

Jose Luis Montalvo Andia

Caracterização Microestrutural, Mecânica e Simulação Física da ZTA em Aço API X80

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalurgicos do Departamento de Engenharia de Materiais da PUC-Rio.

Orientador: Profa. Ivani de Souza Bott

Rio de Janeiro Agosto de 2012

Jose Luis Montalvo Andia

Caracterização Microestrutural, Mecânica e Simulação Física da ZTA em Aço API X80

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação de Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Ivani de Souza Bott Orientador Departamento de Engenharia de Materiais - PUC-Rio

Prof. Antonio José Ramírez Londono Laboratório Nacional de Nanotecnologia de Brasil - LNNano/SP

Prof. Luís Felipe G. de Souza Centro Federal de Educação Tecnológica Celso Suckow Fonseca-CEFET/RJ

> Prof. Valter Rocha dos Santos Departamento de Engeharia de Materiais- PUC-Rio

> > Prof. José Eugênio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 15 de agosto de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jose Luis Montalvo Andia

Graduou-se em Engenharia Metalúrgica na Universidade Nacional de San Agustín de Arequipa, no Perú em (2009). Possui experiência profissional como Engenheiro na área de inspeção de Soldagem, controle de qualidade de produtos soldados além de ter experiência em operações e processos metalúrgicos de cobre, prata e ouro.

Ficha Catalográfica

Andia, Jose Luis Montalvo

Caracterização microestrutural, mecânica e simulação física da ZTA em aço API X80 / Jose Luis Montalvo Andia ; orientadora: Ivani de Souza Bott. – 2012.

135 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2012. Inclui bibliografia

 Engenharia de materiais – Teses. 2. Aços API 5L grau X80. 3. Zona termicamente afetada. 4. Caracterização microestrutural. 5. Simulação térmica.
Tenacidade de impacto Charpy. I. Bott, Ivani de Souza. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. III. Título.

A meus pais Constantino Montalvo e Vilma Marcelina Andia de Montalvo e irmôs Javier, Rildo, Jesus, Sandra pela motivação, apoio e estímulo na busca de novos conhecimentos.

Agradecimentos

Agradeço a Deus pela saúde, fortaleza e paciência.

À minha orientadora e amiga, professora Ivani de S. Bott, pelo estimulo, ensinamentos, dedicação e amizade durante a realização deste trabalho.

Ao colega Rafael de Araujo Silva, pelo apoio e contribuições técnico-científicas.

Agradeço ao Laboratório Nacional de Nano Tecnologia (LNNano)- Campinas pela possibilidade de realização das simulações no equipamento Gleeble.

Aos engenheiros do Laboratório Nacional de Nanotecnologia Leonardo Wu e Thaís Alonso pelo apoio concedido.

Agradeço aos funcionários da PUC-Rio, em especial ao Heitor Nuss Guimarães.

Agradeço aos meus colegas da PUC-Rio, Patricia Pontón, Julio Suni, Natasha, Adriana, Fredy, Jorge e José pela ajuda e apoio durante a elaboração desta dissertação.

Agradeço a minha mãe e pai por ter me incentivado e por não medir esforços em me ajudar.

Agradeço a meu irmão Javier pelo apoio e conselhos e por estar sempre ao meu lado.

A todos os professores e funcionários do DCMM, pelos ensinamentos e ajuda.

