CIRCUITO DE LEITURA GMR (COMPLETO) VAC1 50 0 SIN(40.12 26.14 100k 0 0) VAC2 51 0 SIN(40.12 25.06 100k 0 0) Vaj 60 0 11.09 *Fonte de ajuste para retirar o offset dos primeiros INA129 *CIRCUITO COM FET PARA ALIMENTAR O SENSOR COM 1MA (PARTE 1) Vcc1 1 0 10 Vcc2 S1 0 10 R1 1 G1 10k RAJ G1 0 93.32k X1 D1 G1 S1 S1 FDC6302P *CIRCUITO DO SENSOR (PARTE 1) V++ A 0 10 V-- B 0 -10 R2 D1 2 5k RGMR1 D1 3 {5k+5.5*V(50)} RGMR2 2 0 {5k+5.5*V(50)} R3 3 0 5k *AMPLIFICANDO A SAIDA DO SENSOR (PARTE 1) X2 3 2 A B OUT1 60 4 5 INA129 RG1 4 5 494 *GANHO DO INA129 = 1+(49.4k/RG) *PASSA FAIXA 100k COMENTADO (PARTE 1) $R4 OUT1 6 41.2k $C1 6 0 1n $C2 6 7 1n $R5 6 OUT2 1.74k $R6 7 0 1.69k $X3 7 8 OUT2 OPAMPF $R7 8 0 487 $R8 OUT2 8 1k $R9 OUT2 9 38.3k $C3 9 0 1n $C4 9 10 1n $R10 9 OUT3 1.58k $R11 10 0 1.5k $X4 10 11 OUT3 OPAMPF $R12 11 0 475 $R13 OUT3 11 1k *DETECTOR DE PICO (PARTE 1) X5 OUT1 13 A B OUT4 LM6172 D1 OUT4 13 1N4148 R14 13 0 10k C5 13 0 200n *CIRCUITO COM FET PARA ALIMENTAR O SENSOR COM 1MA (PARTE 2) Vcc5 14 0 10 Vcc4 S2 0 10 R20 14 G2 10k RAJ2 G2 0 93.32k X20 D2 G2 S2 S2 FDC6302P *CIRCUITO DO SENSOR (PARTE 2) R21 D2 20 5k RGMR12 D2 21 {5k+5.5*V(51)} RGMR22 20 0 {5k+5.5*V(51)} R22 21 0 5k *AMPLIFICANDO A SAIDA DO SENSOR (PARTE 2) X21 21 20 A B OUT12 60 40 41 INA129 RG2 40 41 494 *GANHO DO INA129 = 1+(49.4k/RG) *PASSA FAIXA 100k COMENTADO (PARTE 2) $R23 OUT12 22 41.2k $C20 22 0 1n $C21 22 23 1n $R24 22 OUT22 1.74k $R25 23 0 1.69k $X22 23 24 OUT22 OPAMPF $R26 24 0 487 $R27 OUT22 24 1k $R28 OUT22 25 38.3k $C22 25 0 1n $C23 25 26 1n $R29 25 OUT32 1.58k $R30 26 0 1.5k $X23 26 27 OUT32 OPAMPF $R31 27 0 475 $R32 OUT32 27 1k *DETECTOR DE PICO (PARTE 2) X22 OUT12 28 A B OUT42 LM6172 D2 OUT42 28 1N4148 R33 28 0 10k C24 28 0 200n *AMP DE INSTRUMETNACAO (PARTE 1 e 2) X23 13 28 A B OUTF 0 42 43 INA129 RG3 42 43 49.4 .TRAN 0.5us 0.5ms 0.45m 0.5us *.TRAN 100ns 200us 120u .PRINT TRAN V(13) V(28) V(OUTF) *______________________________________________________________________________________________ * COMMENTS * CONNECTIONS: NON-INVERTING INPUT * | INVERTING INPUT * | | POSITIVE POWER SUPPLY * | | | NEGATIVE