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Abstract

In this paper we consider the following interpretation of the formal def-

inition of time consistency: a policy is time consistent if and only if the

future planned decisions are actually going to be implemented. In particular

for risk averse multistage stochastic programming, we discuss a CVaR based

portfolio selection problem and compare a time consistent formulation to a

inconsistent one. For the latter, we discuss how different planned and im-

plemented decisions can be and develop a new way of measuring the impact

of a inconsistent policy on the objective function. In other words, we argue

that the first stage decision of a time inconsistent policy is sub-optimal and

we propose a methodology to compute the related sub-optimality gap. For

portfolio selection example, we present a sensitivity analysis by computing

this gap for different planning horizons and risk aversion levels. Finally, to

Email addresses: gveiga@gmail.com (Birgit Rudloff), street@ele.puc-rio.br
(Alexandre Street), davimv@br.ibm.com (Davi M. Valladão)

Preprint submitted to Elsevier April 17, 2013



motivate the use of the proposed time consistent formulation, we develop a

suitable economic interpretation for its recursive objective function based on

the certainty equivalent of the related preference function.

Keywords: Risk Management, Time Consistency, Dynamic Stochastic

Programming, Risk Aversion, Conditional Value-at-Risk (CVaR), Portfolio

Selection

1. Introduction

Dynamic decisions under uncertainty are very common in financial plan-

ning and financial engineering problems. Based on Bellman’s equations and

on the well behave properties of the risk neutral formulation, several mod-

els have been developed for different applications such as portfolio selection,

asset and liability management, scheduling and energy planning. Indeed,

some important works, for instance Pereira and Pinto (1991) and Rockafel-

lar and Wets (1991), developed efficient algorithms to solve these problems.

However, in order to have a risk aversion extension, such as in Ruszczynski

(2010); Shapiro (2011); Shapiro et al. (2012), one should choose carefully how

to introduce the well known risk measures into these problems.

In this context, the Conditional Value at Risk (CVaR) became one of the

most widely used risk measures for three reasons: first, it is a coherent risk

measure (see Artzner et al. (1999)); second, it has a clear and suitable eco-

nomic interpretation (see Rockafellar and Uryasev (2000) and Street (2009));

and last, but not least, it can be written as a linear stochastic programming

model as shown in Rockafellar and Uryasev (2000). For these three reasons,

the CVaR has been applied to static and even to dynamic models. However,

to choose a coherent risk measure as objective function of a dynamic model

is not a sufficient condition to obtain suitable optimal policies. In the recent



literature, time consistency is shown to be one basic requirement to get suit-

able optimal decisions, in particular for multistage stochastic programming

models. Papers on time consistency are actually divided in two different

approaches: the first one focuses on risk measures and the second one on

optimal policies.

The first approach states that, in a dynamic setting, if some random pay-

off A is always riskier than a payoff B conditioned to a given time t+ 1, than

A should be riskier than B conditioned to t. It is well known that this prop-

erty is achieved using a recursive setting leading to so called time consistent

dynamic risk measures proposed by various authors, e.g., Bion-Nadal (2008);

Detlefsen and Scandolo (2005); Riedel (2004); Cheridito et al. (2006); Roorda

and Schumacher (2007); Kovacevic and Pflug (2009). Other weaker defini-

tions, like acceptance and rejection consistency, are also developed in these

works (see Cheridito et al. (2006); Kovacevic and Pflug (2009) for details).

The second approach, formally defined by Shapiro (2009), is on time

consistency of optimal policies in multistage stochastic programming mod-

els. The interpretation of this property given by the author is the following:

“at every state of the system, our optimal decisions should not depend on

scenarios which we already know cannot happen in the future”. This inter-

pretation is an indirect consequence of solving a sequence of problems whose

objective functions can be written recursively as the former cited time con-

sistent dynamic risk measures. It is shown in Shapiro (2009) for instance

that if, for every state of the system, we want to minimize the CVaR of a

given quantity at the end of the planning horizon, we would obtain a time

inconsistent optimal policy. Indeed, this sequence of problems does not have

recursive objective functions and the optimal decisions at particular future

states might depend on scenarios that “we already know cannot happen in
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the future”. However, if for t = 0 we want to minimize the CVaR of a given

quantity at the end of the planning horizon and for t > 0 we actually follow

the dynamic equations of the first stage problem, then we obtain a time con-

sistent optimal policy even though it depends on those scenarios we already

know cannot happen. On the other hand, one can argue that this policy is

not reasonable because for t > 0 the objective function does not make any

sense economically speaking.