A Capes, FAPERJ, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Andia, Jose Luis Montalvo; Bott, Ivani de Souza. Caracterização Microestrutural, Mecânica e Simulação Física da ZTA em Aço APIX80. Rio de Janeiro, 2012. 135p. Dissertação de Mestrado -Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Foram utilizados dois sistemas de aço API 5L X80, Nb-Cr e Nb-Cr-Mo, para obter as diferentes regiões da ZTA pertencentes a uma soldagem multipasse. Estas regiões são denominadas de: região de grãos grosseiros inalterados (RGGI), região de grãos refinados reaquecidos supercriticamente (RGRRS), região de grãos grosseiros reaquecidos intercriticamente (RGGRI), região de grãos grosseiros reaquecidos subcriticamente (RGGRS). Estas regiões foram obtidas para dois aportes de calor (1,2 e 2,5 kJ/mm) e a RGGRI por ser considerada a região onde poderiam ser formadas zonas frágeis localizadas (ZFL) foram utilizados também aportes de calor de 3,0 e 4,0 kJ/mm. Cada uma das regiões obtidas pela simulação física foi submetida a ensaios mecânicos de impacto Charpy e dureza, assim como a análises metalográficos por microscopia ótica (MO) e microscopia eletrônica de varredura (MEV). Foi possível observar que as microestruturas pertencentes a uma ZTA simulada obtidas com o equipamento (Gleeble®3800) se mostram compatíveis com aquelas pertencentes a uma soldagem real. Este resultado comprova que as velocidades de resfriamento obtidas pela simulação foram similares àquelas da soldagem real. A adição de Mo ao sistema Nb-Cr-Mo não promoveu mudanças significativas tanto a nível microestrutural, observado por MO e MEV, como em termos de propriedades mecânicas.

Palavras-chave

Aços API 5L Grau X80; Zona Termicamente Afetada; Caracterização Microestrutural; Simulação Térmica; Tenacidade de Impacto Charpy.

Abstract

Andia, Jose Luis Montalvo; Bott, Ivani de Souza (Advisor). API X80 HAZ Physical Simulation and Microstructural and Mechanical Characterization. Rio de Janeiro, 2012. 135p. MSc. Dissertation -Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Two API 5L steels grade X80 of the systems Nb-Cr and Nb-Cr-Mo, were submitted to physical simulation in order to obtain different regions of the HAZ similar to those of a multipass welding, the coarse grained heat affected zone (CGHAZ), supercritically coarse grained heat affected zone (SCCGHAZ), intercritically coarse grained heat affected zone (ICCGHAZ), subcritically coarse grained heat affected zone (SCGHAZ). The welding simulation was carried out on a Gleeble ® 3800 considering two thermal cycles and different heat inputs 1.2, 2.5, 3.0 and 4,0 kJ/mm, typical of a girth weld. All HAZ zones were simulated only for 1.2 and 2.5kJ/mm. Since the ICCGHAZ is the probable weak link where a local brittle zone (LBZ) can occur, this region was simulated for all heat inputs studied. All simulated regions were subjected to traditional mechanical tests such as impact Charpy-V at -40 and -60°C and microhardness Hv_{1kg}. Metallographic analysis by optical microscopy (OM) and scanning electron microscopy (SEM) and fractography were also performed. The microstructures obtained for the different regions of the HAZ, by simulation were close to those of a real welding, however, the cooling rates obtained by simulation were slower than that obtained in a real welding. The mechanical properties and microstructure of the different regions of the HAZ for the systems NbCr and NbCrMo indicate that the microstructural and mechanical behavior of the intercritical region (ICCGHAZ) was considered to be similar to a local brittle zone (LBZ) for all conditions studied.

Keywords

Steels API 5L Grade X80; Heat Affected Zone (HAZ); Microstructural Characterization; Thermal Simulation; Impact Touhness Charpy.

Sumário

1 Introdução	20
1.1. Objetivos	21
2 - Revisão Bibliográfica	22
2.1. Aços de alta resistência e baixa liga (ARBL)	22
2.1.1. Evolução de aços de alta resistência e baixa liga (AF	RBL) 23
2.1.2. Fabricação de aços de alta resistência e baixa liga (A	ARBL) 24
2.2. Soldagem de aços de alta resistência e baixa liga (AR	BL) 25
2.3. Fatores que afetam a tenacidade da ZTA em aços mic	roligados 27
2.3.1. A solubilidade dos elementos microligantes:	27
2.3.2. Efeito dos elementos microligantes nas temperaturas	s de
transformação	29
2.3.3. Efeito de elementos de liga no tamanho de grão aus	tenítico da
ZTA	31
2.4. Influência dos elementos microligantes na ZTA	33
2.4.1. Efeito de nióbio na tenacidade da ZTA	33
2.4.2. Influência do nitrogênio na tenacidade da ZTA	35
2.4.3. Efeito de vanádio na tenacidade da ZTA	36
2.4.4. Efeito do titânio na tenacidade da ZTA	37
2.4.5. Efeito de molibdênio na tenacidade da ZTA	38
2.4.6. Carbono equivalente (CE)	39
2.5. Simulações de soldagem	40
2.5.1. Gleeble® 3800	41
2.5.2. Modelos da Gleeble® 3800	42
2.5.3. Ciclo térmico	44
2.5.4. Parâmetros que influenciam o ciclo térmico de solda	gem 45
2.5.4.1. Temperatura de preaquecimento	45
2.5.4.2. Aporte de calor	46
2.5.4.3. Temperatura pico	47