POWER SUPPLY * | | | | OUTPUT * | | | | | REFERENCE * | | | | | | GAIN SENSE 1 * | | | | | | | GAIN SENSE 2 * | | | | | | | | * PIN CONFIG FOR INA129 1 2 3 4 5 8 9 10 .SUBCKT INA129 1 2 3 4 5 8 9 10 X1 15 17 3 4 11 A1_129E X2 15 16 3 4 12 A2_129E X3 14 13 3 4 5 A3_129E R1 11 13 40.0000K R2 13 5 39.996K R3 12 14 40.0000K R4 14 8 40.0000K CIN 13 14 4.0000PF R1FB 9 11 24.700K CC1 17 11 5.0000PF R2FB 10 12 24.700K CC2 16 12 5.0000PF CG1 9 0 10.0000PF CG2 10 0 8.0000PF RCE 17 9 20G I1 3 16 DC 20.00E-6 I2 3 17 DC 20.00E-6 IB1CAN 3 42 DC 40.00E-9 IB2CAN 3 46 DC 40.00E-9 IBAL 0 4 DC 6.5E-6 D1 15 17 DX D2 15 16 DX Q1 16 42 10 QX Q2 17 46 9 QX V1 3 15 DC 1.700 * INPUT PROTECTION RIN1 1 41 1K I11 41 42 .7MA S11 41 42 1 41 SP DI1 43 41 DX I12 4 43 DC .8MA S12 4 43 1 41 SM RIN2 2 45 1K I21 45 46 .7MA S21 45 46 2 45 SP DI2 47 45 DX I22 4 47 DC .8MA S22 4 47 2 45 SM * Anti-inversion clamps * VSET1 3 40 DC 2.0 QSET1 4 40 42 QY VSET2 3 44 DC 2.0 QSET2 4 44 46 QY .model sp vswitch(ron=10 roff=100E3 von=.7 voff=1) .model sm vswitch(ron=10 roff=100E3 von=-.7 voff=-1) .MODEL DX D(IS=1.0E-24) .MODEL QX NPN(IS=800.0E-18 BF=500) .MODEL QY PNP(IS=800.0E-18 BF=500) .ENDS * * A1_129E operational amplifier "macromodel" subcircuit * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt A1_129E 1 2 3 4 5 * c1 11 12 2.887E-12 c2 6 7 10.00E-12 css 10 99 1.000E-30 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 79.58E6 -80E6 80E6 80E6 -80E6 ga 6 0 11 12 1.257E-3 gcm 0 6 10 99 125.7E-12 iss 3 10 dc 50.00E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 795.8 rd2 4 12 795.8 ro1 8 5 10 ro2 7 99 10 rss 10 99 4.000E6 vb 9 0 dc 0 vc 3 53 dc 1.5 ve 54 4 dc .9 vlim 7 8 dc 0 vlp 91 0 dc 14 vln 0 92 dc 14 * OUTPUT SUPPLY MIRROR FQ3 0 20 POLY(1) VLIM 0 1 DQ1 20 21 DX DQ2 22 20 DX VQ1 21 0 0 VQ2 22 0 0 FQ1 3 0 POLY(1) VQ1 120u 1 FQ2 0 4 POLY(1) VQ2 120u -1 RP 3 4 3.00E6 .model dx D(Is=800.0E-18) .model jx PJF(Is=15.00E-12 Beta=31.58E-3 Vto=-1) .ends * A2_129E operational amplifier "macromodel" subcircuit * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt A2_129E 1 2 3 4 5 * c1 11 12 2.887E-12 c2 6 7 