loads tends to the fatigue limit S0 

when a  0 only if  is the notch root (instead of the nominal) stress range. 
However, the geometry factors found in SIF tables usually include the notch SCF, 

because they use instead of n as the nominal stress. A clearer way to define a0 
when the short crack departs from a notch root is to explicitly recognize this practice, 

separating the geometry factor g(a/w) into two parts: g(a/w) = (a), where (a) 
describes the stress gradient ahead of the notch tip, which tends to the SCF as the 

crack length a  0, whereas  encompasses all the remaining terms, such as the 
free surface correction (Equation 3). 
 

         0K (a) (a a )
,   where 

         
2

0 0 0a 1 K S
  (3) 

 

Operationally, the short crack problem can be better and easier treated by letting the 

SIF range K retain its original equation, while the FCP threshold expression (under 
pulsating loads) is modified to become a function of the crack length a, namely 

K0(a), resulting in the Equation 4.(7-9)  
 

    0 0 0K (a) K a a a
         (4) 

 

The ETS equation can be seen as one possible asymptotic match between the short 
and long crack behaviors. Following Bazant’s(10) reasoning, a more general equation 

can be used introducing an adjustable parameter   to fit experimental data. 
 

 


 


   
 

1
/ 2

0 0 0K (a) K 1 a a
        (5) 

 

Equations 1 to 4 result from Equation 5 if  = 2.0. The bi-linear limit, (a  a0) = S0 

for short cracks, and K0(a  a0) = K0 for long ones, is obtained if g(a/w) = (a) = 

1 and        . Most short crack FCP data is fitted by K0(a) curves with 1.5    8, 

but  = 6 better reproduces classical q-plots based on data measured by testing 
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semi-circular notched fatigue TS.(7) Using Equation 5 as the FCP threshold, then any 
crack departing from a notch under pulsating loads should propagate if: 
 

   


       


       
 

1
2

0 0 0K a a K (a) K 1 a a
   (6) 

 

Where  = 1.12 is the free surface correction. As fatigue damage depends on two 

driving forces,  and max, Equation 6 must be extended to consider max (indirectly 
modeled by the R-ratio) influence in short crack behavior. First, the short crack 
characteristic size aR is defined using the FCP threshold for long cracks                

KR = Kth(a >> aR, R) and the fatigue limit SR, both measured or properly 

estimated at the desired R-ratio, where KR is short crack FCP threshold at the 

required R-ratio. Then it can be stated that cracks are stable under fixed (K, R) 

loading conditions if K < KR(a), where: 

        
2

R R Ra 1 K 1.12 S
 and  

 


 


   
 

1
/ 2

R R RK (a) K 1 a a
  (7) 

 

 
Figure 2. Ratio between short and long crack propagation thresholds as a function of a/a0. 

 
The test specimens presented here are designed to check whether the predictions 
about the behavior of short cracks that depart from notches under any fixed loading 
conditions based on the stress gradient (SG) ahead of the notch tip are accurate, and 
to compare them with an alternative approach that deals with the tolerance to short 
cracks by the so-called Theory of Critical Distance (TCD),(11) as explained below.  
 
2 SHORT CRACKS THAT DEPART FROM SEMI-ELLIPTICAL NOTCHES 
 
Consider a specimen containing a single semi-elliptical notch with semi-axes b and c 

(where b is in the same direction as a), loaded by a nominal tensile stress range n, 
applied normal to the crack propagation direction. The SIF range for a crack a 
emanating from the root such notches can be written as Equation 9. 
 

   I nK a f a b,c b a     
         (9) 

 

DBD
PUC-Rio - Certificação Digital Nº 1021767/CA



85 
 

Where the geometry factor f(a/b,c/b) has been calculated using the Quebra2D 
program(12) and then are fitted within 3% by Equation 10.(7) 
 

  2

t t

a c a a b
f , f K ,a 1 exp K

b b a b a

       
                   for c  b  (10) 

 

Where Kt = (1 + 2b/c) [1 + 0.12/(1 + c/b)2.5] and c2 = b. As by definition the crack 

propagation threshold Kth(a) limits the propagation and non-propagation conditions 

for short cracks, they propagate if their SIF range overcomes Kth(a), therefore: 
 

       
1/

/ 2

I t n th 0 0K a f K ,a a K a K 1 a a


     


       
      (11) 

 

After some algebraic manipulation, the Equation 11 results in Equation 12. 

   
1/

0 0 0 0 0
t

0 n 0 n 0

K S K S K
f K ,a g a, , , a

S S S


    

  
    



       
            
           (12) 

 

Following the analysis of Meggiolaro, Miranda e Castro,(7) there is a single value of 
crack size amax that limits the condition of propagating and non-propagating cracks, 
satisfying Equation 12 for a given material/notch pair. The stress range that can 
cause crack initiation and propagation without arrest is associated with the fatigue 

limit of such a pair. So, the relation S0/n corresponding to amax is equal to the 
fatigue SCF for the notch Kf. Therefore, those amax and Kf values can be determined 
by solving   (Equation 13).  