2.5.4.4. Tempo de resfriamento ($\Delta t 8/5$)	49
2.6. Zona Termicamente Afetada (ZTA)	50
2.6.1. Característica da ZTA de uma solda de passe único.	50
2.6.2. Características da ZTA de uma solda multipasse	52
2.6.3. Influência de zonas frágeis localizadas (ZFL) na ZTA	54
2.6.3.1. Principais mecanismos que influenciam a (ZFL)	54
3 - Metodologia Experimental	56
3.1. Descrição do método experimental	56
3.2. Características das amostras empregadas na simulação	57
3.3. Características das amostras empregadas na soldagem real	58
3.4. Parâmetros de simulação de soldagem	59
3.5. Parâmetros da soldagem real	60
3.6. Execução da simulação	60
3.7. Execução da solda real	62
3.8. Codificação para a avaliação da ZTA	63
3.9. Análise Metalográfica	64
3.9.1. Microscopia Ótica (MO)	65
3.9.2. Microscopia Eletrônica de varredura (MEV)	65
3.10. Ensaios de Impacto Charpy-V	66
3.11. Caracterização Metalográfica e Fractográfica dos corpos de	
prova Charpy	67
3.11.1. Análises de fratura interna dos corpos de prova Charpy	67
3.12. Ensaio de microdureza Vickers (HV)	68
4. Resultados	70
4.1. Determinação dos ciclos térmicos simulados	70
4.2. Cálculos do tempo $\Delta t8/5$ e velocidade de resfriamento	74
4.3. Estudo da Influência do aporte de calor	74
4.4. Caracterização metalográfica	77
4.4.1. Macrografia da ZTA	77
4.4.2. Caracterização Microestrutural do metal base	78
4.4.3. Caracterização microestrutural das regiões ZTA por MO	78

4.5. Caracterização microestrutural do constituinte austenita	
martensita (AM) por MEV	83
4.5.1. Metal de base (MB)	83
4.5.2. Zona termicamente afetada (ZTA)	84
4.5.3. Comparação do constituinte AM entre MO e MEV	90
4.6. Ensaios de impacto	93
4.6.1. Análise fractográfica	95
4.6.2. Analise da fratura interna das trincas	103
4.7. Ensaios de microdureza Vickers (HV 1kg) nas regiões da	
ZTA real	107
4.8. Ensaios de microdureza Vickers (HV1kg) para as regiões	
simuladas	107
5 . Discussão	110
5.1. Evolução microestrutural	110
5.1.1. Região de grãos grosseiros inalterados (RGGI ZTA) 1200 °C	110
5.1.2. Região de grãos grosseiros refinados reaquecidos	
supercriticamente (RGRRS ZTA) 1000℃	115
5.1.3. Região de grãos grosseiros reaquecidos intercriticamente	
(RGGRI ZTA) 800 ℃	118
5.1.4. Região de grãos grosseiros reaquecidos subcriticamente	
(RGGRS ZTA) 600 ℃	121
6 . Considerações finais e conclusões	125
6.1. Sugestões para trabalhos futuros	126
7. Revisão Bibliografica	127

