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Abstract—This paper presents a new approach for energy and 

reserve scheduling in electricity markets subject to transmission 

flow limits. Security is imposed by guaranteeing power balance 

under each contingency state including both generation and 

transmission assets. The model is general enough to embody a 

joint generation and transmission     security criterion and its 

variants. An adjustable robust optimization approach is 

presented to circumvent the tractability issues associated with 

conventional contingency-constrained methods relying on 

explicitly modeling the whole contingency set. The adjustable 

robust model is formulated as a trilevel programming problem. 

The upper-level problem aims at minimizing total costs of energy 

and reserves while ensuring that the system is able to withstand 

each contingency. The middle-level problem identifies, for a given 

pre-contingency schedule, the contingency state leading to 

maximum power imbalance if any. Finally, the lower-level 

problem models the operator’s best reaction for a given 

contingency by minimizing the system power imbalance. The 

proposed trilevel problem is solved by a Benders decomposition 

approach. For computation purposes, a tighter formulation for 

the master problem is proposed. Our approach is finitely 

convergent to the optimal solution and provides a measure of the 

distance to the optimum. Simulation results show the superiority 

of the proposed methodology over conventional contingency-

constrained models. 
1 

Index Terms—Adjustable Robust Optimization, Benders 

Decomposition, Energy and Reserve Scheduling, Generation and 

Transmission Security Criterion, Trilevel Programming. 

NOMENCLATURE 

This section lists the main notation used throughout the 

paper. Additional symbols with superscripts “   ” and “   ” 
are used to indicate the value of a specific variable at iterations 

  and  , respectively. 

A. Functions 

  
     Energy cost function offered by generator  . 

      Vector of functions defining the security criterion. 

B. Constants 

 ̅  Bounding parameter for dual variable   . 
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 ̅  Bounding parameter for dual variable   . 

 ̅  Bounding parameter for dual variable   . 

  
  Availability parameter that is equal to   if 

generator   is unavailable under contingency state 

 , being   otherwise. 

  
   Availability parameter that is equal to   if line   is 

unavailable under contingency state  , being   

otherwise. 

  
  Cost rate offered by generator   to provide down-

spinning reserve. 

   Power-imbalance cost coefficient. 

  
  Cost rate offered by generator   to provide up-

spinning reserve. 

   
 Demand at bus  . 

   
 Power flow capacity of line  . 

      Sending or origin bus of line  . 
        Number of unavailable system components, 

generators, and transmission lines, respectively. 

  Number of system components. 

    Capacity of generator  . 
    Minimum power output of generator  . 

  

 
 Upper bound for the down-spinning reserve 

contribution of generator  . 

  

 
 Upper bound for the up-spinning reserve 

contribution of generator  . 
      Receiving or destination bus of line  . 
   Reactance of line  . 

C. Decision Variables 

  Approximation of the system power imbalance in 

the master problem. 

    Auxiliary variable representing the worst-case 

system power imbalance. 

     System power imbalance under the worst-case 

contingency. 

   
   Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   

under the worst-case contingency. 

   
   Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   

under the worst-case contingency. 

   Phase angle at bus   in the pre-contingency state. 

  
  Phase angle at bus   under contingency  . 

  
   Phase angle at bus   under the worst-case 

contingency. 
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  Binary variable that is equal to   if generator   is 

unavailable under the worst-case contingency, being 

  otherwise. 

  
  Binary variable that is equal to   if line   is 

unavailable under the worst-case contingency, being 

  otherwise. 

   Power flow of line   in the pre-contingency state. 

  
  Power flow of line   under contingency  . 

  
   Power flow of line   under the worst-case 

contingency. 

    Variable equal to the product     
 . 

   Power output of generator   in the pre-contingency 

state. 

  
   Power output of generator   under contingency  . 

  
   Power output of generator   under the worst-case 

contingency. 

  
  Down-spinning reserve provided by generator  . 

  
  Up-spinning reserve provided by generator  . 

   Binary variable that is equal to   if generator   is 

scheduled in the pre-contingency state, being 0 

otherwise. 

   Variable equal to the product     
 .  

    Variable equal to the product     
 . 

D. Dual Variables 

   Dual variable associated with the power balance 

equation at bus   under the worst-case contingency. 

   Dual variable associated with the lower bound for 

  
  . 

  Dual variable associated with the      security 

constraint in the robust approach for energy and 

reserve scheduling under a generation security 

criterion. 

   Dual variable associated with the upper bound for 

generator   availability in the robust approach for 

energy and reserve scheduling under a generation 

security criterion. 

   Dual variable associated with the lower bound for 

  
  . 

   Dual variable associated with the upper bound for 

  
  . 

   Dual variable associated with the upper bound for 

  
  . 

   Dual variable associated with the equation relating 

power flow and phase angles for line   under the 

worst-case contingency. 

E. Sets 

  Set of contingency indexes. 

  Set of generator indexes. 

   Set of indexes of generators connected to bus  . 

   Set of transmission line indexes. 

   Set of bus indexes. 

I. INTRODUCTION 

ECURITY has been one of the main issues in power 

system operation and planning in the last two decades.  

There are basically two main approaches to deal with system 

component availability in such problems: (i) stochastic 

approaches (see [1] and references therein), and (ii) 

deterministic approaches [2]-[10]. Most power systems 

worldwide are currently operated under the well-known     

and     security criteria, which in industry practice are 

implemented as deterministic approaches [2], [11]. 

Based on current industry practice, the present work 

addresses the application of deterministic security criteria in 

power system operation. Deterministic security criteria require 

a power system to withstand a set of credible contingencies.  

Generation scheduling problems have traditionally 

incorporated deterministic security criteria by contingency-

constrained models [3]-[8]. For the sake of computational 

tractability, such models explicitly represent the operation of 

the power system under a reduced set of credible 

contingencies. This limitation is stressed in the current context 

where recent blackouts involving the loss of more than two 

components [12], [13] suggest that tighter security levels 

comprising multiple outages should be considered. Examples 

of extended security criteria are the     criterion [9], [10], 

[14], [15], by which the system is able to withstand the 

simultaneous loss of up to   system components, and the 

        criterion [16], which considers the simultaneous 

loss of up to    generators and up to    transmission lines. 