 

   

   

t max max f 0 0

t max max f 0 0

f K ,a g a ,K , K S ,

f K ,a g a ,K , K S ,
a a

  

  

 

  


         (13) 

 
3 THE TCD MODEL 
 
Investigations related with critical distances principles began with Neuber (1936) and 
Peterson (1938).(11) The so-called Theory of Critical Distances (TCD) is a group of 
methods based on a characteristic material length parameter called the critical 
distance L. This group includes the Point Method (PM), the Line Method (LM), the 
Area Method (AM), and the Volume Method (VM), which is the most general one. To 
make predictions, the TCD requires that the elastic stress range (in the loading 

direction) to be known as a function of its distance x from the notch tip, (x). In 
addition, two material parameters are also needed: the fatigue limit of smooth 

specimen S0 and the critical distance L, calculated as Equation 14. 
 

  
2

0 0L 1 K S  
          (14) 

 

Note that the above expression is similar to ETS’s a0 (Equation 1), except that it does 

not include the free surface correction . So, the critical distance can also be 

calculated as L = a0
2. 
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3.1 The Point Method (PM) 
 
The PM is the simplest form of the TCD. In this approach, the criterion for crack 
propagation (fatigue limit) is that the local stress at a distance x = L/2 equals to the 

smooth specimen fatigue limit S0. It can be expressed mathematically as     
Equation 15.  

  0L 2 S 
          (15) 

 
3.2 The Line Method (LM) 
 
The LM uses an average stress over a distance x = 2L from the notch root rather a 
stress at particular point as in the PM. For the fatigue limit it is required that such 

average stress equals to the fatigue limit of smooth specimens S0. Mathematically, 
it can be expressed as Equation 16. 

 
2L

0

0

1
x dx S

2L
 

          (16) 
 
3.3 The Area (AM) and Volume (VM) Methods 
 
The AM involves an average stress over some area in the vicinity of the notch, whilst 
the VM makes use of a volume average. Considering a semicircular area, or a 
hemispherical volume in the VM, centered on the notch root, Bellet et al.(13) showed 

that the radius of the semicircular area is 1.32L and that of the hemispherical volume 

is 1.54L. However, the PM and LM are more used because they are easier to apply. 
For simplicity, a PM method is used here to determine the fatigue limit of the notched 
specimen (Figure 3). The stress field at the notch root for that configuration is 
calculated as Equation 17.  

 

   t nx f K ,a  
         (17) 

 

Where the geometry factor f(Kt,a) is assumed to be equal to that showed in   
Equation 5. 
 
4 SPECIMENS DESIGNED TO INDUCE NON-PROPAGATING SHORT CRACKS 
 
4.1 Material 
 
The material for the specimen designed to induce non-propagating cracks is       
1020 steel, with mechanical properties measured by Durán, Castro e Payão Filho:(14) 

 

 E 205MPa ; 

 US 491MPa
; 

 YS 285MPa
; 

 thK 11.6MPa m 
. 
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4.2 Specimen 
 
To verify the accuracy of both the SG and the TCD models to predict tolerance to 
short fatigue cracks, a methodology is proposed to design notched test specimens 
specially conceived to induce non-propagating short cracks under prescribed loading 
conditions. It uses a modified SE(T) specimen with a machined notch which ends in a 

circular hole with radius , (Figure 3b, where the line a represents the length of the 
crack that departs from the notch). The externals dimensions are shown in Figure 3a. 
The notch stress concentration factor (SCF) can be easily controlled by properly 

choosing the b and  combination. Moreover, such a specimen can be used to test 

several b/ combinations and be used for repeated tests, just by incrementing the 
notch size. 

  
 (a)          (b) 

Figure 3. (a) Modified SE(T) specimen, dimensions in mm; and (b) approximation by a semi-elliptical 
notch. 

 
For simplified analyses, the specimen notch can be approximated by a semi-ellipsis 
with semi-axes b e c (Figure 3b), where c is a function of the notch root radius           

 = c2/b. From an elastic stress analysis, the nominal stress range applied at the 
notch can be calculated as Equation 18. 
 

 
n

P

t w b


 

 
            (18) 

 

Therefore, after the value of n is determined by solving the system of Equation 13, 

the load P to be applied to the specimen can be easily found. Considering the 
specimen configuration shown in Figure 3, the 1020 steel properties listed in        

section 5, and a Bazant’s parameter  = 6, as suggested by (8), the behavior of such  
a test specimen is explored as follows. 
 
4.3 Numerical Results 
 

Assuming as usual the fatigue limit of smooth specimen as S’L = 0.5Su, for a load 
ratio R = -1 (fully reversed loading), by Goodman it can be estimated that the fatigue 

limit for pulsating loading conditions (R = 0) is S0 = 2Su/3. 
Following Frost’s statement, it is the difference between Kt and Kf that defines the 
generation of non-propagating fatigue cracks. Numerical results for such a fatigue 
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notch factor Kf calculated by both the SG and TCD models are plotted in Figure 4 as 

a function of the notch root radius , assuming b = 15 mm in Figure 3. Figure 4 also 
shows the stress concentration factor Kt and how its value tends to Kf as the notch 

root radius  increases. Therefore, for this material and specimen configuration, 

notches with root radii  <  1.5 mm will be able to generate non-propagating cracks. 
 

