

Orivalde Soares da Silva Júnior

Algoritmos para os Problemas de Roteirização Estática e Dinâmica de Veículos com Janelas de Tempo

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia de Produção da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia de Produção.

Orientador: José Eugênio Leal

Orivalde Soares da Silva Júnior

Algoritmos para os Problemas de Roteirização Estática e Dinâmica de Veículos com Janelas de Tempo

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia de Produção da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Eugênio Leal Orientador Departamento de Engenharia Industrial – PUC-Rio

Prof. Cláudio Barbieri da CunhaDepartamento de Engenharia de Transportes – Poli-USP

Prof. Luiz Satoru OchiDepartamento de Ciência da Computação – UFF

Prof. Celso da Cruz Carneiro Ribeiro Departamento de Ciência da Computação – UFF

Profa. Vitória Maria Miranda PurezaDepartamento de Engenharia de Produção – UFSCar

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 15 de março de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Orivalde Soares da Silva Junior

Graduou-se em Ciência da Computação pela Escola de Engenharia de Piracicaba em 2006. É mestre em Engenharia de Transportes pelo Instituto Militar de Engenharia (2009). Possui experiência profissional no desenvolvimento de sistemas de apoio à decisão nas áreas de Logística, Transporte e Segurança Pública.

Ficha Catalográfica

Silva Júnior, Orivalde Soares

Algoritmos para os problemas de roteirização estática e dinâmica de veículos com janelas de tempo / Orivalde Soares da Silva Júnior; orientador: José Eugênio Leal. – 2013.

100 f.: il.; 30 cm

Tese (doutorado)—Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Industrial, 2013.

Inclui bibliografia

1. Engenharia Industrial – Teses. 2. Algoritmos. 3. Roteirização estática e dinâmica de veículos. 4. Janela de tempo. 5. Logística. I. Leal, José Eugênio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

Aos meus pais, Orivalde e Magaly, pelo apoio e confiança.

Agradecimentos

Ao orientador José Eugênio Leal, pela confiança, dedicação, disponibilidade, e sugestões. Pela contribuição em minha formação e pela oportunidade de orientação.

Aos professores Madiagne Diallo, Nélio Domingues Pizzolato, Sílvio Hamacher e Luiz Felipe Roris Rodriguez Scavarda do Carmo pelos seus ensinamentos em logística, transporte, otimização e gestão da cadeia de suprimentos.

Aos professores convidados que gentilmente aceitaram o convite de participar da banca examinadora desta tese.

Aos meus pais Orivalde e Magaly e minha irmã Mariana, pelo amor e carinho e pelo apoio em todas as minhas decisões.

Aos amigos e companheiros mestrandos e doutorandos, David, Denilson, Augusto, Silvia, Dey, Guina, Gustavo, Franck, Ana Carla, Beatriz, João Vitor, Felipe e especialmente à Daniela, que além de amiga, agora é minha namorada.

A todos os funcionários do Departamento de Engenharia Industrial, Cláudia, Fernanda, Celi, Gilvan, Eduardo e Isabel.

À Pontifícia Universidade Católica do Rio de Janeiro, pela realização deste curso de doutorado, bem como à CAPES e ao CNPq pelo apoio financeiro durante o curso.

Resumo

Silva Júnior, Orivalde Soares da; Leal, José Eugênio (orientador). Algoritmos para os Problemas de Roteirização Estática e Dinâmica de Veículos com Janelas de Tempo. Rio de Janeiro, 2013. 100 p. Tese de Doutorado — Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta tese são propostos diversos algoritmos para resolver as versões estática e dinâmica de roteirização de veículos com janelas de tempo. Estes problemas têm como objetivo determinar rotas de custo mínimo para uma frota homogênea, atendendo a demanda de um conjunto de clientes dentro de intervalos de tempo determinados, chamados de janelas de tempos. Além disto, na versão dinâmica no problema, novos clientes podem ser atendidos durante a execução das rotas pelos veículos. Para a versão estática do problema propôs-se um algoritmo híbrido utilizando otimização por colônias de formigas e o método de descida em vizinhança variável aleatória. Os resultados computacionais mostram que o algoritmo foi capaz de encontrar soluções muito boas ou mesmo as melhores soluções conhecidas de instâncias usadas como benchmarking na literatura. Para a versão dinâmica do problema foram propostos seis algoritmos, baseados em métodos de inserção, de otimização por colônia de formigas e das versões sequencial e aleatória do método de busca em vizinhança variável. Os resultados computacionais mostram que a maior parte dos algoritmos propostos é competitiva com os algoritmos propostos na literatura, pois produzem soluções de boa qualidade e com esforço computacional reduzido.