In this paper, we use a direct interpretation for time consistency of opti-

mal policies based on its formal definition. We actually state that a policy is

time consistent if and only if the future planned decisions are actually going

to be implemented. In the literature, time inconsistent optimal policies have

been commonly proposed, in particular Bäuerle and Mundt (2009) at section

3 and 4.1 and Fábián and Veszprémi (2008) have developed portfolio selection

models using CVaR in a time inconsistent way. In our work, we show with a

numerical example that a time inconsistent CVaR based portfolio selection

model can lead to a suboptimal sequence of implemented decisions and may

not take risk aversion into account at some intermediate states of the system.

Then, we propose a methodology to compute the sub-optimality gap as the

difference of the objective function evaluated with two different policies: the

one planned at our current stage and the one actually implemented in the

future.

Therefore, we propose a time consistent risk-averse dynamic stochastic

programming model with a recursive objective function and compare its op-

timal policy to the time inconsistent one. Other alternatives have been pro-

posed by Boda and Filar (2006) and Cuoco et al. (2008), however none of

them used the recursive set up of time consistent dynamic risk measures.

Since the lack of a suitable economic interpretation for this recursive set up
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is one of the main reasons why it is not commonly used, we prove for a more

general set of problems that this objective function is the certainty equivalent

w.r.t. the time consistent dynamic utility defined as the composed form of

one period preference functionals. Then, with a clear economic interpreta-

tion for the objective function of a general set of problems and consequently

of the portfolio selection application, we discuss the developed results with

a numerical example.

1.1. Assumptions and notation

In this paper, we assume a multistage setting with a finite planning hori-

zon T . We consider a probability space (Ω,F ,P) with a related filtration

F0 ⊆ . . . ⊆ FT , where F0 = {∅,Ω} and F = FT .

Since our application is on portfolio selection, we use a unique notation for

all models developed here. This section includes definition of sets, stochastic

processes, decision and state variables.

Let us define the set of assets, A = {1, . . . , A}, the set stages, H =

{0, . . . , T − 1}, and the set of stages starting from τ , H(τ) = {τ, . . . , T −

1}, ∀τ ∈ H. In addition, we define the excess return of asset i ∈ A, between

stages t ∈ {1, . . . , T} and t − 1, under scenario ω ∈ Ω, as the stochastic

process ri,t (ω) where we denote rt (ω) = (r1,t (ω) , . . . , rA,t (ω))
′
and, for s ≤ t,

r[s,t] (ω) = (rs (ω), . . . , rt (ω))
′
.

Let us also denote the state variable Wt (ω) to be the wealth at stage

t ∈ H ∪ {T} under scenario ω ∈ Ω and the decision variable xi,t (ω) to

be the amount invested in asset i ∈ A, at stage t ∈ H under scenario

ω ∈ Ω where xt (ω) = (x1,t (ω) , . . . , xA,t (ω))
′

and, for s ≤ t, x[s,t] (ω) =

(xs (ω), . . . ,xt (ω))
′
.

Without loss of generality, we assume that there is a risk free asset, in-

dexed by i = 1, with null excess return for each state of the system, i.e.,
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r1,t (ω) = 0, ∀t ∈ H ∪ {T}, ω ∈ Ω. Moreover, we assume that Wt, ri,t, xi,t ∈

L∞(Ft), ∀t ∈ H ∪ {T}.

Let W be a F measurable function and consider a realization sequence

r̄[1,t] = (r̄1, . . . , r̄t)
′

of the asset returns. Then, we denote the conditional

and unconditional expectations by E
[
W
∣∣ r̄[1,t]

]
= E

[
W
∣∣ r[1,t] = r̄[1,t]

]
and

E [W ] , respectively.

We also use the negative of the CVaR developed by Rockafellar and Urya-

sev (2000) as an “acceptability” measure (see Kovacevic and Pflug (2009) for

details) whose conditional and unconditional formulations are defined respec-

tively as

φαt
(
W, r̄[1,t]

)
= −CV aRα

(
W
∣∣ r̄[1,t]

)
= sup

z∈R

{
z −

E
[
(W − z)−

∣∣ r̄[1,t]
]

1− α

}
(1)

and

φα0 (W ) = −CV aRα (W ) = sup
z∈R

{
z −

E
[
(W − z)−

]
1− α

}
,

where x− = −min(x, 0).