 
Figure 4. Comparison of predictions of the notch fatigue factor Kf from the SG and TCD models with 

the stress concentration Kt as a function of the notch root radius . 

 
As indicated in Section 3, in addition to Kf, the SG model also allows the largest non-
propagating crack amax that can arise from fatigue alone to be calculated. Figure 5 

shows the value of amax as a function of the notch root radius . Ideally, it would be 

better to deal with higher values of  because they are easier to machine at the notch 

tip. In the other hand, the smaller the notch root radius , the greater the maximum 
non-propagating crack amax is, and, consequently, the more reliably the method can 
be applied to predict non-propagating cracks that can be robustly measured. 

According to the numerical results shown in Figure 5, for   1.5 mm it can be 
expected that the maximum non-propagating crack size should be                        
0.83 mm < amax < 0.309 mm. Those values can be easily measured by an optical 
microscope. Thus, for Figure 3 specimen configuration the notches should have     

e.g. root radii  = 0.5, 1.0, and 1.5 mm, and be machined using reamers to obtain 
accurate dimensions. 
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Figure 5. Predictions of the maximum non-propagating crack amax in function of the notch root     

radius . 

 
5 SENSITIVITY ANALYSIS OF THE SG MODEL 
 
The SG model is based entirely on sound mechanical principles, which do not require 

an arbitrary choice of some critical distance parameter. Under fixed (, R) loading 

conditions, it is a function of the long crack fatigue propagation threshold KR and of 

the fatigue limit SR, both well defined but relatively disperse mechanical properties. 

However, it also uses Bazant’s data-fitting parameter , which certainly can improve 
the ETS description of short crack fatigue propagation using Kitagawa-Takahashi or 
similar diagrams, which are difficult to obtain in practice. Therefore, it is worth to 
evaluate how such parameters can influence the SG predictions.  
Typical fatigue crack propagation thresholds under pulsating loads (R = 0) for long 

cracks in steels are in the range 6  K0  12 MPam.(1) Figure 6 shows values of   Kf 

predicted by SG procedures for K0 = 6, 8, and 11.6 MPam. Note that the smaller 

K0 is, the greater the value of Kf, and, therefore, smaller its difference to Kt. 

A variation of 10% in the fatigue limit S0 is considered in Figure 7. The smaller S0 
is, the smaller is the value predicted for Kf, thus larger is its difference from Kt. This 
means that less strong steels should be more tolerant to short cracks because they 
should be able to tolerate larger short cracks than high-strength steels, a prediction 
that seems vary reasonable, since high strength is usually associated to more 
sensitivity to defects.  

Finally, the fitting parameter  can typically vary between 1.5    8.(1) Figure 8 

shows how the predicted notch fatigue factor Kf varies for  = 3, 6 and 8. Even 

considering that  is only a fitting parameter, it may have a large influence on the Kf 
values predicted by the SG method. 
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Figure 6. Influence of the crack propagation threshold K0 in the predictions of the notch fatigue factor 
Kf from the SG model. 

 

 
Figure 7. Influence of the smooth specimen fatigue limit S0 in the notch fatigue factor Kf predicted by 
the SG model. 
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Figure 8. Influence of Bazant’s parameter  in the notch fatigue factor Kf predicted by the SG model. 

 
The largest non-propagating crack amax predicted by the SG method is also 
influenced by the three parameters mentioned above, as expected. Figures 9 to 11 

show the influence of K0, S0, and , respectively, on the amax value. 
 

 
Figure 9. Influence of the crack propagation threshold K0 in the SG predictions for the largest non-
propagating short crack amax that can be tolerated at the b = 15 mm notch tip. 
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Figure 10. Influence of the smooth specimen fatigue limit S0 in the SG predictions for the largest non-
propagating short crack amax that can be tolerated at the b = 15 mm notch tip. 

 

 
Figure 11. Influence of the Bazant’s parameter  in the SG predictions for the largest non-propagating 
short crack amax that can be tolerated at the b = 15 mm notch tip. 

 
This amax sensibility to the parameters of the SG model are measurable and can 
certainly be used to verify the accuracy of their predictions. 
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6 CONCLUSIONS 
 
The stress gradient (SG) model, which is based on sound mechanical principles, was 
used to predict fatigue notch stress concentration factors Kf and the short crack 
tolerance of a notched specimen designed to induce such non-propagating cracks at 
the notch root. Some of its predictions were compared with an alternative Theory of 
the Critical Distance (TCD), which assumes that the fatigue limit is related with a 
material-dependent length parameter. It was shown that the designed specimen can 
indeed be used to verify experimentally the accuracy of such predictions. 
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