Palayras-chave

Algoritmos; Roteirização Estática e Dinâmica de Veículos; Janela de Tempo; Logística.

Abstract

Silva Júnior, Orivalde Soares da; Leal, José Eugênio (Advisor). **Algorithms for the Static and Dynamic Vehicle Routing Problem with Time Windows.** Rio de Janeiro, 2013. 100 p. Doctoral Thesis – Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis proposes several algorithms to solve the vehicle routing with time windows static and dynamic versions. These problems involve determining minimum cost routes for a homogeneous fleet in order to meet the demand of a set of customers within specified time intervals popularly called time windows. In addition, in the dynamic version of the problem, new customers can be assigned to vehicles during the execution of the routes. For the static version it was proposed a hybrid algorithm using ant colony optimization and the random variable neighborhood search method. The computational results show that the algorithm was able to find very good or even the best known solutions to benchmark instances. For the dynamic version it was proposed six algorithms, based on an insertion procedure, ant colony optimization and random and sequential versions of variable neighborhood search methods. Computational results show that most of the proposed algorithms are competitive regarding the state of the art, providing solutions of good quality with low computational effort.

Keywords

Algorithms; Dynamic and Static Vehicle Routing; Time Window; Logistics.

1 Introdução	13
1.1 Objetivos	14
1.1.1 Objetivo geral	14
1.1.2 Objetivos específicos	14
1.2 Relevância e justificativa do tema	14
1.3 Organização do trabalho	15
2 Revisão Bibliográfica	16
2.1 Introdução	16
2.2 O Problema de Roteirização de Veículos com Janelas de Tempo	17
2.2.1 Definições do VRPTW	18
2.2.2 Modelos matemáticos para o VRPTW	19
2.3 Problema de Roteirização Dinâmica de Veículos com Janelas de Tempo	21
2.3.1 Diferenças entre os problemas estático e dinâmico	21
2.3.1.1 Problemas estáticos e determinísticos	28
2.3.1.2 Problemas estáticos e estocásticos	28
2.3.1.3 Problemas dinâmicos e determinísticos	29
2.3.1.3.1Re-otimização Contínua	29
2.3.1.3.2Re-otimização Periódica	31
2.3.1.3.3Classificação dos métodos para problemas dinâmicos e	
determinísticos	32
2.3.1.3.3.1 Métodos de Re-roteirização	32
2.3.1.3.3.2 Métodos de Inserção	33
2.3.1.4 Problemas dinâmicos e estocásticos	34
2.3.2 Medindo o dinamismo	34
2.3.3 Aplicações dos problemas dinâmicos	36
2.3.3.1 Roteirização dinâmica do reparador de equipamentos	36
2.3.3.2 City Logistics	37
2.3.3.3 Serviço de entregas expressas	37
2.3.3.4 Serviços de Táxi	37
2.3.3.5 Entrega de jornais	38
2.3.3.6 Transporte de pessoas com necessidades especiais	38
2.3.3.7 Táxi aéreo	39
2.3.3.8 Serviços de emergência	39
2.4 Considerações Finais	40
3 Algoritmos para o Problema de Roteirização Estática de	
Veículos com Janelas de Tempo	41
3.1 Introdução	41
3.2 Sistema de Múltiplas Colônias de Formigas para o VRPTW	42
3.2.1 Ant System para o TSP	42
3.2.2 Ant Colony System para o TSP	44
3.2.3 Algoritmo do Vizinho Mais Próximo – NN	46
3.2.4 Algoritmo de Inserção – I1	47
3.2.5 Busca Local – Cross	47
3.2.6 MACS-VRPTW	48
3.2.6.1 Algoritmo ACS-VEI	48
3.2.6.2 Algoritmo ACS-TIME	49