Lista de figuras

Figura 2-1 Relação entre a tenacidade caracterizada pela temperatura de transição obtida a 27 J e a tensão de escoamento [1]. 23 Figura 2-2 Evolução dos graus API ao longo dos anos respeito a tensão de escoamento [5, 12] 24 Figura 2-3 Solubilidade dos principais compostos na região de grãos grosseiros na ZTA [19], onde (Wt%A) recebe o porcentual em massa do primeiro elemento do precipitado (Nb ou V ou Ti), e (Wt%B) recebe o porcentual em massa do segundo elemento químico do precipitado (C ou N). 28 Figura 2-4 Influência do manganês (a), b) e cromo (c), (d) nas temperaturas críticas de transformação, Ac1(a) e Ac3(b) [29]. 31 Figura 2-5 Influência de nitrogênio e titânio no tamanho de grão austenítico [32]. 32 Figura 2-6 Influência da velocidade de aquecimento no tamanho de grão austenítico, em aços ARBL. [28] 33 Figura 2-7 Influência do nióbio na tenacidade a fratura em ensaios Charpy (a) e CTOD (b) realizados em aços ARBL e soldados com um aporte de calor de 2kJ/mm. 35 Figura 2-8 Influencia do teor de nitrogênio na energia de impacto (a), influência do nitrogênio livre na energia de impacto (b). [40] 36 Figura 2-9 Influencia do Ti na temperatura de transição de impacto da ZTA, soldado com um aporte de calor de 4.5KJ/mm [45]. 37 Figura 2-10 Relação entre a microdureza e aporte de calor na região intercrítica da ZTA para diferentes teores de Mo [50]. 38 Figura 2-11 Comparação microestrutural da ZTA na (RGGRI) Tp2-42 800 °C, para uma solda real (a) e simulada (b).

Figura 2-12 Comparação de ciclos térmicos de soldagem	
desenvolvidos por três modelos de fluxo de calor, Rosenthal -	
Rykalin 2D – Rykalin 3D [54].	44
Figura 2-13 Influência da temperatura de preaquecimento na	
dureza (a) e tenacidade (b), [67].	46
Figura 2-14 Influencia da temperatura de pico na tenacidade da	
ZTA de uma solda multipasse [76].	48
Figura 2-15 Presença do constituinte AM na região reaquecida	
intercrítica da ZTA na forma massiva e alongada. Aumento 200X	
(a), aumento 1000X(b). [77].	49
Figura 2-16 Influência do tempo de resfriamento na formação e	
decomposição do constituinte AM. [77]	50
Figura 2-17 Diagrama esquemático dos constituintes da ZTA [71]	
de um aço com 0.15% C [81].	51
Figura 2-18 diagrama esquemático dos constituintes da ZTA de	
uma solda multipasse [82]	53
Figura 3-1 Equipamento Gleeble ®3800.	56
Figura 3-2 Dimensões de corpos de prova para a simulação de	
soldagem.	57
Figura 3-3 Soldador de termopar, modelo 3S50.	61
Figura 3-4 Câmara interna do simulador termomecânico Gleeble	
3800®, mostrando as garras de cobre (indicadas pela seta).	61
Figura 3-5. (a) Geometria da junta circunferencial, onde a= 3mm, b=	
2.5mm, E= 16mm; (b) sequência de passes.	63
Figura 3-6 Localização da extração dos corpos de prova segundo a	
norma API-1104	64
Figura 3-7 Superfície examinada nos corpos de prova simulados	
(a) e real (b) por MO e MEV.	65
Figura 3-8 Dimensões do corpo de prova Charpy V segundo a	
norma ASTM E23.	67
Figura 3-9 Desenho do corte realizado nos corpos de prova	
segundo a norma API RP2Z	68
Figura 3-10 Desenho esquemático dos pontos de medidas de	
dureza da solda real.	69