To overcome the dimensionality curse observed in 

conventional contingency-constrained models, Street et al. [9], 

[10] recently proposed robust optimization [17], [18] to 

schedule energy and reserves under a deterministic     

security criterion. In both works, the effect of the transmission 

network was neglected and only generator outages were 

considered. In [9], a single-period setting was used to illustrate 

the effectiveness of robust optimization to implicitly consider 

the whole contingency set. In [10], the approach was extended 

by analyzing a multiperiod setting and adding non-spinning 

reserves to the problem formulation.  

This paper presents a new approach to incorporate a 

deterministic security criterion in the co-optimization of 

energy and reserves [3]-[6], [9], [10]. The salient feature of the 

proposed model over [9], [10] is the consideration of the 

transmission network. This modeling novelty is motivated by 

(i) current industry practice worldwide in the framework of the 

operation of electricity markets, and (ii) the need to consider 

line outages in power system operation problems to properly 

account for standard security criteria. Network constraints are 

needed to define locational reserves and their deliverability 

under a given security criterion (see [19] and references 

therein). Moreover, the second motivation is deemed as 

crucial given the recent major blackouts where failures in the 

transmission network played a key role [20]. It should be 

noted that single-bus models available in the technical 

literature [9], [10] are not suitable to address both aspects. 

Hence, new models such as the one proposed in this paper are 

required.  

From the modeling perspective, the consideration of the 

transmission network gives rise to two major modifications 

with respect to the problem formulation presented in [9], [10]: 

(i) down reserves are required to characterize the operation 

under contingency, and (ii) line outages are addressed thus 

allowing the consideration of transmission assets in the 

security criteria. 

S 
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This paper also differs from [9], [10] from the 

methodological perspective. The consideration of down 

reserves requires explicitly modeling the operation under 

contingency. Therefore, the robust optimization framework 

based on bilevel programming of [9], [10] is not readily 

applicable when the effect of the transmission network is 

accounted for. As a distinctive feature, the proposed approach 

is based on adjustable robust optimization (ARO) [21], [22]. 

Similar to robust optimization, ARO is suitable to model 

optimization problems where the optimal solution must remain 

feasible for the worst-case parameter variation in a user-

defined set, denoted as uncertainty set [17], [18]. In contrast, 

ARO allows incorporating the flexibility of adjustable 

decisions, also known as recourse actions, in robust 

counterparts [21], [22]. In this setting, ARO involves a trilevel 

optimization process [21]-[23]. The upper level determines 

optimal non-adjustable decisions, i.e., decisions that must be 

feasible for every deviation of the uncertain parameters. The 

middle level identifies the worst-case parameter values leading 

to maximum feasibility damage of the upper-level decisions. 

Finally, the lower level aims at finding the best reaction, by 

means of adjustable variables, that minimizes the upper-level 

infeasibility. Two recent examples of successful application of 

ARO and trilevel programming in power systems can be found 

in [24], [25], where the unit commitment problem was solved 

considering uncertain nodal injections. In [24], uncertainty 

was associated with wind power generation and recourse 

variables modeled the operation of pumped-storage hydro 

units. In [25], uncertain nodal demand was also considered. 

In the proposed ARO-based approach for generation 

scheduling under a joint generation and transmission security 

criterion, the parameters allowed to vary represent the 

availability of system components under the contingency 

states. In addition, adjustable decisions are post-contingency 

operation variables such as generation levels and line flows. 

Similar to [24], [25], the adjustable robust counterpart is 

formulated as a trilevel mixed-integer program that is solved 

by a Benders decomposition approach involving bilinear terms 

and the iterative solution of a master problem and a 

subproblem. It should be noted that the presence of binary 

variables in the middle level of the proposed trilevel program 

does not allow its transformation to a single-level equivalent, 

as done in [9], [10]. Two methods have been proposed in the 

technical literature to deal with those bilinear terms: (i) a 

linearization scheme based on disjunctive constraints [24], 

which has also been widely used in the application of bilevel 

programming in power system planning (see [26] and 

references therein); and (ii) an outer approximation technique 

based on an iterative heuristic procedure [25]. In this paper, 

the former method is used. Hence, the subproblem is 

formulated as a bilevel programming problem that is 

equivalently recast as a mixed-integer linear program. The 

master problem is a mixed-integer linear program that 

provides an approximation of the original trilevel problem. In 

order to improve the performance of the decomposition 

procedure, two sets of valid constraints are added to the master 

problem. 

The main contributions of this paper are as follows: 

1. A new model is presented for the contingency-

constrained energy and reserve scheduling problem 

under a deterministic security criterion. Unlike 

previously reported works, this model allows 

examining the effect of the transmission network 

while also considering line failures.  

2. Adjustable robust optimization with a combinatorial 

uncertainty set is proposed as a suitable solution 

framework. The resulting problem is formulated as a 

trilevel programming problem. 

3. A solution methodology based on Benders 

decomposition is proposed. The performance of the 

proposed approach is improved by adding two sets of 

valid constraints that provide a tighter formulation. 

The superiority of the proposed method is backed by 

its faster performance and its ability to solve cases for 

which conventional contingency-constrained models 

are unable to find a feasible solution.  

4. The proposed tool allows the system operator to 

assess the impact of tighter security criteria than 

currently used     and    . In addition, the 

proposed methodology is flexible enough to comprise 

a wide range of security criteria such as separate 

criteria for generation and transmission, as well as 

specific criteria for subsets of system components. 

Finally, since the proposed model relies on the co-

optimization of energy and reserves, it also 

constitutes a suitable methodology to define 

locational reserve requirements needed to implement 

a deterministic security criterion considering the 

effect of the transmission network. 

The rest of this paper is organized as follows. Section II 

presents the conventional contingency-constrained 

formulation for the energy and reserve scheduling problem 

under a joint generation and transmission security criterion. In 

Section III, the trilevel ARO counterpart is provided. Section 

IV describes the proposed solution algorithm. In Section V, 

two case studies are analyzed. In Section VI, conclusions are 

drawn, and ongoing as well as future research topics are 

presented. Finally, the robust scheduling problem from which 

valid generation outage constraints are derived is formulated 

in the Appendix. 