10.00E-12 css 10 99 1.000E-30 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 79.58E6 -80E6 80E6 80E6 -80E6 ga 6 0 11 12 1.257E-3 gcm 0 6 10 99 125.7E-12 iss 3 10 dc 50.00E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 795.8 rd2 4 12 795.8 ro1 8 5 10 ro2 7 99 10 rss 10 99 4.000E6 vb 9 0 dc 0 vc 3 53 dc 1.5 ve 54 4 dc .9 vlim 7 8 dc 0 vlp 91 0 dc 14 vln 0 92 dc 14 * OUTPUT SUPPLY MIRROR FQ3 0 20 POLY(1) VLIM 0 1 DQ1 20 21 DX DQ2 22 20 DX VQ1 21 0 0 VQ2 22 0 0 FQ1 3 0 POLY(1) VQ1 120u 1 FQ2 0 4 POLY(1) VQ2 120u -1 RP 3 4 3.00E6 .model dx D(Is=800.0E-18) .model jx PJF(Is=15.00E-12 Beta=31.58E-3 Vto=-1) .ends * A3_129E operational amplifier "macromodel" subcircuit * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt A3_129E 1 2 3 4 5 * c1 11 12 2.730E-12 c2 6 7 15.00E-12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 163.2E6 -160E6 160E6 160E6 -160E6 ga 6 0 11 12 122.5E-6 gcm 0 6 10 99 12.25E-12 iee 10 4 dc 63.95E-6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 3 11 8.162E3 rc2 3 12 8.162E3 re1 13 10 7.327E3 re2 14 10 7.327E3 ree 10 99 3.127E6 ro1 8 5 300 ro2 7 99 300 vb 9 0 dc 0 vc 3 53 dc 1.500 ve 54 4 dc 1.400 vlim 7 8 dc 0 vlp 91 0 dc 5 vln 0 92 dc 14 * OUTPUT SUPPLY MIRROR FQ3 0 20 POLY(1) VLIM 0 1 DQ1 20 21 DX DQ2 22 20 DX VQ1 21 0 0 VQ2 22 0 0 FQ1 3 0 POLY(1) VQ1 206.7E-6 1 FQ2 0 4 POLY(1) VQ2 206.7E-6 -1 RQ 3 4 1.87e6 .model dx D(Is=800.0E-18) .model qx NPN(Is=800.0E-18 Bf=318.8) .ends .SUBCKT FDC6302P 20 10 30 50 *20=DRAIN 10=GATE 30=SOURCE 50=VTEMP Rg 10 11x 1 Rdu 12x 1 1u M1 2 1 4x 4x DMOS L=1u W=1u .MODEL DMOS PMOS(VTO=-0.83 KP=1.53E-1 +THETA=0.25 VMAX=2E5 LEVEL=3) Cgs 1 5x 32p Rd 20 4 1.6 Dds 4 5x DDS .MODEL DDS D(M=2.91E-1 VJ=4.64E-1 CJO=14.1p) Dbody 20 5x DBODY .MODEL DBODY D(IS=7.94E-8 N=2.460181 RS=.021333 TT=52.03n) Ra 4 2 1.6 Rs 5x 5 0.5m Ls 5 30 0.5n M2 1 8 6 6 INTER E2 8 6 4 1 2 .MODEL INTER PMOS(VTO=0 KP=10 LEVEL=1) Cgdmax 7 4 35.6p Rcgd 7 4 10meg Dgd 4 6 DGD Rdgd 4 6 10meg .MODEL DGD D(M=5.5E-1 VJ=2.6E-3 CJO=35.6p) M3 7 9 1 1 INTER E3 9 1 4 1 -2 *ZX SECTION EOUT 4x 6x poly(2) (1x,0) (3x,0) 0 0 0 0 1 FCOPY 0 3x VSENSE 1 RIN 1x 0 