Note that, E
[
·
∣∣ r̄[1,t]

]
,E [·] , φαt

(
·, r̄[1,t]

)
and φαt (·) are real valued func-

tions, i.e, L∞ (Ω,F ,P) → R. It is also important to note that all con-

straints represented in this paper are defined for almost every ω ∈ Ω, in the

P a.s. sense, that affects the objective function. For instance, if the objective

function of a particular optimization problem is a conditional expectation

E
[
·
∣∣ r̄[1,t]

]
, then the constraints of this problem are defined for almost every

ω ∈
{
ω̄ ∈ Ω

∣∣ r[1,t] (ω̄) = r̄[1,t]
}

.

2. Experimental

The major reason for developing dynamic (multistage) models instead

of static (two-stage) ones is the fact that we can incorporate the flexibility

of dynamic decisions to improve our objective function. In other words, the
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possibility of changing a policy after the realization of some random variables

increases the objective function (for a maximization problem) and allows the

first stage decisions to be less conservative than their counterpart in the static

case. However, it doesn’t make any sense to incorporate this flexibility if the

intermediate decisions are not actually going to be implemented.

As we stated before, an optimal policy is time consistent if and only if the

future planned decisions are actually going to be implemented. Only under

this property we guarantee that the flexibility and optimality of a dynamic

policy will not be polluted by any spurious future planned decisions. Said

so, one can even argue that the first stage decisions of a time inconsistent

policy are, for practical reasons, suboptimal considering that the optimal

policy would not be followed in the future.

In a multistage stochastic programming context, a policy is a sequence

of decisions for each stage and for each scenario (a realization of the uncer-

tainty). As in Shapiro (2009), one has to define which (multistage) optimiza-

tion problem should be solved when the current time is a particular stage

t ∈ H of the planning horizon. Said that, when the current time is t = 0,

we solve the corresponding optimization problem and obtain the first stage

optimal decision and the future planned optimal policy. This policy is time

consistent if and only if these future planned decisions for each scenario are

also optimal for each problem when the current time is t > 0.

In order to motivate this discussion, we develop a CVaR based portfolio

selection model which incorporates the well known mean-risk trade-off pre-

sented by Markowitz (1952). As a coherent risk measure, the CVaR should be

a suitable way to assess risk, however we want to point out the fact that if one

chooses a dynamic model, time consistency should also be take into account.

Assessing risk in a time inconsistent way may lead to a time inconsistent
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policy and therefore to a suboptimal sequence of implemented decisions.

For an illustrative purpose, we apply the CVaR in a time inconsistent

way to the portfolio selection problem and show some practical consequences

of the related optimal policy.

2.1. Example of a time inconsistent policy

The portfolio selection problem is normally formulated to consider the

mean-risk trade-off. Some models use the expected value as the objective

function with a risk constraint while others minimize risk with a constraint on

the expected value. In this paper, we combine these two approaches defining

our objective function as a convex combination of the expected value and the

acceptability measure previously stated. In other words, the investor wants

to maximize its expected return and also minimize risk, given his current

state. It is very important to note that the planning horizon is a fixed date

in the future and, depending on the investor’s current state, he / she solve a

different optimization problem.

Then, we define the problem Qτ

(
Wτ , r̄[1,τ ]

)
solved by the investor, given

his / her current stage τ and the current realization r̄[1,τ ] of the random

process, as

maximize
W[τ+1,T ],x[τ,T−1]

(1− λ)E
[
WT

∣∣ r̄[1,τ ]
]

+ λφατ
(
WT , r̄[1,τ ]

)
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0,

where λ ∈ [0, 1].
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Using (1), the problem can be equivalently formulated as

maximize
W[τ+1,T ],x[τ,T−1],z

E
[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

) ∣∣∣∣ r̄[1,τ ]

]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0.

Note that, the first stage problem Q0 (W0) is defined equivalently as fol-

lows:

maximize
W[1,T ],x[0,T−1],z

E
[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0.

(2)

In order to have a numerical example, Let us assume our probability space

to be represented by a discrete event tree. For instance, consider T = 2 and

the tree represented in Figure 1, where the scenarios ω ∈ Ω = {1, 2, 3, 4} are

numbered by the terminal nodes. In our notation, a node is a subset of Ω,

e.g., the root node is defined as Ω = {1, 2, 3, 4}, the intermediate nodes as

{1, 2} and {3, 4} and the terminal nodes as {1}, {2}, {3}, {4}. Now, let us

denote Nt the set of nodes at stage t and Ft the σ-algebra generated by it. In

our example, N1 = {Ω}, N2 = {{1, 2}, {3, 4}} and N3 = {{1}, {2}, {3}, {4}}.