Figura 3-11 Desenho esquemático dos pontos de medidas de	
dureza da solda simulada.	69
Figura 4-1. Comparação dos ciclos térmicos programados e	
simulados (a), ampliação de ambos ciclos (b), gerados pelo modelo	
de curva Rykalin 3D,	70
Figura 4-2 Ciclos térmicos das regiões da ZTA, (RGGI), (RGRRS),	
(RGGRI) (RGGRS) para (a) 1,2 kJ/mm, (b) 2,5 kJ/mm, (c) 3,0	
kJ/mm, (d) 4,0 kJ/mm para o sistema Nb-Cr.	72
Figura 4-3 Ciclos térmicos das regiões da ZTA, (RGGI), (RGRRS),	
(RGGRI) (RGGRS) para 1,2 kJ/mm (a), 2,5 kJ/mm(b), 3,0	
kJ/mm(c), 4,0 kJ/mm (d) para sistema Nb-Cr-Mo.	73
Figura 4-4 Comparação dos ciclos térmicos simulados para	
diferentes aportes de calor, nos sistemas Nb-Cr-Mo (a), Nb-Cr(b),	
na RGGRI.	75
Figura 4-5 influencia do aporte de calor no tempo de resfriamento	
(Δt8/5), em aços Nb-Cr-Mo e Nb-Cr.	75
Figura 4-6 influencia do aporte de calor no tempo de resfriamento	
(Δt 8/5), em aços Nb-Cr-Mo e Nb-Cr na (RGGRI).	76
Figura 4-7 Influência do aporte de calor na velocidade de	
resfriamento em aços Nb-Cr-Mo e Nb-Cr.	76
Figura 4-8 Influência do aporte de calor na velocidade de	
resfriamento em aços Nb-Cr-Mo e Nb-Cr na (RGGRI).	77
Figura 4-9 Macrografia da ZTA real (a) e da ZTA simulada (b),	
realizadas por um mosaico (aumento de 20X), (nital 2%).	77
Figura 4-10 Microestrutura do metal de base na condição de como	
recebido dos sistemas Nb-Cr-Mo (a) e Nb-Cr (b). todas as imagens	
foram obtidas com aumento de 500x, (Nital 2%).	78
Figura 4-11 Microestruturas das diferentes regiões da ZTA, as	
imagens (a), (e), (i), pertencem a (RGGI); as imagens (b), (f), (j),	
pertencem a (RGRRS); as imagens (c),(g),(k); pertencem a	
(RGGRI) e as imagens (d), (h), (l) pertencem (RGGRS) para 12	
kJ/mm, imagens obtidas com aumento de 500 x, (Nital 2%).	80
Figura 4-12 Microestruturas das diferentes regiões da ZTA	
simuladas a 2,5 kJ/mm, as imagens (a), (e), pertencem a (RGGI);	

as imagens (b), (f), pertencem a (RGRRS); para 2,5 kJ/mm,	
imagens obtidas com aumento de 500x, (Nital 2%).	81
Figura 4-13 Microestruturas das diferentes regiões da ZTA	
pertencentes a 2,5 kJ/mm, as imagens (c), (g), pertencem a	
(RGGRI) e as imagens (d), (h), pertencem (RGGRS) para 2,5	
kJ/mm, imagens obtidas com aumento de 500x, (Nital 2%).	82
Figura 4-14 Microestruturas da (RGGRI) da ZTA simulada para 3,0	
kJ/mm, (a) sistema Nb-Cr-Mo e (b) sistema Nb-Cr, aumento de	
500x nital (2%).	83
Figura 4-15 Microestruturas da (RGGRI) da ZTA simulada para 4,0	
kJ/mm, (a) sistema Nb-Cr-Mo e (b) sistema Nb-Cr, aumento de	
500x nital (2%).	83
Figura 4-16 Metal base, sistema Nb-Cr-Mo (a), Nb-Cr (b). Aumento	
3000X, microconstituinte AM nas formas massiva e alongada.	
(Lepera modificado)	84
Figura 4-17 Morfologias do microconstituinte AM presente nas	
regiões da ZTA, alongado (Tipo I), massivo (Tipo II). Aumento	
20000x. (Lepera modificado)	84
Figura 4-18 Caracterização do microconstituinte AM nas regiões da	
ZTA obtidas pelo (MEV), as imagens (a), (e), (i), pertencem a	
(RGGI); as imagens (b), (f), (j), pertencem a (RGRRS); as imagens	
(c), (g), (k); pertencem a (RGGRI) e as imagens (d), (h), (l)	
pertencem (RGGRS) para 1,2 kJ/mm. Aumento de 3000x. (Lepera	
modificado).	86
Figura 4-19 Caracterização microestrutural das diferentes regiões	
da ZTA obtidas pelo (MEV), as imagens (a), (e), pertencem a	
(RGGI); as imagens (b), (f), pertencem a (RGRRS) para 2,5 kJ/mm.	
Aumento de 3000x. (Lepera modificado).	87
Figura 4-20 Caracterização microestrutural das diferentes regiões	
da ZTA obtidas pelo (MEV), as imagens (c), (g), pertencem a	
(RGGRI) e as imagens (d), (h), pertencem (RGGRS) para 2,5	
kJ/mm. Aumento de 3000x. (Lepera modificado).	89