II. CONVENTIONAL CONTINGENCY-CONSTRAINED PROBLEM 

FORMULATION 

The contingency-constrained generation scheduling 

problem determines the optimal generation schedule and 

reserve allocation so that the power balance is ensured under 

both normal and contingency states. Here we propose the 

explicit consideration of a joint generation and transmission 

security criterion. For expository purposes, we use a 

contingency-dependent network-constrained model based on 

that of [4], where a single period is analyzed and the focus is 

placed on synchronized reserves, specifically up-spinning and 

down-spinning. This model is simple to describe and analyze, 

yet bringing out the main features of contingency dependence. 

The multiperiod model would require extra indices denoting 

time periods and the inclusion of inter-temporal constraints 

such as minimum up and down times, ramping limits, and 

storage management. An example of multiperiod scheduling 

with non-synchronized reserves can be found in [10], where 
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network constraints were neglected. The network-constrained 

contingency-dependent scheduling problem is formulated as:  
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The objective function to be minimized (1) consists of the 

sum of the offered cost functions for generating energy plus 

the cost of all up- and down-spinning reserves offered by the 

generators.  

Constraints (2)-(10), hereinafter referred to as pre-

contingency scheduling constraints, impose the feasibility of 

the pre-contingency state schedule. Constraints (2) represent 

the nodal power balance equations. Using a dc load flow 

model, constraints (3) express the line flows in terms of the 

nodal phase angles, while constraints (4) enforce the 

corresponding line flow capacity limits. As is customary in 

generation scheduling in electricity markets [2], [4]-[8], a dc 

load flow model is used to characterize the behavior of the 

network, recognizing that the use of such a simplified model 

leads to results that may be optimistic and that a complete 

study of the scheduling problem under a joint generation and 

transmission security criterion should also consider the effect 

of reactive power. This generalization would, however, render 

the problem essentially intractable. This modeling limitation 

notwithstanding, the solution of the energy and reserve 

scheduling problem based on the dc load flow is acceptable 

for the purposes of the operation of electricity markets [2], [4]-

[8] and provides the system operator with a first estimate of a 

secure generation scheme.  

Constraints (5) set the generation limits. Constraints (6) and 

(7) respectively relate the up- and down-spinning reserve 

contributions to the power levels produced under the pre-

contingency state. Constraints (8)-(9) provide the bounds for 

the up- and down-spinning reserve contributions, respectively. 

Finally, the binary nature of scheduling variables is expressed 

in (10). 

In (11)-(14), a feasible post-contingency redispatch is 

ensured. Analogous to (2)-(4), expressions (11)-(13) are the 

network constraints under contingency. Generation limits for 

the contingency states are set in (14). In (12) and (14), the 

statuses of system components are characterized by the 

generator and line availability binary parameters,   
  and   

 , 

respectively. 

The dimension of model (1)-(14), in terms of the number of 

variables and constraints, and hence its computational 

tractability, both depend on the cardinality of  . For the case 

of a joint generation and transmission security criterion, the 

contingency set   can be modeled in a compact way as:  

 ({  
 }

   
 {  

 }
   

)            (15)
 

where      is a vector function. Typical joint generation and 

transmission security criteria can be modeled by a linear form 

of     . For an     criterion, the formulation of (15) would 

be ∑   
 

    ∑   
 

              , where          . 
Variants of such criterion such as the         can also 

be considered in a similar fashion. Under such criteria, the size 

of problem (1)-(14) presents an exponential dependence with 

 ,   , and   , which may lead to intractability even for low 

values of those parameters.  

III. ADJUSTABLE ROBUST OPTIMIZATION APPROACH 

Problem (1)-(14) finds the least-cost schedule of power and 

reserves able to circumvent the contingency states included in 

 . In other words, the power imbalance is explicitly set to zero 

for all contingencies considered in the contingency-dependent 

formulation. This problem can be viewed as a particular 

instance of ARO [21], [22] wherein the parameters allowed to 

vary are   
  and   

 . Under this framework, the decisions 

modeling the reaction of the system operator against the 

occurrence of contingencies, i.e., decision variables with 

superscript  , are denoted as recourse actions or adjustable 

decisions [21]. Hence, the proposed ARO-based model 

belongs to the class of contingency-constrained generation 

scheduling problems, but differs from (1)-(14) in the way the 

operation under contingency is accounted for.  

Next, the ARO-based modeling framework is described, the 

formulation of the proposed robust counterpart is provided, its 

equivalence with the original contingency-dependent model is 

discussed, and a simple illustrative example is analyzed. 

A. ARO-Based Modeling Framework 

The proposed ARO-based approach is characterized as a 

trilevel program [23], as shown in Fig. 1, which is based on 

the following rationale: for a given upper-level decision, the 

middle level problem searches in the contingency set the most 

damaging subset of   elements in terms of power imbalance, 

given the best redispatch provided by the lower level within 

the scheduled reserves and the remaining network and 

generators after contingency.  

The upper level determines the cheapest pre-contingency 

schedule for power and reserves. In order for the pre-

contingency schedule to be feasible, the system power 
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imbalance should be equal to zero for all contingencies. Based 

on robust optimization [21], [22], [24], [25], pre-contingency 

feasibility can be modeled as a worst-case analysis requiring 

two additional optimization levels. For a given upper-level 

pre-contingency schedule, the middle level maximizes the 

system power imbalance over all contingencies characterizing 

the     security criterion. Finally, the lower level models 

the operator’s reaction against the contingency identified by 

the middle level. This reaction comprises some corrective 

measures, namely the adjustable decisions, to minimize the 

system power imbalance. Adjustable decisions include 

generation redispatch within the scheduled power and reserves 

for the available units. In each level, an objective function is 

optimized subject to the reaction of the subsequent level.  

It should be noted that the role of the two lowermost 

optimizations is the identification of the contingency leading 

to the largest system power imbalance for each pre-

contingency schedule considered in the upper level. Thus, 

rather than considering a single worst-case contingency 

associated with a base-case schedule, this framework 

implicitly considers all contingencies characterizing the     

security criterion for each pre-contingency schedule. It is 

worth mentioning that for all power and reserve schedules 

compliant with the security criterion, i.e., able to circumvent 

the loss of up to   elements, the two lowermost problems 

return zero system power imbalance. In other words, the 

worst-case system power imbalance is equal to zero since the 

system power imbalance is also zero for every contingency. 