For sake of simplicity, we consider a two-asset model, i.e., A = {1, 2}, and

a probability measure defined as P (ω) = 0.25, ∀ω ∈ Ω = {1, 2, 3, 4}. The

first asset indexed by i = 1 is risk free and it has null excess return for every

state of the system, i.e, r1,t(ω) = 0, ∀t ∈ {1, 2}, ω ∈ Ω. The second one is

9



0 1 2
t

ω = 1

ω = 2

ω = 3

ω = 4

r i,1
(1) =

 r i,1
(2) =

 1

r
i,1 (3) = r

i,1 (4) = - 0.5

r i,2
(1) =

 1

r i,2
(3) = 1

r
i,2 (4)  = -0.5

r
i,2 (2)  = - 0.5

Figure 1: Return tree for i = 2

assumed to have iid returns given by

r2,t (ω) =



1, for t = 1, ω ∈ {1, 2}

−0.5, for t = 1, ω ∈ {3, 4}

1, for t = 2, ω ∈ {1}

−0.5, for t = 2, ω ∈ {2}

1, for t = 2, ω ∈ {3}

−0.5, for t = 2, ω ∈ {4}.

and graphically represented in Figure 1. It is straightforward to see that

the risky asset has greater expected return and higher risk than the risk free

one. This represents the mean-risk trade-off of a typical portfolio selection

problem.

Now, we write an equivalent deterministic linear programming model for

the problem Q0 (W0) defined in (2) assuming, without loss of generality, that
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W0 = 1. Then we have the following:

maximize
q,W[1,2],x[0,1],z

1

4

4∑
ω=1

[
(1− λ)W2 (ω) + λ

(
z − q (ω)

1− α

)]
subject to Wt+1 (ω) =

∑
i∈A (1 + ri,t+1 (ω))xi,t (ω), ∀ t ∈ H, ω ∈ Ω∑

i∈A xi,t (ω) = Wt (ω) , ∀ t ∈ H, ω ∈ Ω

xt(ω) ≥ 0, ∀t ∈ H, ω ∈ Ω

q(ω) ≥ z −W2 (ω) , ∀ω ∈ Ω

q(ω) ≥ 0, ∀ω ∈ Ω.

(3)

where xt is Ft-adapted, i.e., x0(1) = x0(2) = x0(3) = x0(4), x1(1) = x1(2)

and x1(3) = x1(4), which are the well known non-antecipativity constraints.

Note that q is a FT -adapted auxiliar variable to represent the CVaR as

developed in Rockafellar and Uryasev (2000).

Solving this problem for α = 95% and λ = 0.5, we have the following

optimal solution:

x∗1,t (ω) =


0.5, for t = 0, ω ∈ Ω

0, ∀t = 1, ω ∈ {1, 2}

0.75, ∀t = 1, ω ∈ {3, 4},

x∗2,t (ω) =


0.5, for t = 0, ω ∈ Ω

1.5, ∀t = 1, ω ∈ {1, 2}

0, ∀t = 1, ω ∈ {3, 4}.

(4)

At the root node, it is optimal to split evenly the investment, while at node

{1, 2} everything is invested in the risky asset and at node {3,4} everything

is invested in the risk free one.

Now, let us suppose one period has passed and the current state is at time
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τ = 1 and at node {1, 2}. Let us write an equivalent deterministic problem

for Q1(W1, r̄1), for W1 = 1.5 and r̄1 = (0, 1)
′

as

maximize
q,W2,x1,z

1

2

2∑
ω=1

[
(1− λ)W2 (ω) + λ

(
z − q (ω)

1− α

)]
subject to W2 (ω) =

∑
i∈A (1 + ri,2 (ω))xi,1, ∀ω ∈ {1, 2}∑

i∈A xi,1 = W1

x1 ≥ 0

q (ω) ≥ z −WT (ω) , ∀ω ∈ {1, 2}

q (ω) ≥ 0, ∀ω ∈ {1, 2}.

(5)

This problem reflects what the investor would do at τ = 1 and at node

{1, 2} if the optimal decision x∗0 in (4) had been implemented. In other

words, given x∗1,t and x∗2,t for t = 0, the optimal solution of (5) is the decision

implemented at τ = 1 and at node {1, 2} of an agent that maximizes the

chosen acceptability measure of terminal wealth.

We want to show that the optimal solutions for this problem at node

{1, 2} are different from the ones in (4), meaning that at t = 0 the future

planned decisions for t = 1 are different from the ones that are actually going

to be implemented. It is also important to understand why it happens and

what kind of error a investor would do with this time inconsistent policy.

The optimal solution of (5) is given by the following:

x̃∗1,t (ω) = 1.5, ∀t = 1, ω ∈ {1, 2},

x̃∗2,t (ω) = 0, ∀t = 1, ω ∈ {1, 2}.