1G VSENSE 6x 5x 0 RREF 3x 0 10m *TEMP SECTION ED 101 0 VALUE {V(50,100)} VAMB 100 0 25 EKP 1x 0 101 0 2.9 *VTO TEMP SECTION EVTO 102 0 101 0 .0016 EVT 11x 12x 102 0 1 *DIODE THEMO BREAKDOWN SECTION EBL VB1 VB2 101 0 .08 VBLK VB2 0 25 D DB1 20 DBLK .MODEL DBLK D(IS=1E-14 CJO=.1p RS=.1) EDB 0 DB1 VB1 0 1 .ENDS FDC6302P *FDC6302P (Rev.A) 9/29/04 **ST .SUBCKT LM6172 3 2 4 5 6 * CAUTION: SET .OPTIONS GMIN=1E-16 TO CORRECTLY MODEL INPUT BIAS CURRENT. * Features: * +/-15V Operation * Unity Gain Stable * Offset voltage (max) = 3mV * Gain-bandwidth product = 100 MHz * Supply current = 2.3mA * Slew rate = 3000V/uS ******************************************************************** EOX 120 10 31 32 2.0 RCX 120 121 1K RDX 121 10 1K RBX 120 122 1K GOS 10 57 122 121 1.0 RVOS 31 32 1K RINB 2 18 1000 RINA 3 19 1000 DIN1 5 18 DMOD2 DIN2 18 4 DMOD2 DIN3 5 19 DMOD2 DIN4 19 4 DMOD2 EXX 10 5 17 5 1.0 EEE 10 50 17 5 1.0 ECC 40 10 4 17 1.0 RAA 4 17 100MEG RBB 17 5 100MEG ISET 10 24 1e-3 DA1 24 23 DMOD1 RBAL 23 22 1000 ESUPP 22 21 4 5 1.0 VOFF 21 10 -1.25 DA2 24 25 DMOD1 VSENS1 25 26 DC 0 RSET 26 10 1K CSET 26 10 1e-10 FSET 10 31 VSENS1 1.0 R001 34 10 1K FTEMP 10 27 VSENS1 1.0 DTA 27 10 DMOD2 DTB 28 29 DMOD2 VTEMP 29 10 DC 0 ECMR 38 10 11 10 1.0 VCMX 38 39 DC 0 RCM2 41 10 1MEG EPSR 42 10 4 10 1.0 CDC1 43 42 10U VPSX 43 44 DC 0 RPSR2 45 10 1MEG FCXX 57 10 VCXX 100 DCX1 98 97 DMOD1 DCX2 95 94 DMOD1 RCX1 99 98 100 RCX2 94 99 100 VCXX 99 96 DC 0 ECMX 96 10 11 10 1.0 DLIM1 52 57 DMOD1 DLIM2 57 51 DMOD1 ELIMP 51 10 26 10 99.3 GDM 10 57 3 2 1 C1 58 59 1e-10 DCLMP2 59 40 DMOD1 DCLMP1 50 59 DMOD1 RO2 59 10 1K GO3 10 71 59 10 1 RO3 71 10 1 DDN1 73 74 DMOD1 DDN2 73 710 DMOD1 DDP1 75 72 DMOD1 DDP2 71 720 DMOD1 RDN2 710 71 100 RDP 720 72 100 VOOP 40 76 DC 0 VOON 77 50 DC 0 QNO 76 73 78 NPN1 QNP 77 72 79 PNP1 RNO 78 81 1 RPO 79 81 1 VOX 86 6 DC 0 RNT 76 81 100MEG RPT 81 77 1MEG FX 10 93 VOX 1.0 DFX1 93 91 DMOD1 VFX1 91 10 DC 0 DFX2 92 93 DMOD1 VFX2 10 92 DC 0 FPX 4 10 VFX1 1.0 FNX 10 5 VFX2 1.0 RAX 122 10 MRAX 1.005990e+03 * Input Offset Voltage .MODEL MRAX RES (TC1=-1.1e-05) FIN1 18 5 VTEMP 0.991667 FIN2 19 5 