 

Minimize cost  

Determine: On/off decisions 

Power and reserves schedule 

Maximize the system power imbalance 

given the scheduled power and reserves 

Determine:  Unavailable components 

Pre-contingency schedule 

Worst-case 

contingency  

Minimize the system power imbalance 

given the unavailable components Operator’s 

reaction  
Determine:  Corrective actions 

Fig. 1. Trilevel model for the adjustable robust optimization approach. 

B. Problem Formulation 

The robust trilevel counterpart for problem (1)-(14) is 

formulated as follows: 
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Problem (16)-(27) comprises three optimization levels: (i) 

the upper level (16)-(17), which is associated with the pre-

contingency schedule; (ii) the middle level (18)-(21), 

characterizing the worst-case contingency for the pre-

contingency schedule; and (iii) the lower level (22)-(27), 

corresponding to the reaction of the system operator against 

the worst-case contingency. Dual variables associated with the 

lower-level problem are in parentheses. Note that the lower 

level is parameterized in terms of upper-level variables 

(     
    

 ) and middle-level variables (  
    

 ). 

The objective of the upper-level problem is identical to that 

of the contingency-dependent model (1) except for the last 

term, which penalizes the system power imbalance. A 

sufficiently large value for   
  ensures the feasibility of the 

pre-contingency schedule, which requires the largest system 

power imbalance, due to the worst-case contingency, to be 

zero. The upper-level minimization is subject to the set of pre-

contingency constraints (2)-(10).  

The middle-level problem (18)-(21) determines the 

maximum system power imbalance by the definition of new 

binary decision variables   
  and   

  associated with the worst-

case contingency. Constraint (19) imposes the security 

criterion, whereas constraints (20) and (21) respectively set the 

integrality of variables   
  and   

 . The feasibility space 

associated with those binary variables includes all 

contingencies characterizing the     security criterion. It 

should be noted that constraints (19)-(21) define the 

combinatorial (discrete) uncertainty set, which is an extension 

of that used in [9], [10] by also characterizing the availability 

of transmission lines. 

In the lower-level problem (22)-(27), the reaction of the 

system operator is modeled by an optimal power flow where 

the system power imbalance is minimized (22). The system 

power imbalance is defined as the sum over all buses of the 

absolute value of nodal power balance violations. The absolute 

value is modeled in a linear fashion by two sets of nonnegative 

variables    
   and     

  . Network constraints include nodal 
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power balances (23), line flows (24), and line flow limits (25). 

Constraints (26) set the generation limits considering the 

reserves allocated by the upper level. Finally, constraints (27) 

impose the nonnegativity of nodal power-imbalance variables. 

It is worth mentioning that the lower-level problem (22)-(27) 

is always feasible and provides the upper level with a non-zero 

penalty when the scheduled power and reserves lead to nodal 

balance violations under the worst-case contingency.  

In addition, once the optimal solution to the robust problem 

(16)-(27) is obtained, the operation under each contingency 

can be straightforwardly obtained by solving the lower-level 

problem (22)-(27) for the optimal values of the upper-level 

variables,   
 ,   

  , and   
  , and for the values of   

  and   
  

characterizing the contingency under consideration. 

C. Equivalence between the Trilevel Model and the Original 

Contingency-Dependent Formulation 

Similar to the contingency-dependent model (1)-(14), the 

robust trilevel counterpart (16)-(27) accounts for all 

contingencies characterizing the     security criterion. In 

contrast, problem (16)-(27) differs from the original 

contingency-dependent model (1)-(14) in two aspects: (i) 

power-imbalance terms are included, and (ii) the operation 

under each contingency is not explicitly modeled. As a 

consequence, the feasibility search spaces of both models are 

different. In the original model (1)-(14), power balance under 

both normal and contingency states is explicitly imposed and 

hence pre-contingency schedules satisfying the     security 

criterion are only dealt with. On the other hand, pre-

contingency schedules handled by problem (16)-(27) may 

violate the security criterion, thereby resulting in system 

power imbalance. In other words, the feasibility space of the 

trilevel model comprises pre-contingency schedules 

characterized by optimal solutions to the two lowermost 

optimization levels (18)-(27) with system power imbalance 

greater than 0 MW.  

In mathematical programming [27], constraint violations are 

customarily accounted for by including a penalty function in 

the objective function. Here, the penalty function is the worst-

case power-imbalance cost   
     . In this framework, 

constraints (11)-(14) are relaxed in the robust counterpart 

(16)-(27) and the worst-case violation, i.e., the largest system 

power imbalance among all contingency states, is penalized in 

the objective function (16). Thus, the equivalence between the 

trilevel model and the original contingency-dependent 

formulation is guaranteed by the selection of a sufficiently 

large value for the power-imbalance cost coefficient   , so 

that a distinction is made between solutions complying with 

the     security criterion and solutions violating such 

criterion. In other words, for a suitable value of   , and 

assuming that the system is able to withstand all contingencies 

without nodal balance violations, the optimal solution to (16)-

(27) is identical to that of (1)-(14) in terms of system cost. 

Therefore, both models determine the lowest system cost 

incurred to meet the pre-specified security criterion defining 

the contingency set   with no power-imbalance cost. When 

the system is unable to meet the security criterion, the original 

contingency-dependent problem is infeasible, whereas the 

robust counterpart flags such infeasibility by attaining an 

optimal solution with a power-imbalance cost greater than 

zero. 

D. Illustrative Example 

The performance of the proposed trilevel methodology 

under an     security criterion is illustrated with the 

following example with two load pockets, denoted as LPA and 

LPB. The contingency set comprises two line outages, namely 

those associated with the tie lines into LPA and LPB, 

respectively. For notational consistency,      and      

respectively represent the binary variables associated with the 

availability of those lines (1 if available and 0 if unavailable).  