(6)

The optimal planned strategy at node {1, 2} obtained by solving (3) is

to invest everything in the risky asset, while the solution of problem (5) (the

12



one that is actually going to be implemented) is to invest everything in the

risk free asset (see equation (6)). This happens because, in problem (3), the

CV aR95% is the worst case loss at scenario ω = 4 given by −W2(4). Then,

at node {1, 2}, it is optimal for first stage problem to choose the investment

strategy with the highest expected return since this decision will not affect

the terminal wealth at scenario ω = 4.

This example points out that a time inconsistent policy may lead to a

sequence of optimal decisions where a risk-averse decision maker shows a risk

neutral preference at some intermediate state. In other words, risk aversion

may not be taken into account at some intermediate states of the system.

Therefore, we propose a time consistent alternative that has significant ad-

vantages over the time inconsistent one since it incorporates the flexibility

of a dynamic decision model ensuring that the future planned decisions are

actually going to be implemented.

2.2. Time consistent alternative

In this section, we propose an alternative to the previous time inconsis-

tent policy. We base our formulation on Ruszczynski and Shapiro (2006)

and develop dynamic equations. For t = T − 1, we define the problem

VT−1 (WT−1, r̄T−1) as follows:

maximize
WT ,xT−1

(1− λ)E
[
WT

∣∣ r̄[1,T−1]
]

+ λφαT−1
(
WT , r̄[1,T−1]

)
subject to WT =

∑
i∈A (1 + ri,T )xi,T−1∑

i∈A xi,T−1 = WT−1

xT−1 ≥ 0.

Using the definition of φαT−1
(
W, r̄[1,T−1]

)
given in (1), we rewrite the prob-
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lem as follows:

maximize
WT ,xT−1,z

E
[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

) ∣∣∣∣ r̄[1,T−1]

]
subject to WT =

∑
i∈A (1 + ri,T )xi,T−1∑

i∈A xi,T−1 = WT−1

xT−1 ≥ 0.

For the last period, our proposed model is to maximize the convex combi-

nation of the expected terminal wealth and the acceptability measure φαT−1
(
W, r̄[1,T−1]

)
.

Now, for t < T − 1, we propose a nested value function, based on the con-

ditional version of the same convex combination. Then, Vt
(
Wt, r̄[1,t]

)
, ∀t =

0, . . . , T − 2, is defined as follows:

maximize
Wt+1,xt

(1− λ)E
[
Vt+1

∣∣ r̄[1,t]
]

+ λφαt
(
Vt+1, r̄[1,t]

)
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(7)

where Vt+1 stands for Vt+1

(
Wt+1, r[1,t+1]

)
.

Equivalently to t = T − 1, we rewrite problem (7) as follows:

maximize
Wt+1,xt,z

E
[
(1− λ)Vt+1 + λ

(
z − (Vt+1 − z)−

1− α

) ∣∣∣∣ r̄[1,t]

]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(8)

For comparison purposes, we solve this model for the numerical example

proposed in section 2.1. To do so, we use the result shown in Blomvall and
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Shapiro (2006) that, for stage-wise independent returns such problem has

a myopic optimal policy which is obtained as the solution of the following

two-stage problem for t ∈ H:

maximize
Wt+1,xt,z

E
[
(1− λ)Wt+1 + λ

(
z − (Wt+1 − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(9)

For W0 = 1, the (time consistent) optimal policy obtained by solving

problem (8) is the following:

x∗1,t (ω) = Wt = 1, ∀t ∈ H, ω ∈ Ω,

x∗2,t (ω) = 0, ∀t ∈ H, ω ∈ Ω.

The optimal policy is always to invest the total wealth in the risk free

asset. Note that this strategy is more conservative compared to the time

inconsistent one, because it takes risk into account at every state of the

system. Since this difference may lead to a sub-optimal solution, we develop

in the following section a systematic way of measuring this effect on the

objective function.

2.3. The time inconsistent sub-optimality gap

In section 2.1, we show a time inconsistent example where planned and

implemented policies are different. However, what we do want to know is

how a time inconsistent policy impacts our objective function. The way of

measuring it is computing the sub-optimality gap that concerns the dispar-

ity of the objective function we expect to obtain with our planning policy,
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denoted by OFplan, and the one we actually get when evaluating the policy

to be implemented in the future, denoted by OFimp. Then, let us define

gap =
OFplan −OFimp

OFplan
,

For instance, take the portfolio selection problem defined in (2), in partic-

ular the numerical example in (3). The optimal value Q0(W0) defines OFplan,

i.e.,

OFplan = Q0(W0).