na (RGRRI) para aportes de calor de 3.0 kJ/mm, aumento 3000X, (Lepera modificado). Figura 4-22 Caracterização microestrutural do microconstituinte AM na (RGRRI) para aportes de calor de e 4.0 KJ/mm, aumento 3000X, (Lepera modificado). Figura 4-23 Caracterização do AM por MO e MEV das regiões, RGGI (a), (e), RGRRS (b(f)), da ZTA simulada pertencente ao sistema Nb-Cr-Mo, imagens obtidas com um aumento de (1000x), (Lepera modificado). Figura 4-24 Caracterização do AM por MO e MEV das regiões, RGGRI (c)(g), RGGRS (d)(h), da ZTA simulada pertencente ao sistema Nb-Cr-Mo, imagens obtidas com um aumento de (1000x), (Lepera modificado). Figura 4-25 Tenacidade das diferentes regiões da ZTA caracterizadas por suas temperaturas de pico, pertencentes aos sistemas Nb-Cr-Mo e Nb-Cr para aportes de calor de (a) 1,2 kJ/mm e (b) 2,5 kJ/mm a -40 e -60 ℃. Figura 4-26 Influência do aporte de calor a tenacidade da RGGRI da ZTA pertencentes aos sistemas Nb-Cr-Mo e Nb-Cr para aportes de calor de 1,2 kJ/mm, 2,5 kJ/mm, 3,0 k/mm e 4,0 kJ/mm, a -40 e -60℃. Figura 4-27 Fractografía dos Cp's ensaiados na região (RGGRS) pertencente ao sistema Nb-Cr-Mo representando as energias máximas e mínimas a 1000x. Figura 4-28 Fractografía dos Cp's ensaiados na região (RGGRS) pertencente ao sistema Nb-Cr representando as energias máximas e mínimas a 1000x. Figura 4-29 Fractografía dos Cp's ensaiados na região (RGGRI), pertencente ao sistema Nb-Cr-Mo representando as energias máximas e mínimas a 1000x. Figura 4-30 Fractografía dos Cp's ensaiados na região (RGGRI ZTA), pertencente ao sistema Nb-Cr representando as energias máximas e mínimas a 1000x.