Let us assume that three possible pre-contingency schedules 

can be implemented. Schedule 1 circumvents the loss of the tie 

line into LPA but leads to system power imbalance for the 

LPB contingency due to the limited transmission capacity. 

Schedule 2 withstands the loss of the tie line into LPB but 

does not cover the outage of the tie line into LPA due to 

network limitations. Moreover, it is assumed that the system 

power imbalance associated with Schedule 2 is larger than that 

of Schedule 1. Finally, Schedule 3 is compliant with the     

security criterion and hence guards against the loss of any 

single tie line. Thus, the proposed trilevel model is expected to 

select Schedule 3 since both Schedules 1 and 2 are infeasible 

for the contingency-dependent model.   

In order to show that the trilevel model works as expected, 

the three schedules are examined on an individual basis as 

follows: 

1. For Schedule 1, the optimal solution to the two 

lowermost optimization levels (18)-(27) would be 

      ,       ,            MW. In other 

words, the worst-case contingency for the schedule 

guarding against the loss of the tie line into LPA is 

precisely the loss of the tie line into LPB. Therefore, 

Schedule 1 would yield a system power imbalance 

greater than 0 MW and the value of the objective 

function (16) is denoted as C1. 

2. For Schedule 2, the optimal solution to the two 

lowermost optimization levels (18)-(27) would be 

      ,       ,            MW. In other 

words, the worst-case contingency for the schedule 

guarding against the loss of the tie line into LPB is 

precisely the loss of the tie line into LPA. Therefore, 

Schedule 2 would also lead to a system power 

imbalance greater than 0 MW, being C2 the 

corresponding value of the objective function (16). 

Under the aforementioned assumption on the severity 

of the system power imbalance associated with 

Schedules 1 and 2, C2 is greater than C1. 

3. For Schedule 3, all feasible combinations of binary 

variables      and      would be the optimum to the 

two lowermost optimization levels (18)-(27), namely 

(i)       ,       ; (ii)       ,       , and 

(iii)       ,       . Note that all combinations 

yield a value of the system power imbalance      

equal to 0 MW since Schedule 3 meets the     

security criterion. Therefore, any of those 
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combinations would represent the worst-case 

contingency for Schedule 3. Furthermore, since 

       MW, the power-imbalance cost of 

Schedule 3 is $0 and the value of the objective 

function (16) is denoted as C3.  

Therefore, the three schedules constitute feasible solutions 

for the trilevel model, being two actually infeasible for the 

original contingency-dependent model since they lead to 

system power imbalance. The choice of a sufficiently large 

value for    would yield the following relation among the 

values of the objective function (16) for the three schedules 

considered: C3 << C1 < C2. Since the trilevel model is a 

minimization problem, the optimal solution would be 

Schedule 3, as desired. Moreover, if there were additional 

schedules compliant with the security criterion, the same 

rationale would be applied and the trilevel model would select, 

among those with        MW, the one with the least 

energy and reserve cost. 

IV. SOLUTION METHODOLOGY 

Problem (16)-(27) is a mixed-integer linear trilevel 

program. This class of multilevel optimization is a strongly 

NP-hard problem [23]. As will be explained later,      is a 

convex function of the upper-level variables   ,   
 , and   

 . 

Therefore, it can be described by an outer approximation 

algorithm [28]. Here, we propose a Benders decomposition 

approach [29], referred to as BP, that comprises the iterative 

solution of a master problem and a subproblem. The master 

problem is an approximation of the original trilevel problem 

where in each iteration a cutting plane or Benders cut is added 

to locally characterize     . The subproblem is associated 

with the middle- and lower-level problems for specific values 

of the upper-level decision variables as determined by the 

previous master problem. In each iteration, the solution to the 

subproblem provides relevant information, such as the value 

of      and its subgradient, to generate an additional cutting 

plane for the master problem.  

Next, we present the mathematical formulation of the 

subproblem and the master problem resulting from the 

application of Benders decomposition to problem (16)-(27). In 

addition, two sets of valid constraints are provided to improve 

the performance of the proposed procedure. 

A. Subproblem 

At each iteration  , the subproblem determines the worst-

case contingency for the pre-contingency schedule for power 

and reserves identified by the previous master problem. 

Mathematically, the subproblem is a mixed-integer linear 

max-min problem comprising the two lowermost optimization 

levels (18)-(27) for given values of the upper-level decision 

variables   
   

,   
    

, and   
    

. This particular instance of 

bilevel programming can be recast as an equivalent single-

level mixed-integer linear problem suitable for efficient off-

the-shelf software based on the branch-and-cut algorithm [30]. 

This transformation comprises two steps: 

Step 1) Based on its linearity, the lower-level problem can 

be replaced by its dual. Thus, the original max-min 

subproblem is converted into a max-max problem. Moreover, 

since the same objective function is optimized at both levels of 

the original max-min problem, the strong duality theorem can 

be applied. As a consequence, the max-max problem becomes 

a single joint maximization problem in the coupled primal and 

dual spaces of the middle and lower levels, respectively. 

Hence, this step consists in replacing (i) the lower-level 

problem by its dual feasibility constraints, and (ii) the middle-

level objective function by the dual lower-level objective 

function. For further details on this transformation, the 

interested reader is referred to [18] and the references therein.  

The single-level equivalent is formulated as: 

         
                  

  
    

 

∑     

   

 ∑     

   

 ∑    

   

 

 ∑    
 (  

   
   

    
)
 

   

 ∑    
 (  

   
   

    
)
 

   

 (28) 

 

subject to:  

  {  
 }    {  

 }       (29) 

  
  {   }       (30) 

  
  {   }       (31) 

                        (32) 

                               (33) 

               (34) 

∑
    

 

  
             

 ∑
    

 

                

          
 

(35) 

                (36) 

               . (37) 

In (28), the worst-case system power imbalance      is 

determined by the maximization of the dual objective function 

of the lower-level problem (22)-(27). This optimization is 

subject to constraints (29)-(31), which are respectively the 

same as (19)-(21); and to constraints (32)-(37), which are the 

dual feasibility constraints of the lower-level problem. 