On the other hand, OFimp is obtained by computing the wealth distribution

ŴT at t = T using the implemented decisions and then evaluate the objective

function

OFimp = E

(1− λ) ŴT + λ

z −
(
ŴT − z

)−
1− α


 ,

The terminal wealth ŴT is obtained by the following procedure:

for τ ∈ H, ω ∈ Ω: do

x̂τ = (x̂1,τ , . . . , x̂A,τ )
′
← the first stage solution of Qτ

(
Ŵτ (ω), r̄[1,τ ](ω)

)
Compute Ŵτ+1(ω) =

∑
i∈A (1 + ri,T (ω)) x̂i,T−1

end for

where, for τ = 0, Ŵτ (ω) = W0 and Qτ

(
Ŵτ (ω), r̄[1,τ ](ω)

)
= Q0(W0), ∀ω ∈ Ω.

In this numerical example where λ = 0.5 and T = 2 we compute a

gap of 9.09%. For completeness, we run a sensitivity analysis varying λ ∈

{0, 0.1, . . . , 0.9, 1} and T ∈ {2, 3, . . . , 9, 10}, where the results are presented

in Table 1. From this results we have a better assessment on how a time

inconsistent policy would affect the decision process in practice.

We observe that gap can be significantly different depending on planning

horizon size T and risk aversion level λ. On the one hand, we observe a zero
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gap for λ ∈ {0, 1} and for all T ∈ {2, . . . , 10}. For λ = 0 our results are vali-

dated by the fact that a risk neutral formulation ensures time consistency. For

λ = 1, the preference function is too conservative in this particular example

and, therefore, planned and implemented decisions are to invest everything

in the risk free asset. On the other hand, for λ ∈ {0.4, 0.5, 0.6, 0.7, 0.9} we

observe significantly high gap values for different planning horizon sizes T .

We illustrate this behavior in Figure 2 where we plot for each λ, the gap as

a function of T . For a given λ, we observe that sub-optimality gap increases

with the planning horizon until it stabilizes around a certain value. Nonethe-

less the gap for a smaller λ increases faster with T , the case with a larger λ

stabilizes at a higher gap value.
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Figure 2: Sub-Optimality gap due to Time Inconsistency

To sum up, for the most aggressive and the most conservative allocation

strategies, time inconsistency would not be a problem. On the other hand,

for 0 < λ < 1, time consistency do matter and can have a significant impact

on the objective function. For this reason, we reassure the importance of time

consistency which can be achieved by the recursive formulation illustrated in
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Section 2.2. The major problem of utilizing this formulation in practice is

the difficulty to economically interpret it. Therefore, we develop a suitable

economic interpretation for this recursive objective function based on certain

equivalent of the related preference function.

3. Results and discussion

The problem of choosing the proposed recursive set up is usually the lack

of a suitable economic interpretation for the objective function. How can a

investor choose a policy if he / she does not know what is actually going to

be optimized? For this reason, we prove that the objective function is the

certainty equivalent w.r.t. the time consistent dynamic utility generated by

one period preference functionals.

Let us consider a generic one period preference functional ψt : L∞ (Ft+1)→

L∞ (Ft) and, for a particular realization sequence of the uncertainty r̄[1,t], the

related real valued function ψt
(
· | r̄[1,t]

)
: L∞(Ft+1) → R. Moreover, let us

define important properties and concepts of ψt
(
· | r̄[1,t]

)
used to develop our

main results:

Translation invariance:. ψt
(
Wt+1 +m | r̄[1,t]

)
= ψt

(
Wt+1 | r̄[1,t]

)
+m, where

Wt+1 ∈ L∞(Ft+1) and m ∈ R.

Monotonicity:. ψt
(
XT | r̄[1,t]

)
≥ ψt

(
YT | r̄[1,t]

)
for all XT , YT ∈ L∞(FT ), such

that XT (ω) ≥ YT (ω), ∀ω ∈ Ω.

Normalization:. Let us also assume that ψt
(
· | r̄[1,t]

)
is normalized to zero,

i.e., ψt
(
0 | r̄[1,t]

)
= 0.