VTEMP 1.00833 * Input Bias Currents CIN1 2 10 1e-12 CIN2 3 10 1e-12 * Common Mode Input Capacitance RD1 18 11 2.45e+06 RD2 19 11 2.45e+06 * Diff. Input Resistance RCM 11 10 3.8775e+07 * Common Mode Input Resistance FCMR 10 57 VCMX 3.16228 * Low Freq. CMRR FPSR 10 57 VPSX 63.2456 * Low Freq. PSRR RSLOPE 4 5 33333.3 * Slope of Supp. Curr. vs. Supp. Volt. GPWR 4 5 26 10 0.0014 * Quiescent Supply Current ETEMP 27 28 32 33 0.173718 RIB 32 33 MRIB 1K * Temp. Co. of Input Currents .MODEL MRIB RES (TC1=0.00445322) RISC 33 34 MRISC 1K .MODEL MRISC RES (TC1=-0.002) RCM1 39 41 10 CCM 41 10 2.65258e-11 * CMRR vs. Freq. RPSR1 44 45 100 CPSR 45 10 1.59155e-10 * PSRR vs. Freq. ELIMN 10 52 26 10 99.3 RDM 57 10 29.6192 C2 57 10 3.79954e-11 ECMP 40 97 26 10 2 ECMN 95 50 26 10 2 G2 58 10 57 10 0.003 R2 58 10 11.254 GO2 59 10 58 10 35 * Avol and Slew-Rate Settings EPOS 40 74 26 10 1.4 ENEG 75 50 26 10 1.5 * Output Voltage Swing Settings GSOURCE 74 73 33 34 0.00107 GSINK 72 75 33 34 0.00105 * Output Current Settings ROO 81 86 13 .MODEL DMOD1 D *-- DMOD1 DEFAULT PARAMETERS *IS=1e-14 RS=0 N=1 TT=0 CJO=0 *VJ=1 M=0.5 EG=1.11 XTI=3 FC=0.5 *KF=0 AF=1 BV=inf IBV=1e-3 TNOM=27 .MODEL DMOD2 D (IS=1e-17) *-- DMOD2 DEFAULT PARAMETERS *RS=0 N=1 TT=0 CJO=0 *VJ=1 M=0.5 EG=1.11 XTI=3 FC=0.5 *KF=0 AF=1 BV=inf IBV=1e-3 TNOM=27 .MODEL NPN1 NPN (BF=100 IS=1e-15) *-- NPN1 DEFAULT PARAMETERS *NF=1 VAF=inf IKF=inf ISE=0 NE=1.5 *BR=1 NR=1 VAR=inf IKR=inf ISC=0 *NC=2 RB=0 IRB=inf RBM=0 RE=0 RC=0 *CJE=0 VJE=0.75 MJE=0.33 TF=0 XTF=0 *VTF=inf ITF=0 PTF=0 CJC=0 VJC=0.75 *MJC=0.33 XCJC=1 TR=0 CJS=0 VJS=0.75 *MJS=0 XTB=0 EG=1.11 XTI=3 KF=0 AF=1 *FC=0.5 TNOM=27 .MODEL PNP1 PNP (BF=100 IS=1e-15) *-- PNP1 DEFAULT PARAMETERS *NF=1 VAF=inf IKF=inf ISE=0 NE=1.5 *BR=1 NR=1 VAR=inf IKR=inf ISC=0 *NC=2 RB=0 IRB=inf RBM=0 RE=0 RC=0 *CJE=0 VJE=0.75 MJE=0.33 TF=0 XTF=0 *VTF=inf ITF=0 PTF=0 CJC=0 VJC=0.75 *MJC=0.33 XCJC=1 TR=0 CJS=0 VJS=0.75 *MJS=0 XTB=0 EG=1.11 XTI=3 KF=0 AF=1 *FC=0.5 TNOM=27 .ENDS .MODEL BAT85 D +IS = 2.076E-7 +N = 1.023 +BV = 33 +IBV = 10E-6 +RS = 2.326 +CJO = 1.21E-11 +VJ = 0.1319 +M=0.2904 +EG=0.69 +XTI=2 .ENDS .END