Step 2) The resulting single-level equivalent is a mixed-

integer nonlinear programming problem. Nonlinearities arise 

in (28) and (35) due to the products between middle-level 

binary variables and lower-level dual variables. However, 

those bilinear terms can be recast into linear expressions using 

well-known algebra results [31]. The formulation of the 

resulting mixed-integer linear subproblem at iteration   is as 

follows: 

         
                  

  
    

             

∑     

   

 ∑     

   

 ∑    

   

 

 ∑  (  
   

   
    

)
 

   

 ∑  (  
   

   
    

)
 

   

 (38) 
 

subject to:  

  {  
 }    {  

 }       (39) 

  
  {   }       (40) 
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  {   }       (41) 

                        (42) 

                               (43) 

              (44) 

∑
  

  
             

 ∑
  

                

         
 

(45) 

      
   ̅             

   ̅        (46) 

   
  ̅       

  ̅        (47) 

             
   ̅        (48) 

      ̅   
        (49) 

             
   ̅        (50) 

      ̅   
         (51) 

where   ,   , and    are new variables representing the bilinear 

terms of (28) and (35):        
 ,        

 , and         
 . 

Parameters   ̅ ,  ̅ , and  ̅  respectively represent the bounds 

for    ,   , and   . Since the lower level is always a feasible 

problem, the values of such parameters may be set based on 

sensitivity analysis. Note that modifying the right-hand side of 

(24) by an infinitesimal factor, the largest change in the lower-

level objective function (22) is limited to such factor 

multiplied by 2. This occurs because every flow variable   
   

appears in two nodal power balance constraints respectively 

corresponding to the sending and receiving buses. Similarly, 

by perturbing (26), the largest change in the lower-level 

objective function (22) is limited to the magnitude of such 

perturbation. Therefore, the upper bounds for the dual 

variables associated with (24) and (26) can be set to  ̅    

and  ̅   ̅   . 

Expressions (38)-(45) are respectively equivalent to (28)-

(35) whereas constraints (46)-(51) represent the linearization 

of the bilinear products. It should be noted that, in terms of the 

upper-level variables,      is the maximum of affine 

functions within the middle-level feasibility set. Therefore, it 

is a convex function of the upper-level decision variables (see 

[32], item “3.2.3 Pointwise maximum and supremum”, for a 

proof). 

B. Master Problem 

The master problem at iteration   is: 

        
        

     
    

    

∑   
           

   
    

   
  

   

     
 

(52)

 

subject to:  

Pre-contingency feasibility constraints (2)-(10)   (53) 

     
      ∑[(     

   
)(  

   
   

   
)

 

   

 

 (  
    

    
)(   

   
)  (  

    
    

)(   
   

)]  

          (54) 
 

     (55) 

The objective function (52) corresponds to (16), where 

variable   represents the approximation of     . Expressions 

(53) are identical to (17). At each iteration, the search space is 

restricted by adding a Benders cut (54).    
      is obtained 

from the optimal solution to the subproblem (38)-(51) at 

iteration   for given values of the upper-level decision 

variables   
   

,   
    

, and   
    

. In addition, coefficients 

(  
   

   
   

), (   
   

), and (   
   

) represent the partial 

subgradients of    
      that can be derived from (38). 

Finally, constraint (55) sets the nonnegativity of  .  

C. Valid Constraints 

In the proposed Benders decomposition approach, the 

master problem implements a cutting-plane approximation of 

function     , that is iteratively improved. In addition, it 

should be noted that reserves are penalized at the objective 

function of the master problem through their respective cost 

rates. As a consequence, the first iterations of BP are prone to 

yield solutions with no scheduled reserves, i.e., infeasible 

solutions that would lead to nodal power imbalances and 

thereby violate the security criterion. 

Based on the findings of [9] and [25], two sets of valid 

constraints can be added to the master problem. These 

constraints provide a tighter formulation that avoids dealing 

with infeasible solutions, i.e., the search space is narrowed 

without removing the optimal solution. Thus, the performance 

of the proposed BP is improved. 

a) Generation outage constraints: 

In [9], the     contingency-constrained problem was 

addressed by considering only generator outages in a single-

bus system. Based on robust optimization theory, a set of 

linear inequalities (expressions (9.7)-(9.10) of [9]) 

equivalently represent the effect of the two lowermost 

optimization levels considered here for the case of generator 

outages. Therefore, such constraints can be straightforwardly 

added to the master problem when the considered security 

criterion embeds the simultaneous loss of up to a specific 

number of generators, as is the case of the     and the 

        security criteria. For quick reference, the set of 

generation outage constraints is formulated as follows: 

          ∑  

 

   

 ∑   

   

 (56) 

          
        (57) 

           (58) 

      (59) 

where   and    are dual variables of the lower-level problem 

defining the worst-case generation outage in [9]. The 

derivation of constraints (56)-(59) and the rationale that 

supports their inclusion into the master problem to yield a 

tighter formulation are both addressed in the Appendix. 

b) Redispatch constraints: 

According to [25], the convergence of BP can be 

accelerated by cutting off the infeasible schedules identified 

by the subproblem along the iterative process. Thus, at each 

iteration  , the following redispatch constraints are added to 

the master problem:  
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∑  
 

    

  ∑   
 

           

  ∑   
 

           

        

                (60) 

  
  

  
    

  

(      
        

 )                 (61) 

    
    

                     (62) 

  
          

     
    

          
     

                 (63) 

where    
 ,   

 , and    
  constitute decision variables of the 

tight master problem. These variables model the operation 

under contingency   as identified by the subproblem at that 

iteration through   
    

 and   
    

. Constraints (60)-(63) 

respectively correspond to post-contingency redispatch 

constraints (11)-(14), where   
  and   

  are replaced by   
    

 

and   
    

, respectively. 

D.  Algorithm 

The proposed methodology works as follows: 

1) Initialization.  

 Initialize the iteration counter:    ; 

 Solve the master problem without cuts. This step 

provides   
   

,   
    

,   
    

,        and a lower bound 

for the optimal cost    ∑ (  
 (  

   
   

   
)     

  
   

    
   

   
    

). 

2) Subproblem solution. Solve the subproblem for the given 

  
   

,   
    

, and   
    

. This step provides   
   

,   
   

, 

   
     , and an upper bound for the optimal cost    

∑ (  
 (  

   
   

   
)    

   
    

   
   

    
)         

     . 