Definition 1. The certainty equivalent C̃t(Wt+1 | r̄[1,t]) of Wt+1 ∈ L∞(Ft+1)

with respect to ψt
(
Wt+1 | r̄[1,t]

)
is a real valuem ∈ R such that ψt

(
m | r̄[1,t]

)
=

ψt
(
Wt+1 | r̄[1,t]

)
.
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Let us also denote (Ut)t∈H as the time consistent dynamic utility function

generated by ψt (see Cheridito and Kupper (2009) for details). Formally

speaking, Ut : L∞ (FT )→ L∞ (Ft) is defined as follows:

UT (WT ) = WT and Ut (WT ) = ψt (Ut+1 (WT )) , ∀t ∈ H,

where WT ∈ L∞ (FT ). Note that we can also use a conditional version of Ut

as follows:

Ut
(
WT

∣∣ r̄[1,t]
)

= ψt
(
Ut+1 (WT )

∣∣ r̄[1,t]
)
, ∀t ∈ H.

The concept of certainty equivalent is also developed for the time consis-

tent dynamic utility Ut:

Definition 2. The certainty equivalent Ct(WT | r̄[1,t]) of WT ∈ L∞(FT ) with

respect to Ut
(
WT | r̄[1,t]

)
is a real value m ∈ R such that Ut

(
m | r̄[1,t]

)
=

Ut
(
WT | r̄[1,t]

)
.

Now, let us define the following dynamic stochastic programming model

where the value function at time t depends on the decisions at t− 1 and the

realization sequence of the uncertainty until t. Thus, for t = T we define it

as follows:

VT
(
xT−1, r̄[1,T ]

)
= WT

(
xT−1, r̄[1,T ]

)
,

where WT = WT

(
xT−1, r̄[1,T ]

)
is a real valued function.

For t ∈ H, we define the following:

Vt
(
xt−1, r̄[1,t]

)
= sup

xt∈Xt
ψt
(
Vt+1

(
xt, r[1,t+1]

) ∣∣ r̄[1,t]
)
,

where Xt = Xt
(
xt−1, r̄[1,t]

)
is the feasible set for each time t. Note that for

t = 0, we have

V0 = sup
x0∈X0

ψ0 (V1 (x0, r1)),
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where X0 is a deterministic set.

Then, we develop the following results.

Proposition 3. If ψt is a translation invariant, monotone functional nor-

malized to zero, then for t ∈ H the value function can be written as

Vt
(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ct
(
WT

∣∣ r̄[1,t]
)
,

where Ct
(
WT

∣∣ r̄[1,t]
)
is the certainty equivalent of WT w.r.t. Ut conditioned

on the realization sequence r̄[1,t].

Proof. By definition we have

Vt
(
xt−1, r̄[1,t]

)
= sup

xt∈Xt
ψt
(
Vt+1

(
xt, r[1,t+1]

) ∣∣ r̄[1,t]
)

= sup
xt∈Xt

ψt

(
. . . sup

xT−1∈XT−1

ψT−1 (WT )

∣∣∣∣∣ r̄[1,t]

)
.

Using the monotonicity of ψt and the definition of Ut we have the follow-

ing:

Vt
(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ ,∀τ=t,...,T−1
ψt
(
. . . ψT−1 (WT )

∣∣ r̄[1,t]
)

(10)

= sup
xτ∈Xτ ,∀τ=t,...,T−1

Ut
(
WT

∣∣ r̄[1,t]
)
.

By the certainty equivalent definition, we have that Ct
(
WT | r̄[1,t]

)
sat-

isfies Ut
(
Ct
(
WT | r̄[1,t]

)
| r̄[1,t]

)
= Ut

(
WT | r̄[1,t]

)
. It is easy to show that

Ut
(
· | r̄[1,t]

)
is translation invariant and normalized to zero, since its gen-

erators ψt have the same properties. Then, Ut
(
Ct
(
WT | r̄[1,t]

)
| r̄[1,t]

)
=

Ct
(
WT | r̄[1,t]

)
and consequently, Ut

(
WT | r̄[1,t]

)
= Ct

(
WT | r̄[1,t]

)
.

Finally we have that

Vt
(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ct
(
WT

∣∣ r̄[1,t]
)
.
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Corollary 4. If ψt is a translation invariant, monotone functional normal-

ized to zero, then for t ∈ H the value function can be written as

Vt
(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[1,t]

)
,

where C̃t and C̃t(· | r̄[1,t]) are the certainty equivalent w.r.t. ψt and ψt(· |

r̄[1,t]), respectively.

Proof. By the certainty equivalent definition we have that C̃t
(
· | r̄[1,t]

)
satis-

fies ψt
(
Ct
(
· | r̄[1,t]

)
| r̄[1,t]

)
= ψt

(
· | r̄[1,t]

)
and using the assumption that ψt

is translation invariant and normalized to zero, we have ψt = C̃t. Note that

this property also holds true for the conditional version. Then, from equation

(10) we have the following:

Vt
(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ ,∀τ=t,...,T−1
ψt
(
. . . ψT−1 (WT )

∣∣ r̄[1,t]
)

= sup
xτ∈Xτ ,∀τ=t,...,T−1

C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[1,t]

)
.