3.2.6.3 Algoritmo SimulaFormiga	50
3.3 Método de Descida em Vizinhança Variável Aleatória	52
3.3.1 O algoritmo RVND	52
3.3.2 Estruturas de Dados Auxiliares	53
3.3.3 Estruturas de Vizinhança Inter-rota	54
3.3.3.1 Shift(1,0)	56
3.3.3.2 Shitf(2,0)	56
3.3.3.3 Swap(1,1)	57
3.3.3.4 Swap(2,1)	57
3.3.3.5 Swap(2,2)	58
3.3.3.6 Cross	58
3.3.3.7 K-shift	59
3.3.4 Estruturas de Vizinhança Intra-Rota	60
3.3.4.1 Or-Opt1	61
3.3.4.2 Or-Opt2	61
3.3.4.3 Or-Opt3	61
3.3.4.4 2-opt	62
3.3.4.5 Exchange	62
3.3.5 Limite inferior para o número de veículos	62
3.4 O algoritmo MACS-RVND	63
3.5 Resultados Computacionais	64
3.6 Considerações Finais	69
4 Algoritmos para o Problema de Roteirização Dinâmica de	
Veículos com Janelas de Tempo	70
4.1 Introdução	70
4.1.1 Definições do DVRPTW	70
4.1.2 Adaptações dos algoritmos para o VRPTW estático	72
4.1.3 Adaptações para métodos de inserção	73
4.1.4 Adaptações para métodos de re-roteirização	73
4.1.5 Algoritmos propostos para o DVRPTW	74
4.1.5.1 O algoritmo I1_I1	74
4.1.5.2 O algoritmo I1_II-VND	74
4.1.5.3 O algoritmo I1-VND_I1-VND	75
4.1.5.4 O algoritmo MACS-RVND_I1-VND	75
4.1.5.5 O algoritmo MACS-RVND-Re-roteiriza	75
4.1.5.5.1Estratégia de conservação de feromônios	77
4.2 O algoritmo MACS-RVND-Periódico	77
4.2.1.1 Modificação Proposta	80
4.3 Resultados Computacionais	81
4.4 Considerações Finais	86
-	
5 Conclusões	87
5.1 Contribuições da Tese	89
6 Referências Bibliográficas	91

Lista de Tabelas

Tabela 1 - Taxonomia de problemas de roteirização por evolução e	
qualidade da informação	28
Tabela 2 – Calibração dos parâmetros utilizados pelos algoritmos	65
Tabela 3 - Melhores resultados conhecidos e resultados obtidos pelo	
MACS-VRPTW	66
Tabela 4 – Comparação com resultados de diversos autores com esforço	
computacional limitado	68
Tabela 5 – Algoritmos propostos para o DVRPTW	74
Tabela 6 – Métodos para obter as soluções iniciais e intermediárias para os	
algoritmos propostos	74
Tabela 7 – Comparação dos resultados dos algoritmos determinísticos	
propostos para o DVRPTW	82
Tabela 8 – Comparação dos resultados dos algoritmos probabilísticos	
propostos para o DVRPTW	83
Tabela 9 – Tempos de execução dos algoritmos propostos para o DVRPTW	84
Tabela 10 – Comparação dos resultados do MACS-RVND_Re-roteiriza	
com as abordagens propostas na literatura para o DVRPTW	85

Lista de Figuras

Figura 1 - Exemplo de Roteirização Dinâmica	26
Figura 2 - Cálculo das probabilidades de escolha de um arco, para o Ant Systen	ı 43
Figura 3 - Exemplo das vizinhanças inter-rota	55
Figura 4 - Exemplo de vizinhança inter-rota K-shift	59
Figura 5 - Exemplo das vizinhanças intra-rota	60
Figura 6 - Conceito da divisão do dia em faixas de tempo	78
Figura 7 - Funcionamento da estratégia de divisão do dia em faixas de tempo	79
Figura 8 - Exemplos de diferentes situações	80

A necessidade de desafios é essencial para a evolução do conhecimento humano.

Orivalde