3) Iteration counter updating. Increase the iteration counter: 

     . 

4) Master problem solution. Solve the full master problem. 

This step provides   
   

,   
    

,   
    

,     , and a lower 

bound for the optimal cost    ∑ (  
 (  

   
   

   
)     

  
   

    
   

   
    

)          
5) Convergence checking. If a solution with a level of 

accuracy   has been found, i.e., 
       

  
  , then stop, 

otherwise go to step 2. 

Since      is a convex function of the upper-level 

variables   ,   
 , and   

 , and the master problem is a mixed-

integer linear program, BP finitely converges to optimality. In 

addition, the upper and lower bounds provide a measure of the 

distance to the optimum. 

V. CASE STUDIES 

This section presents results from two test cases based on 

the 24-bus IEEE Reliability Test System (RTS) [33] and the 

IEEE 118-bus system [34], respectively. For the sake of 

simplicity, generators offer linear cost functions of the form 

  
           

 
     

   . For all simulations,    was set 

equal to     /MWh. The model has been implemented on an 

Amazon virtual machine [35] with 32 Intel Xeon Cloud 

Computing, 2.63-GHz processors with 60.5 GB of RAM, 

using Xpress-MP 7.2 under MOSEL [30]. 

A. RTS-Based Case 

This case study illustrates the performance of BP under an 

    security criterion. The 24-bus IEEE Reliability Test 

System [33] comprises 26 generators and 38 transmission 

assets. The data for the generators can be found in [3]. 

Coefficients   
 
 and   

  respectively correspond to the 

intercept and the linear coefficient of the cost function 

provided in [3]. The load profile corresponds to Monday of 

week 48 at 3:00 a.m. The resilience of the system against 

multiple contingencies is increased by adding three circuits in 

line 7-8, and one circuit in lines 1-2, 1-3, 1-5, 2-4, 2-6, 3-9, 3-

24, 4-9, 5-10, 6-10, 8-9, 8-10, 11-14, 12-23, 13-23, 14-16, 15-

16, 15-24, 16-17, and 16-19. As a consequence, the system is 

able to be operated under the     security criterion. 

This case study has been solved by five approaches: (i) the 

mixed-integer linear contingency-dependent model (1)-(14), 

referred to as CD; (ii) the original adjustable robust 

optimization approach without valid constraints, denoted as O-

BP; (iii) the tight robust method with generation outage 

constraints only, labeled as T(G)-BP; (iv) the tight robust 

approach with redispatch constraints only, denoted as T(R)-

BP; and (v) the tight robust technique with both sets of valid 

constraints, referred to as T-BP. Tables I and II summarize the 

results obtained for different values of the security parameter 

  ranging between 0 and 5. For all simulations, the level of 

accuracy   was set at     . Given the huge number of 

constraints that have to be explicitly considered in CD, a time 

limit of 4 h (14400 s) was set for the execution of Xpress. 

TABLE I 

RTS-BASED CASE: SYSTEM COSTS ($) 

K CD O-BP T(G)-BP T(R)-BP T-BP 

0 2068020 2068020 2068020 2068020 2068020 

1 2688760 2688760 2688760 2688760 2688760 

2 3751680 3751680 3751680 3751680 3751680 

3 Time exceeded 5232740 5232740 5232740 5232740 

4 Out of memory Infeasible Infeasible Infeasible Infeasible 

5 Out of memory Infeasible Infeasible Infeasible Infeasible 

TABLE II  

RTS-BASED CASE: COMPUTING TIMES (s) 

K CD O-BP T(G)-BP T(R)-BP T-BP 

0 00000.30 0000.33 000.33 00.58 00.34 

1 00003.60 0001.36 000.72 01.75 00.75 

2 00334.78 0004.96 001.70 05.76 01.79 

3 14400.00 0048.33 027.14 28.88 16.77 

4 Out of memory 0371.75 384.37 04.85 01.31 

5 Out of memory 1816.71 010.95 04.59 02.45 

Table I provides information on the quality of the solutions 

attained by the proposed adjustable robust approaches in terms 

of system cost. As can be seen, all methods achieved the same 

optimal solution identified by CD for values of   up to  . For 

an      security criterion, CD was unable to find a feasible 

solution within the pre-specified 4-h time limit. In contrast, the 

adjustable robust models attained a feasible solution meeting 

the     security criterion. As expected, tighter security 
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criteria yield higher system costs. For this case study, 

imposing an     security criterion incurs a       cost 

increase over the operation under an     security criterion. 

Tighter security criteria than     led to intractable 

contingency-dependent models that ran out of memory. On the 

other hand, the adjustable robust approaches converged to 

infeasible solutions resulting in power imbalances. In other 

words, the adjustable robust models were able to identify that 

the system is unable to be operated under such tight security 

criteria. These results provide the system operator with 

valuable information on the ability of the power system to 

withstand multiple contingencies.  

Table II presents the computational results for all methods. 

As above mentioned, the computational burden of CD is 

prohibitive for more than 2 simultaneous out-of-service 

components, whereas the adjustable robust approaches 

converge in moderate computing times. Even for the 

conventional     and     security criteria, the robust 

methods also outperform CD. These results clearly back the 

superiority of the adjustable robust approaches over the 

contingency-dependent formulation from a computational 

viewpoint. Moreover, the results shown in Table II highlight 

the computational advantage of jointly considering both sets 

of valid constraints included in T-BP. While these constraints 

do not affect the quality of the solution in terms of system cost 

(Table I), they yield large reductions in computing time with 

respect to O-BP. As can be observed, computing time 

reductions are particularly significant for tighter security 

criteria. For these particular cases, redispatch constraints are 

more effective than generation outage constraints when 

considered separately. 

B. IEEE 118-Bus System 

This case study shows the behavior of BP under an   
      security criterion. The IEEE 118-bus system consists 

of 54 thermal generators and 186 transmission lines [34]. 