Note that we could also include intermediate “costs” as in Ruszczynski

and Shapiro (2006) and our results would still hold true for a more general

set of problems. It is worth mentioning that we define the feasible sets,

Xt, ∀t ∈ H, and the terminal wealth function, WT

(
xT−1, r[1,T ]

)
generically

depending on the application. For the portfolio selection problem, we define

them to fit the original constraints. Then, we have that

Xt
(
xt−1, r̄[1,t]

)
=
{
xt ∈ RA :

∑
i∈A xi,t =

∑
i∈A (1 + r̄i,t)xi,t−1

}
,

X0 =
{
x0 ∈ RA :

∑
i∈A xi,0 = W0

}
,

WT (xT−1, r̄[1,T ]) =
∑

i∈A (1 + r̄i,T )xi,T−1.
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For the proposed portfolio selection model, we define our one period trans-

lation invariant, monotone and normalized utility functional ψt as the convex

combination of the expected value and the CVaR based acceptability mea-

sure, formally defined as

ψt (Vt+1) = (1− λ)E
[
Vt+1 | r[1,t]

]
+ λφαt

(
Vt+1, r[1,t]

)
,

which is again a coherent acceptability measure. As before, Vt+1 ∈ L∞ (Ft+1)

and we can write the conditional version as the real valued function

ψt
(
Vt+1

∣∣ r̄[1,t]
)

= (1− λ)E
[
Vt+1

∣∣ r̄[1,t]
]

+ λφαt
(
Vt+1, r̄[1,t]

)
.

The objective function of the proposed model at t is the certainty equiv-

alent w.r.t. the time consistent dynamic utility function generated by the

one period preference functional of the investor. This recursive formulation

ensures time consistent optimal policies and it is also motivated by Corol-

lary 4. The objective at t = T − 1 is to maximize the certainty equivalent

(CE) of terminal wealth w.r.t. the one period preference functional ψT−1.

Indeed, we can interpret the optimal CE as the portfolio value since it is

the deterministic amount of money the investor would accept instead of the

(random) terminal wealth obtained by his / her optimal trading strategy.

At t = T − 2, . . . , 0, the preference functional ψt is applied to the (random)

portfolio value whose realizations are given by all possible optimal CE’s at

t + 1. Thus, the problem at time t is to maximize the CE of the portfolio

value w.r.t. the one period preference functional ψt of the investor.

For instance, in our numerical example the (random) portfolio value at

t = 1 is given by the realizations v1 and v2 in Figure 3 obtained by solving

problem (9) for nodes {1, 2} and {3, 4}, respectively. The portfolio value v0

(see also Figure 3) obtained by solving (9) for t = 0 is the optimal certainty

equivalent of the (random) portfolio value at t = 1.
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Figure 3: Conditional certainty equivalents

4. Conclusions

In this paper, we considered the following interpretation of the formal

definition of time consistency: a policy is time consistent if and only if the

future planned decisions are actually going to be implemented.

For the proposed CVaR based portfolio selection problem, we compared

a time consistent formulation to an inconsistent one for the sake of show-

ing that an inconsistent policy may not take risk aversion into account at

some intermediate states of the system. Moreover, we argued that the first

stage decision of a time inconsistent policy is sub-optimal and we proposed

a methodology to compute the related sub-optimality gap as the difference

of the objective function evaluated with planned and implemented policies.

We also developed a sensitivity analysis to better understand the behavior of

the sub-optimality gap with respect to the risk aversion level and the plan-

ning horizon size. We concluded that for the most aggressive and the most
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conservative allocation strategies, time inconsistency would not be a prob-

lem. On the other hand, for intermediate cases, time consistency do matter

depending on the planning horizon. For this reason, we reassured the impor-

tance of time consistency which can be achieved by the proposed recursive

formulation.

So as to motivate the proposed recursive formulation, we developed a

suitable economic interpretation for a particular set of preference functions

composing our objective. We prove that the objective function is the cer-

tainty equivalent with respect to the time consistent dynamic utility function

defined as the composed form of one period preference functionals. We also

prove that this objective is the composed form of certainty equivalents with

respect to these one period preference functionals. This result gives us the

intuition that at stage t the agent is maximizing the certainty equivalent of

the portfolio value with respect to his / her one period preference functional.
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