PUC-Rio - Certificação Digital Nº 1011950/CB

Figura 4-21 Caracterização microestrutural do microconstituinte AM

91

90

90

92

95

96

97

98

99

94

Figura 4-31 Fractogáfia dos Cp's ensaiados na região (RGRRS),	
pertencente ao sistema Nb-Cr-Mo representando as energias	
máximas e mínimas a 1000x.	100
Figura 4-32 Fractogáfia dos Cp's ensaiados na região (RGRRS),	
pertencente ao sistema Nb-Cr representando as energias máximas	
e mínimas a 1000x.	101
Figura 4-33 Fractogáfia dos Cp´s ensaiados na região (RGGI),	
pertencente ao sistema Nb-Cr-Mo representando as energias	
máximas e mínimas a 1000x.	102
Figura 4-34 Fractogáfia dos Cp´s ensaiados na região (RGGI),	
pertencente ao sistema Nb-Cr representando as energias máximas	
e mínimas a 1000x.	103
Figura 4-35 trincas secundarias pertencentes a (RGGI) por	
microscopia ótica (MO) 500X e microscopia eletrônica de varredura	
(MEV) 2000X, Nital 2%.	104
Figura 4-36 Trincas secundarias pertencentes a (RGGI) por	
microscopia ótica (MO) 500X e microscopia eletrônica de varredura	
(MEV) 2000X, Nital 2%.	105
Figura 4-37 Trincas secundarias pertencentes a (RGGI) por	
microscopia ótica (MO) 500X e microscopia eletrônica de varredura	
(MEV) 2000X, Nital 2%.	106
Figura 4-38 Mapeamento da microdureza nas diferentes regiões da	
ZTA para o sistema (a) Nb-Cr-Mo, (b) Nb-Cr.	108
Figura 4-39 Influencia do tempo de resfriamento na microdureza.	109
Figura 4-40 influencia da velocidade de resfriamento na	
microdureza.	109
Figura 5-1 Comparação do tempo de resfriamento (a) e velocidade	
de resfriamento (b) nos sistemas (Nb-Cr-Mo e Nb-Cr) da RGGI	
para aportes de calor de 1,2 e 2,5 KJ/mm.	112
Figura 5-2 Comparação do tempo de resfriamento (a) e velocidade	
de resfriamento (b) nos sistemas (Nb-Cr-Mo e Nb-Cr) da RGGI	
para um determinado aporte de calor.	116

Figura 5-3 Variação do tempo de resfriamento (a) e velocidade de resfriamento (b) nos sistemas (Nb-Cr-Mo e Nb-Cr) da RGGI para um determinado aporte de calor. 119

Lista de tabelas

Tabela 2-1 Temperatura de preaquecimento de acordo com as	
especificações técnicas para construção de plataformas fixas de	
aço da Petrobras [30, 69].	45
Tabela 3-1 Propriedades mecânicas dos aços API 5L X80 Nb-Cr-	
Mo e Nb-Cr.	57
Tabela 3-2 Composição química do aço API 5L X80 do sistema Nb-	
Cr-Mo e Nb-Cr.	58
Tabela 3-3 Composição química da chapa utilizada para a	
fabricação do tubo.	58
Tabela 3-4 Parâmetros empregados na simulação de soldagem.	59
Tabela 3-5 Propriedades físicas do aço API 5L X80.	60
Tabela 3-6 Parâmetros do processo de soldagem real.	60
Tabela 3-7 Relação da segunda temperatura de pico TP2 com as	
regiões da ZTA.	62
Tabela 3-8 Codificação dos corpos de prova empregados no	
processo de simulação e no ensaio de impacto Charpy V.	63
Tabela 3-9 Codificação dos corpos de prova da soldagem real	64
Tabela 3-10 Ataques químicos utilizados no MEV.	66
Tabela 3-11 Distribuição dos corpos de prova Charpy para cada	
região da ZTA	67
Tabela 4-1 Códigos das diferentes regiões da ZTA pertencente ao	
sistema Nb-Cr.	71
Tabela 4-2 Códigos das diferentes regiões da ZTA pertencentes ao	
sistema Nb-Cr-Mo.	71
Tabela 4-3 Valores meios do tempo e velocidades de resfriamento	
para os sistemas Nb-Cr-Mo e Nb-Cr.	74
Tabela 4-4 Valores médios resultantes dos ensaios de impacto	
Charpy-V, para as diferentes regiões da ZTA pertencentes aos	
sistemas Nb-Cr-Mo e Nb-Cr.	93

Tabela 4-5 Resultados de microdureza do sistema (Nb-Cr-Mo)	107
Tabela 4-6 Valores médios da microdureza para o sistema Nb-Cr-	
Mo e Nb-Cr.	107
Tabela 4-7 Influência do tempo de resfriamento na dureza na	
(RGGRI), para o sistema Nb-Cr-Mo e Nb-Cr.	108