Coefficients   
 
 and   

  respectively correspond to the 

intercept and the linear coefficient of the cost function 

provided in [34]. Nodal peak load data were obtained from 

[36] and were modulated with the same factors presented in 

[33]. The load profile corresponds to Monday of week 48 at 

10:00 p.m. reduced by 50%. Similar to the RTS-based case, an 

additional circuit was considered in lines 9-10, 12-117, 68-

116, 71-73, 85-86, 86-87, 110-111, and 110-112. Moreover, 

generator 5 was also duplicated.  

Table III compares the performance of T-BP and CD for 

different values of    and    and a level of accuracy   equal 

to     . As can be seen, T-BP attained either the optimum or 

an  -optimal solution in reasonable times for all cases but one. 

The       criterion resulted in the most challenging case 

from a computational perspective given the vast feasible 

search space to be explored. For this case, the optimality gap 

could only be reduced down to      after         s. Note 

also that T-BP converged to infeasible solutions leading to 

power imbalances for all cases with     . In other words, 

T-BP allowed identifying that the system is unable to 

withstand the loss of more than one transmission line. 

In contrast, CD attained the optimal solution in only 4 out 

of 18 cases. It is worth mentioning that CD could not be 

loaded into the computer memory when considering security 

criteria with        . Moreover, the computing times 

required by CD to attain optimality were significantly larger 

than those of T-BP. These results also substantiate the superior 

performance of T-BP over the contingency-dependent 

formulation. 

TABLE III 

RESULTS FOR THE IEEE 118-BUS SYSTEM  

  T-BP CD 

      System Cost ($) Time (s)0  System Cost ($) Time (s) 

0 0 12826.6# 0000.170 12826.6 00000.81 

0 1 12826.6# 0002.310 12826.6 00115.06 

0 2 Infeasible 0006.550   14400.00 

1 0 15450.7# 0000.470 15450.7 00015.77 

1 1 15643.4# 0050.910   14400.00 

1 2 Infeasible 0014.130   Out of memory 
2 0 17507.4# 0000.610 17507.4 08070.47 

2 1 17641.6# 0276.660   Out of memory 
2 2 Infeasible 0008.420   Out of memory 
3 0 18503.7# 0001.050   14400.00 

3 1 18503.7# 0038.600   Out of memory 
3 2 Infeasible 0015.370   Out of memory 
4 0 19356.5# 0001.220   Out of memory 
4 1 19881.2# 0453.620   Out of memory 
4 2 Infeasible 0043.040   Out of memory 
5 0 20343.5# 0002.170   Out of memory 
5 1 21520.5# 7897.730   Out of memory 
5 2 Infeasible 0096.470   Out of memory 

# Optimality gap = 2.4%. 

VI. CONCLUSIONS 

This paper proposes a novel formulation and solution 

methodology to solve the contingency-constrained scheduling 

of energy and reserves considering a joint generation and 

transmission security criterion. The distinctive modeling 

features are (i) the consideration of the effect of the 

transmission network, which requires not only up-spinning 

reserves but also down-spinning reserves, and (ii) the 

inclusion of transmission outages in the security criterion. The 

proposed approach is based on adjustable robust optimization 

by which the original contingency-constrained model is 

formulated as a trilevel programming problem. In order to 

solve the resulting mixed-integer linear trilevel program, a 

Benders decomposition technique is applied. The proposed 

methodology comprises the iterative resolution of a master 

problem and a subproblem. Both problems are formulated as 

mixed-integer linear programs suitable for efficient off-the-

shelf branch-and-cut software. Two sets of valid constraints 

are also proposed to improve the computational performance 

of the proposed approach. 

Numerical results show that the adjustable robust approach 

is able to attain optimal or high-quality near-optimal solutions 

with reasonable computational effort. Moreover, the 

superiority of the proposed methodology over the 

conventional contingency-constrained formulation is shown.  

Although a single-period formulation has been presented in 

this paper, it should be noted that the main steps used in the 

proposed solution approach are readily applicable to the 
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multiperiod instance with time-coupling constraints and some 

additional notation to properly index variables and parameters 

over the time periods. We recognize that the multiperiod case 

will require much more computation time and needs further 

numerical studies.  

Ongoing research is focused on the extension of the 

proposed formulation to a multiperiod setting and the 

consideration of non-spinning reserves. Further work will 

explore the computational savings that may be gained from the 

use of stabilization methods and parallel computation. Other 

interesting avenues of research are the consideration of non-

deterministic security criteria and the modeling of the 

uncertainty associated with renewable energy sources. 
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APPENDIX 

Using a notation consistent with that of this paper, the 

    contingency-constrained problem considering only 

generator outages in a single-bus system, which was presented 

in [9], is formulated as: 
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subject to:  
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              , (73) 

where    denotes the maximum power that can be supplied 

under the worst-case contingency. The upper-level problem 

(64)-(70) determines the least-cost schedule for power and up-

spinning reserve, whereas the lower-level problem (71)-(73) 

determines the value of    under the      security 

criterion.  

As described in [9], the left-hand side of (70) and the lower-

level problem (71)-(73) can be equivalently replaced by the 

dual objective function and the dual feasibility constraints 

associated with (71)-(73). Thus, the resulting single-level 

equivalent is formulated as: 

        
     

     

∑   
           

   
  

   

 
 

(74) 

subject to:  

Pre-contingency feasibility constraints (65)-(69) (75) 

          ∑  

 

   

 ∑   

   

 
 

(76) 

          
        (77) 

           (78) 

      (79) 

Expressions (70)-(73), and their equivalents (76)-(79), 

guarantee that enough post-contingency power can be supplied 

for all generator outages included in the      criterion. The 

rationale for these constraints lies in the fact that the loss of 

any generator is compensated by the remaining available 

generators. In single-bus models, all available generators 

increase their respective power outputs over the pre-

contingency levels. In dc network-constrained models, 

although generators may reduce their production under 

contingency, the sum of the up-spinning reserve contributions 

of all available generators should at least equal the generation 

of the out-of-service generators. As a consequence, (76)-(79) 

become a set of necessary (but insufficient) conditions to 

ensure a feasible post-contingency schedule in the network-

constrained case. Hence, (76)-(79) constitute valid constraints 

that can be readily added to the original trilevel model (1)-(14) 

or to its approximation, namely the master problem (52)-(55), 

when the considered security criterion includes the loss of up 

to    generators. 
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